Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Radiol Oncol ; 48(3): 267-81, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25177241

RESUMO

INTRODUCTION: Electroporation-based treatments rely on increasing the permeability of the cell membrane by high voltage electric pulses delivered to tissue via electrodes. To ensure that the whole tumor is covered by the sufficiently high electric field, accurate numerical models are built based on individual patient geometry. For the purpose of reconstruction of hepatic vessels from MRI images we searched for an optimal segmentation method that would meet the following initial criteria: identify major hepatic vessels, be robust and work with minimal user input. MATERIALS AND METHODS: We tested the approaches based on vessel enhancement filtering, thresholding, and their combination in local thresholding. The methods were evaluated on a phantom and clinical data. RESULTS: Results show that thresholding based on variance minimization provides less error than the one based on entropy maximization. Best results were achieved by performing local thresholding of the original de-biased image in the regions of interest which were determined through previous vessel-enhancement filtering. In evaluation on clinical cases the proposed method scored in average sensitivity of 93.68%, average symmetric surface distance of 0.89 mm and Hausdorff distance of 4.04 mm. CONCLUSIONS: The proposed method to segment hepatic vessels from MRI images based on local thresholding meets all the initial criteria set at the beginning of the study and necessary to be used in treatment planning of electroporation-based treatments: it identifies the major vessels, provides results with consistent accuracy and works completely automatically. Whether the achieved accuracy is acceptable or not for treatment planning models remains to be verified through numerical modeling of effects of the segmentation error on the distribution of the electric field.

2.
Med Biol Eng Comput ; 62(3): 817-827, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38032458

RESUMO

Accurate segmentation of hepatic vessel is significant for the surgeons to design the preoperative planning of liver surgery. In this paper, a sequence-based context-aware association network (SCAN) is designed for hepatic vessel segmentation, in which three schemes are incorporated to simultaneously extract the 2D features of hepatic vessels and capture the correlations between adjacent CT slices. The two schemes of slice-level attention module and graph association module are designed to bridge feature gaps between the encoder and the decoder in the low- and high-dimensional spaces. The region-edge constrained loss is designed to well optimize the proposed SCAN, which integrates cross-entropy loss, dice loss, and edge-constrained loss. Experimental results indicate that the proposed SCAN is superior to several existing deep learning frameworks, in terms of 0.845 DSC, 0.856 precision, 0.866 sensitivity, and 0.861 F1-score.


Assuntos
Cirurgiões , Humanos , Entropia , Processamento de Imagem Assistida por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA