Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Nutr ; 154(4): 1109-1118, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38354952

RESUMO

BACKGROUND: Glycerol-3-phosphate acyltransferase (GPAT) activity is correlated with obesity and insulin resistance in mice and humans. However, insulin resistance exists in people with normal body weight, and individuals with obesity may be metabolically healthy, implying the presence of complex pathophysiologic mechanisms underpinning insulin resistance. OBJECTIVE: We asked what conditions related to GPAT1 must be met concurrently for hepatic insulin resistance to occur. METHODS: Mouse hepatocytes were overexpressed with GPATs via adenoviral infection or exposed to high or low concentrations of glucose. Glucose production by the cells and phosphatidic acid (PA) content in the cells were assayed, GPAT activity was measured, relative messenger RNA expressions of sterol-regulatory element-binding protein 1c (SREBP1c), carbohydrate response element-binding protein (ChREBP), and GPAT1 were analyzed, and insulin signaling transduction was examined. RESULTS: Overexpressing GPAT1 in mouse hepatocytes impaired insulin's suppression of glucose production, together with an increase in both N-ethylmaleimide-resistant GPAT activity and the content of di-16:0 PA. Akt-mediated insulin signaling was inhibited in hepatocytes that overexpressed GPAT1. When the cells were exposed to high-glucose concentrations, insulin suppression of glucose production was impaired, and adding palmitic acid exacerbated this impairment. High-glucose exposure increased the expression of SREBP1c, ChREBP, and GPAT1 by ∼2-, 5-, and 5.7-fold, respectively. The addition of 200 mM palmitic acid or linoleic acid to the culture media did not change the upregulation of expression of these genes by high glucose. High-glucose exposure increased di-16:0 PA content in the cells, and adding palmitic acid further increased di-16:0 PA content. The effect was specific to palmitic acid because linoleic acid did not show these effects. CONCLUSION: These data demonstrate that high-GPAT1 activity, whether induced by glucose exposure or acquired by transfection, and abundant palmitic acid can impair insulin's ability to suppress hepatic glucose production in primary mouse hepatocytes.


Assuntos
Resistência à Insulina , Insulina , Animais , Camundongos , Glucose/metabolismo , Glicerol-3-Fosfato O-Aciltransferase , Hepatócitos/metabolismo , Insulina/metabolismo , Insulina Regular Humana , Ácido Linoleico , Fígado/metabolismo , Obesidade/metabolismo , Ácido Palmítico/metabolismo , Ácido Palmítico/farmacologia
2.
Prostaglandins Other Lipid Mediat ; 172: 106822, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38395139

RESUMO

The study aimed to compare the effects of a diet rich in fat, carbohydrates and protein on rat kidneys. The study was conducted on 40 Wistar albino rats bred at Inönü University Faculty of Medicine after the approval of the ethics committee. Rats were randomly divided into 4 groups: Control group, and the groups where the animals were fed with high carbohydrate, fat and protein rich feed. After the applications, the rat kidney tissues were removed by laparoscopy under anesthesia and blood samples were collected. 13 weeks long fat-rich and carbohydrate feed application had negative effects on oxidant-antioxidant balance, oxidative stress index, inflammation markers, kidney functions tests, histopathology and immunohistochemistry caspase-3 findings in rat kidney tissues, especially in the carbohydrate group when compared to the controls. Protein-rich feed, there were no significant difference in biochemical and histopathology compared to the control group. Fat and carbohydrate rich feed led to an increase in oxidative stress in rat kidney tissues. Oxidative stress led to nephrotoxicity, which in turn led to chronic kidney tissue damages. A more balanced and protein-rich diet instead of excessive sugar and fatty food intake could be suggested to prevent chronic kidney damage.


Assuntos
Caspase 3 , Dieta Hiperlipídica , Carboidratos da Dieta , Inflamação , Rim , Estresse Oxidativo , Ratos Wistar , Insuficiência Renal Crônica , Animais , Estresse Oxidativo/efeitos dos fármacos , Inflamação/patologia , Inflamação/metabolismo , Ratos , Caspase 3/metabolismo , Rim/patologia , Rim/metabolismo , Carboidratos da Dieta/efeitos adversos , Carboidratos da Dieta/farmacologia , Dieta Hiperlipídica/efeitos adversos , Insuficiência Renal Crônica/patologia , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/etiologia , Masculino
3.
Br J Nutr ; 131(4): 593-605, 2024 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-37732427

RESUMO

The current study aimed to investigate the cardiovascular effects of epicatechin, a flavonoid found in green tea and cocoa, in attenuating complications associated with metabolic syndrome in diet-induced obese rats. Male Wistar-Kyoto (WKY) rats aged 16 weeks were fed either standard rat chow or given a high-fat-high-carbohydrate (HFHC) diet for 20 weeks. Epicatechin treatment (5 mg/kg/d) was administered to a subset of WKY rats commencing at week 8 of the 20 week HFHC feeding period. Body weights, food, water and energy intakes, blood pressure, heart rate and glucose tolerance were measured throughout the treatment period. Oxidative stress and inflammatory markers, lipid levels, cardiac collagen deposition, cardiac electrical function, aortic and mesenteric vessel reactivity were examined after the treatment. Twenty weeks of HFHC feeding in WKY rats resulted in the development of metabolic syndrome indicated by the presence of abdominal obesity, dyslipidaemia, glucose intolerance and increased blood pressure. Epicatechin treatment was found to enhance the oxidative stress status in HFHC groups through an increase in serum nitric oxide levels and a decrease in 8-isoprostane concentrations. Furthermore, WKY-HFHC rats displayed a decrease in IL-6 levels. The lipid profiles in HFHC groups showed improvement, with a decrease in LDL-cholesterol and TAG and an increase in HDL-cholesterol levels observed in WKY-HFHC rats. However, epicatechin was not effective in preventing weight gain, glucose intolerance or hypertension in HFHC fed rats. Overall, the results of this study suggest that epicatechin has the potential to improve the underlying mechanisms associated with metabolic syndrome in obese rats.


Assuntos
Catequina , Intolerância à Glucose , Síndrome Metabólica , Ratos , Masculino , Animais , Catequina/farmacologia , Ratos Endogâmicos WKY , Obesidade/complicações , Obesidade/metabolismo , Dieta Hiperlipídica/efeitos adversos , LDL-Colesterol
4.
Int J Mol Sci ; 25(14)2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39063146

RESUMO

Cytochrome P450 2D (CYP2D) is important in psychopharmacology as it is engaged in the metabolism of drugs, neurosteroids and neurotransmitters. An unbalanced maternal diet during pregnancy and lactation can cause neurodevelopmental abnormalities and increases the offspring's predisposition to neuropsychiatric diseases. The aim of the present study was to evaluate the effect of maternal modified types of diet: a high-fat diet (HFD) and high-carbohydrate diet (HCD) during pregnancy and lactation on CYP2D in the liver and brain of male offspring at 28 (adolescent) or 63 postnatal days (young adult). The CYP2D activity and protein level were measured in the liver microsomes and the levels of mRNAs of CYP2D1, 2D2 and 2D4 were investigated both in the liver and brain. In the liver, both HFD and HCD increased the mRNA levels of all the three investigated CYP2D genes in adolescents, but an opposite effect was observed in young adults. The CYP2D protein level increased in adolescents but not in young adults. In contrast, young adults showed significantly decreased CYP2D activity. Similar effect of HFD on the CYP2D mRNAs was observed in the prefrontal cortex, while the effect of HCD was largely different than in the liver (the CYP2D2 expression was not affected, the CYP2D4 expression was decreased in young adults). In conclusion, modified maternal diets influence the expression of individual CYP2D1, CYP2D2 and CYP2D4 genes in the liver and brain of male offspring, which may affect the metabolism of CYP2D endogenous substrates and drugs and alter susceptibility to brain diseases and pharmacotherapy outcome.


Assuntos
Encéfalo , Dieta Hiperlipídica , Lactação , Fígado , Efeitos Tardios da Exposição Pré-Natal , Animais , Gravidez , Feminino , Dieta Hiperlipídica/efeitos adversos , Fígado/metabolismo , Encéfalo/metabolismo , Ratos , Masculino , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Família 2 do Citocromo P450/metabolismo , Família 2 do Citocromo P450/genética , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Microssomos Hepáticos/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Ratos Wistar
5.
Int J Mol Sci ; 25(7)2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38612885

RESUMO

Type 2 diabetes mellitus, a condition preceded by prediabetes, is documented to compromise skeletal muscle health, consequently affecting skeletal muscle structure, strength, and glucose homeostasis. A disturbance in skeletal muscle functional capacity has been demonstrated to induce insulin resistance and hyperglycemia. However, the modifications in skeletal muscle function in the prediabetic state are not well elucidated. Hence, this study investigated the effects of diet-induced prediabetes on skeletal muscle strength in a prediabetic model. Male Sprague Dawley rats were randomly assigned to one of the two groups (n = 6 per group; six prediabetic (PD) and six non-pre-diabetic (NPD)). The PD group (n = 6) was induced with prediabetes for 20 weeks. The diet that was used to induce prediabetes consisted of fats (30% Kcal/g), proteins (15% Kcal/g), and carbohydrates (55% Kcal/g). In addition to the diet, the experimental animals (n = 6) were supplied with drinking water that was supplemented with 15% fructose. The control group (n = 6) was allowed access to normal rat chow, consisting of 35% carbohydrates, 30% protein, 15% fats, and 20% other components, as well as ordinary tap water. At the end of week 20, the experimental animals were diagnosed with prediabetes using the American Diabetes Association (ADA) prediabetes impaired fasting blood glucose criteria (5.6-6.9 mmol/L). Upon prediabetes diagnosis, the animals were subjected to a four-limb grip strength test to assess skeletal muscle strength at week 20. After the grip strength test was conducted, the animals were euthanized for blood and tissue collection to analyze glycated hemoglobin (HbA1c), plasma insulin, and insulin resistance using the homeostatic model of insulin resistance (HOMA-IR) index and malondialdehyde (MDA) concentration. Correlation analysis was performed to examine the associations of skeletal muscle strength with HOMA-IR, plasma glucose, HbA1c, and MDA concentration. The results demonstrated increased HbA1c, FBG, insulin, HOMA-IR, and MDA concentrations in the PD group compared to the NPD group. Grip strength was reduced in the PD group compared to the NPD group. Grip strength was negatively correlated with HbA1c, plasma glucose, HOMA-IR, and MDA concentration in the PD group. These observations suggest that diet-induced prediabetes compromises muscle function, which may contribute to increased levels of sedentary behavior during prediabetes progression, and this may contribute to the development of hyperglycemia in T2DM.


Assuntos
Diabetes Mellitus Tipo 2 , Hiperglicemia , Resistência à Insulina , Estado Pré-Diabético , Masculino , Ratos , Animais , Ratos Sprague-Dawley , Estado Pré-Diabético/etiologia , Glicemia , Diabetes Mellitus Tipo 2/etiologia , Hemoglobinas Glicadas , Dieta/efeitos adversos , Músculo Esquelético , Insulina , Insulina Regular Humana
6.
Int J Mol Sci ; 24(19)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37834148

RESUMO

In the past few decades, many researchers believed that a high-fat and high-calorie diet is the most critical factor leading to metabolic diseases. However, increasing evidence shows a high-carbohydrate and low-fat diet may also be a significant risk factor. It needs a comprehensive evaluation to prove which viewpoint is more persuasive. We systematically compared the effects of high-fat and high-calorie diets and high-carbohydrate and low-fat ones on glycolipid metabolism in mice to evaluate and compare the effects of different dietary patterns on metabolic changes in mice. Sixty 8-week-old male C57BL/6 mice were divided into four groups after acclimatization and 15% (F-15), 25% (F-25), 35% (F-35), and 45% (F-45) of their dietary energy was derived from fat for 24 weeks. The body weight, body-fat percentage, fasting blood glucose, lipid content in the serum, and triglyceride content in the livers of mice showed a significantly positive correlation with dietary oil supplementation. Interestingly, the total cholesterol content in the livers of mice in the F-15 group was significantly higher than that in other groups (p < 0.05). Compared with the F-45 group, the mRNA expression of sterol synthesis and absorption-related genes (e.g., Asgr1, mTorc1, Ucp20, Srebp2, Hmgcr, and Ldlr), liver fibrosis-related genes (e.g., Col4a1 and Adamts1) and inflammation-related genes (e.g., Il-1ß and Il-6) were significantly higher in the F-15 group. Compared with the F-45 group, the relative abundance of unclassified_f_Lachnospiraceae and Akkermansia was decreased in the F-15 group. While unclassified_f_Lachnospiraceae and Akkermansia are potentially beneficial bacteria, they have the ability to produce short-chain fatty acids and modulate cholesterol metabolism. In addition, the relative abundance of unclassified_f_Lachnospiraceae and Akkermansia was significantly positively correlated with fatty acid transporters expression and negatively correlated with that of cholesteryl acyltransferase 1 and cholesterol synthesis-related genes. In conclusion, our study delineated how a high-fat and high-calorie diet (fat supplied higher than or equal to 35%) induced obesity and hepatic lipid deposition in mice. Although the high-carbohydrate and low-fat diet did not cause weight gain in mice, it induced cholesterol deposition in the liver. The mechanism is mainly through the induction of endogenous synthesis of cholesterol in mice liver through the ASGR1-mTORC1-USP20-HMGCR signaling pathway. The appropriate oil and carbon water ratio (dietary energy supply from fat of 25%) showed the best gluco-lipid metabolic homeostasis in mice.


Assuntos
Dieta Hiperlipídica , Fígado , Masculino , Camundongos , Animais , Dieta Hiperlipídica/efeitos adversos , Camundongos Endogâmicos C57BL , Fígado/metabolismo , Colesterol/metabolismo , Metabolismo dos Lipídeos , Carboidratos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo
7.
J Biol Chem ; 296: 100714, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33930463

RESUMO

Overconsumption of sucrose and other sugars has been associated with nonalcoholic fatty liver disease (NAFLD). Reports suggest hepatic de novo lipogenesis (DNL) as an important contributor to and regulator of carbohydrate-induced hepatic lipid accumulation in NAFLD. The mechanisms responsible for the increase in hepatic DNL due to overconsumption of carbohydrate diet are less than clear; however, literatures suggest high carbohydrate diet to activate the lipogenic transcription factor carbohydrate response element-binding protein (ChREBP), which further transcribes genes involved in DNL. Here, we provide an evidence of an unknown link between nuclear factor kappa-light chain enhancer of activated B cells (NF-κB) activation and increased DNL. Our data indicates high carbohydrate diet to enforce nuclear shuttling of hepatic NF-κB p65 and repress transcript levels of sorcin, a cytosolic interacting partner of ChREBP. Reduced sorcin levels, further prompted ChREBP nuclear translocation, leading to enhanced DNL and intrahepatic lipid accumulation both in vivo and in vitro. We further report that pharmacological inhibition of NF-κB abrogated high carbohydrate diet-mediated sorcin repression and thereby prevented ChREBP nuclear translocation and this, in turn, attenuated hepatic lipid accumulation both in in vitro and in vivo. Additionally, sorcin knockdown blunted the lipid-lowering ability of the NF-κB inhibitor in vitro. Together, these data suggest a heretofore unknown role for NF-κB in regulating ChREBP nuclear localization and activation, in response to high carbohydrate diet, for further explorations in lines of NAFLD therapeutics.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Núcleo Celular/efeitos dos fármacos , Carboidratos da Dieta/farmacologia , Lipogênese/efeitos dos fármacos , Fígado/metabolismo , Fator de Transcrição RelA/metabolismo , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Células Hep G2 , Humanos
8.
Fish Shellfish Immunol ; 127: 836-842, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35843526

RESUMO

Carbohydrates are widely distributed in nature as an important nutritional substance and energy source. However, the utilization efficiency of carbohydrates is very poor in fish. Over consumption of carbohydrates will cause excessive inflammatory response and result in lower pathogen resistance in fish. Probiotics have been widely used to prevent inflammation, but the underlying mechanism still needs more exploration. In this study, three diets, including a control diet (CD), a high-carbohydrate diet (HD) and the HD supplemented with Bacillus amyloliquefaciens SS1 (HDB) were used to feed Nile tilapia for 10 weeks. At the end of the feeding trial, fish were challenged with Aeromonas hydrophila (A. hydrophila) for 7 days. The data showed that the addition of Bacillus amyloliquefaciens SS1 (B. amyloliquefaciens SS1) significantly increased the survival rate and enhanced the respiratory burst activity of head kidney leukocytes in Nile tilapia. B. amyloliquefaciens SS1 treatment significantly elevated the anti-oxidative capability, which was evidenced by higher activities of superoxide dismutase (SOD) and total antioxidant capacity (T-AOC), and higher content of reduced glutathione (GSH) in the serum. Administration with B. amyloliquefaciens SS1 effectively suppressed inflammatory response in the liver by inhibiting nuclear factor kappa-B (NF-κB)/interleukin-1 beta (IL-1ß) inflammatory signaling pathway. In vitro analysis suggested that intestinal bacteria derived-acetate has the antioxidant capability, which may account for the alleviation of inflammation. Overall, this study demonstrated that dietary supplementation with B. amyloliquefaciens SS1 protected Nile Tilapia against A. hydrophila infection and suppressed liver inflammation by enhancing antioxidant capability.


Assuntos
Bacillus amyloliquefaciens , Ciclídeos , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Aeromonas hydrophila/fisiologia , Ração Animal/análise , Animais , Antioxidantes/metabolismo , Carboidratos , Ciclídeos/metabolismo , Dieta/veterinária , Suplementos Nutricionais/análise , Doenças dos Peixes/microbiologia , Doenças dos Peixes/prevenção & controle , Infecções por Bactérias Gram-Negativas/prevenção & controle , Infecções por Bactérias Gram-Negativas/veterinária , Inflamação/prevenção & controle , Inflamação/veterinária , Fígado/metabolismo
9.
Fish Shellfish Immunol ; 125: 141-151, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35569775

RESUMO

Yinchenhao Decoction (YD), a Chinese herbal medicine, has been traditionally used for treatment of metabolic liver diseases. A 10-week feeding trail was carried out to examine the effects of YD supplementation in a high carbohydrate diet (HCD) on liver histopathology, immune response, disease resistance, and expression of genes associated with endoplasmic reticulum stress, autophagy, apoptosis, necroptosis and inflammation in juvenile largemouth. A diet containing 9% carbohydrate was used as a low carbohydrate diet (LCD), and a HCD was formulated to contain 18% carbohydrate and supplemented with 0, 0.5, 1, 2 or 4% YD (HCD, HCD+0.5YD, HCD+1YD, HCD+2YD and HCD+4YD). Triplicate groups of fish (5.6 ± 0.2 g) were feed the test diets to visual satiety for 10 weeks. The highest survival rate after Nocardia seriolae challenge was recorded for the HCD+4YD group. YD application led to reduced ACP, AKP, AST and ALT activities. HCD-induced cells swelling, ruptured cell membrane, migrated nuclei and increasing inflammatory cells in hepatocytes were mitigated by YD addition. Moreover, YD decreased the expressions of pro-inflammation genes (TNF-α, IL-1ß, IL-8, hepcidin1, NF-κB, COX2, CD80 and CD83) and increased the mRNA levels of anti-inflammation genes (IL-10 and IKBα). The mode of liver cell death was preferably changed to programed apoptosis rather than uncontrolled necroptosis by application of YD in HCD. Furthermore, the expression of UPR genes (IRE1, Eif2α, ATF6, XBP1 and GRP78/Bip) and autophagy genes (LC3-2, BNIP3 and P62) was increased by YD supplementation. In summary, our results demonstrated that YD addition in HCD enhances UPR, autophagy and programed apoptosis maintaining the homeostasis, and decreases uncontrolled necroptosis and inflammation, ultimately leading to improved immune response in largemouth bass.


Assuntos
Bass , Medicamentos de Ervas Chinesas , Animais , Carboidratos , Dieta , Medicamentos de Ervas Chinesas/farmacologia , Imunidade , Inflamação/veterinária
10.
Nutr Neurosci ; 25(7): 1477-1487, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33427121

RESUMO

Chronic administration of selective serotonin reuptake inhibitors (SSRI), usually prescribed as antidepressants, decreases total energy intake; however, at present the differential effect on the intake of distinct macronutrients and on female vs. male organisms is not clear. On this basis, female and male adult Wistar rats were exposed to two types of diets: (1) a standard balanced diet (BD); or (2) two types of diets simultaneously, (a) one high in carbohydrates (HC); the other (b) high in fat (HF). Both study groups were given a dose of 10 mg/kg/day i.p. of citalopram or a vehicle for 21 days. Food and water consumption and body weight were recorded daily at baseline (BL), during treatment (TX), and post-treatment (PTx1-PTx2). The male rats exposed to BD reduced total energy consumption during treatment with citalopram, but body weight gain decreased both females and males compared to BL. During exposure to the two types of diets, citalopram treatment reduced fat consumption with respect to BL and PTx1 only in the male group. This group also decreased its total energy consumption during TX compared to PTx1. Finally, the females gained less body weight in TX than PTx1, while weight gain in the males during TX decreased with respect to BL and PTx1. Results show a differential effect of citalopram on females vs. males that was dependent on the type of macronutrient administered.


Assuntos
Citalopram , Carboidratos da Dieta , Animais , Peso Corporal , Dieta , Gorduras na Dieta , Ingestão de Energia , Feminino , Masculino , Ratos , Ratos Wistar , Aumento de Peso
11.
Metab Brain Dis ; 37(8): 2711-2718, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36040711

RESUMO

The excessive consumption of ultra-processed foods and the development of obesity has been associated with several comorbidities, including psychiatric disorders. Excess fat tissue promotes a low-intensity inflammatory state, mainly in the white tissue, which is essential in developing metabolic alterations and influences brain homeostasis. In this scenario, Cannabidiol (CBD), a compound from Cannabis sativa, has presented anxiolytic and anti-inflammatory effects in murine models. This study verified whether CBD treatment would ameliorate the compulsive-like and anxiety-like behaviors observed after mice's chronic consumption of a high-refined carbohydrate (HC) diet. BALB/c male mice received a control or HC diet for 12 weeks followed by vehicle and CBD (30 mg/Kg, i.p.) administration, and their behavior was evaluated in the Marble Burying test (MB) and Novel Suppressing Feeding test (NSF). The sub-chronic, but not acute, treatment with CBD attenuated the compulsive-like and anxiogenic-like behavior induced by the HC diet. Our data reinforced the harmful effects of the HC diet's chronic consumption on compulsive and anxious behaviors and the potential of CBD as a drug treatment for psychiatric disorders associated with obesity.


Assuntos
Canabidiol , Camundongos , Masculino , Animais , Canabidiol/farmacologia , Canabidiol/uso terapêutico , Camundongos Endogâmicos BALB C , Comportamento Compulsivo/induzido quimicamente , Comportamento Compulsivo/tratamento farmacológico , Obesidade/induzido quimicamente , Obesidade/tratamento farmacológico , Carboidratos
12.
Parasitol Res ; 121(2): 737-742, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35034199

RESUMO

The search for a novel prophylactic agent against malaria is on the rise due to the negative socio-economic impact of the disease in tropical and subtropical regions of the world. Sequel to this, we evaluated the in vivo anti-Plasmodium berghei activity of a high-carbohydrate diet as well as the effects of the diet on parasite-associated anemia and organ damage. Mice were fed with either standard or a high-carbohydrate diet for 4 weeks and subsequently infected with chloroquine-sensitive strain of P. berghei. The levels of parasitemia, blood glucose, packed cell volume, and redox sensitive biomarkers of brain and liver tissues were measured. Data from this study showed that high-carbohydrate significantly (p < 0.05) aggravated the multiplication of P. berghei in the animals. Furthermore, our result demonstrated that blood glucose level in P. berghei-infected mice fed with a high-carbohydrate diet was insignificantly (p > 0.05) depleted. Additionally, our findings revealed that high-carbohydrate did not demonstrate a significant (p < 0.05) ameliorative potentials against P. berghei-induced anemia and oxidative stress in the brain and liver tissues. We concluded that high-carbohydrate diet was unable to suppress P. berghei upsurge and accordingly could not mitigate certain pathological alterations induced by P. berghei infection.


Assuntos
Antimaláricos , Malária , Animais , Antimaláricos/farmacologia , Carboidratos/farmacologia , Carboidratos/uso terapêutico , Malária/tratamento farmacológico , Camundongos , Estresse Oxidativo , Parasitemia/tratamento farmacológico , Plasmodium berghei
13.
Am J Physiol Endocrinol Metab ; 320(1): E102-E112, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33225719

RESUMO

Carbohydrate responsive element-binding protein (ChREBP) has been identified as a primary transcription factor that maintains energy homeostasis through transcriptional regulation of glycolytic, lipogenic, and gluconeogenic enzymes in response to a high-carbohydrate diet. Amino acids are important substrates for gluconeogenesis, but nevertheless, knowledge is lacking about whether this transcription factor regulates genes involved in the transport or use of these metabolites. Here, we demonstrate that ChREBP represses the expression of the amino acid transporter sodium-coupled neutral amino acid transporter 2 (SNAT2) in response to a high-sucrose diet in rats by binding to a carbohydrate response element (ChoRE) site located -160 bp upstream of the transcriptional start site in the SNAT2 promoter region. Additionally, immunoprecipitation assays revealed that ChREBP and silencing mediator of retinoic acid and thyroid hormone receptor (SMRT) interact with each other, as part of the complex that repress SNAT2 expression. The interaction between these proteins was confirmed by an in vivo chromatin immunoprecipitation assay. These findings suggest that glucogenic amino acid uptake by the liver is controlled by ChREBP through the repression of SNAT2 expression in rats consuming a high-carbohydrate diet.NEW & NOTEWORTHY This study highlights the key role of carbohydrate responsive element-binding protein (ChREBP) in the fine-tuned regulation between glucose and amino acid metabolism in the liver via regulation of the amino acid transporter sodium-coupled neutral amino acid transporter 2 (SNAT2) expression after the consumption of a high-carbohydrate diet. ChREBP binds to a carbohydrate response element (ChoRE) site in the SNAT2 promoter region and recruits silencing mediator of retinoic acid and thyroid hormone receptor (SMRT) corepressor to reduce SNAT2 transcription. This study revealed that ChREBP prevents the uptake of glucogenic amino acids upon the consumption of a high-carbohydrate diet.


Assuntos
Sistema A de Transporte de Aminoácidos/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Carboidratos da Dieta/farmacologia , Correpressor 2 de Receptor Nuclear/metabolismo , Sistema A de Transporte de Aminoácidos/genética , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Glicemia/análise , Glicemia/metabolismo , Imunoprecipitação da Cromatina , Dieta , Regulação para Baixo , Hepatócitos/metabolismo , Masculino , Correpressor 2 de Receptor Nuclear/genética , Cultura Primária de Células , Ratos , Ratos Wistar , Sacarose/farmacologia , Transcrição Gênica/efeitos dos fármacos
14.
Fish Shellfish Immunol ; 119: 308-317, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34662728

RESUMO

This study assessed the effects of feed carbohydrate content on intestinal physical barrier and immunity in juvenile largemouth bass (Micropterus salmoides). Triplicate groups of juvenile fish (4.1 ± 0.2 g) were fed low (LCD, 7%), medium (MCD, 12%) and high (HCD, 17%) carbohydrate diets for eight weeks. Gut histology revealed the slight infiltration of inflammatory cells and moderate loss of mucous membrane layer in HCD group. Expression of ZO1, occluding, and claudin7 genes and epidermal growth factor receptor (EGFR) gene were significantly decreased in HCD group indicating the impairment of tight junction and epithelial cell regeneration. The results showed the significant (P < 0.05) reduction of antioxidant capacity in HCD group compared to LCD. Furthermore, expression of intestinal ERS-related genes such as IRE1, Eif2α, GRP78, CHOPα and CHOPß in HCD group was significantly higher than the LCD group. In addition, HCD induced the up-regulated expression of inflammatory (IL-8, IL-1ß, TNFα and COX2) and apoptosis (TRAF2, bax, casepase3, caspase8 and casepase9) related genes in fish intestine. The data generated in this study clearly demonstrated that HCD induced ERS and oxidative stress, which promoted intestinal inflammation and apoptosis in juvenile largemouth bass.


Assuntos
Bass , Animais , Apoptose , Carboidratos , Dieta/veterinária , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático , Inflamação/veterinária , Estresse Oxidativo
15.
Cardiovasc Drugs Ther ; 35(5): 927-938, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-32621046

RESUMO

PURPOSE: Obesity is associated with systemic insulin resistance and cardiac hypertrophy with fibrosis. Peroxisome proliferator-activated receptors (PPARs) regulate carbohydrate and lipid metabolism, improving insulin sensitivity, triglyceride levels, inflammation, and oxidative stress. We previously demonstrated that prolonged-release pirfenidone (PR-PFD) is an agonistic ligand for Pparα with anti-inflammatory and anti-fibrotic effects, and might be a promising drug for cardiac diseases-treatment. Here, we investigated the effects of PR-PFD in ventricular tissue of mice with nonalcoholic steatohepatitis (NASH) and obesity induced by high-fat/high-carbohydrate (HFHC) diet. METHODS: Five male C57BL/6 J mice were fed with normal diet (ND) and ten with HFHC diet for 16 weeks; at 8 weeks of feeding, five mice with HFHC diet were administered PR-PFD (350 mg/kg/day) mixed with HFHC diet. RESULT: Systemic insulin resistance, heart weight/body weight ratio, myocardial steatosis with inflammatory foci, hypertrophy, and fibrosis were prevented by PR-PFD. In addition, HFHC mice showed significantly increased desmin, Tgfß1, Timp1, collagen I (Col I), collagen III (Col III), TNF-α, and Nrf2 mRNA levels, including α-SMA, NF-kB, Nrf2, troponin I, Acox1, Cpt1A, and Lxrα protein levels compared with the ND ventricular tissues. Mechanistically, HFHC mice with PR-PFD treatment significantly decreased these genes overexpressed by HFHC diet. Furthermore, PR-PFD overexpressed the Pgc1a mRNA levels and Pparα, Pparγ, Acox1, and Cpt1A protein levels. CONCLUSIONS: The results suggest that PR-PFD could be a promising drug for the prevention and treatment of cardiac steatosis and fibrosis induced by obesity.


Assuntos
Fibrose/prevenção & controle , Cardiopatias/prevenção & controle , Hepatopatia Gordurosa não Alcoólica/fisiopatologia , Obesidade/fisiopatologia , PPAR alfa/agonistas , Piridonas/farmacologia , Animais , Peso Corporal/efeitos dos fármacos , Dieta Hiperlipídica , Modelos Animais de Doenças , Fibrose/fisiopatologia , Cardiopatias/fisiopatologia , Resistência à Insulina/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Tamanho do Órgão/efeitos dos fármacos , Distribuição Aleatória
16.
Molecules ; 26(6)2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33804179

RESUMO

Amomum tsao-ko Crevost et Lemaire (Zingiberaceae) is a medicinal herb found in Southeast Asia that is used for the treatment of malaria, abdominal pain, dyspepsia, etc. The aim of this study was to investigate the effect of an ethanol extract of Amomum tsao-ko (EAT) on obesity and hyperlipidemia in C57BL/6 mice fed a high-carbohydrate diet (HCD). First, the mice were divided into five groups (n = 6/group) as follows: normal diet, HCD, and HCD+EAT (100, 200, and 400 mg/kg/day), which were orally administered with EAT daily for 84 days. Using microcomputed tomography (micro-CT) analysis, we found that EAT inhibited not only body-weight gain, but also visceral fat and subcutaneous fat accumulation. Histological analysis confirmed that EAT decreased the size of fat tissues. EAT consistently improved various indices, including plasma levels of total cholesterol (TC), triglyceride (TG), low-density lipoprotein, high-density lipoprotein, atherogenic index, and cardiac risk factors, which are related to dyslipidemia-a major risk factor for heart disease. The contents of TC and TG, as well as the lipid droplets of HCD-induced hepatic accumulation in the liver tissue, were suppressed by EAT. Taken together, these findings suggest the possibility of developing EAT as a therapeutic agent for improving HCD-induced obesity and hyperlipidemia.


Assuntos
Amomum/química , Carboidratos/efeitos adversos , Dislipidemias/tratamento farmacológico , Obesidade/tratamento farmacológico , Plantas Medicinais/química , Zingiberaceae/química , Tecido Adiposo/efeitos dos fármacos , Animais , Dieta/efeitos adversos , Dislipidemias/metabolismo , Lipoproteínas LDL/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Triglicerídeos/metabolismo
17.
J Sci Food Agric ; 101(12): 4995-5001, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33543498

RESUMO

BACKGROUND: Cardiolipin (CL) helps maintain mitochondrial structure and function. Here we investigated whether a high carbohydrate diet (HCD) fed to mice for a short period (5 days) could modulate the CL level, including that of monolysoCL (MLCL) in the liver. RESULTS: Total CL in the HCD group was 22% lower than that in the normal chow diet (NCD) group (P < 0.05). The CL72:8 level strikingly decreased by 93% (P < 0.0001), whereas total nascent CLs (CLs other than CL72:8) increased (P < 0.01) in the HCD group. The total MLCL in the HCD group increased by 2.4-fold compared with that in the NCD group (P < 0.05). Tafazzin expression in the HCD group was significantly downregulated compared with that in the NCD group (P < 0.05). A strong positive correlation between nascent CL and total MLCL (r = 0.955, P < 0.0001), and a negative correlation between MLCL and Tafazzin expression (r = -0.593, P = 0.0883) were observed. CONCLUSION: A HCD modulated the fatty acid composition of CL and MLCL via Tafazzin in the liver, which could lead to mitochondrial dysfunction. This model may be useful for elucidating the relationship between fatty liver and mitochondrial dysfunction. © 2021 Society of Chemical Industry.


Assuntos
Aciltransferases/genética , Cardiolipinas/metabolismo , Fígado Gorduroso/genética , Aciltransferases/metabolismo , Animais , Carboidratos da Dieta/efeitos adversos , Carboidratos da Dieta/análise , Modelos Animais de Doenças , Regulação para Baixo , Fígado Gorduroso/etiologia , Fígado Gorduroso/metabolismo , Humanos , Fígado/metabolismo , Masculino , Camundongos , Mitocôndrias/genética , Mitocôndrias/metabolismo
18.
Fish Shellfish Immunol ; 102: 336-349, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32360278

RESUMO

The study investigated whether dietary berberine supplementation could improve intestinal barrier against inflammation induced by high-fat and high-carbohydrate diets in blunt snout bream. Fish (average initial weight 44.83 ± 0.06 g) were fed with six kinds of diets (control, high-fat diet (10% lipid) and high-carbohydrate (43% nitrogen-free extract) diet, control/berberine, high-fat/berberine or high-carbohydrate/berberine) for 8 weeks, respectively. Feeding mode of berberine (50 mg/kg diet) was adopted to two-week interval. After feeding trial, fish growth performance and intestinal barrier function were estimated. The result showed that no significant interactions between diet and berberine in growth performance, whole body composition or protein utilization were observed (P > 0.05). Specific growth rate (SGR) and feed conversion ratio (FCR) were significantly affected by berberine (P < 0.05). Protein efficiency ratio (PER), nitrogen retention (NRE), fish whole-body lipid contents increased greatly in high-fat or high-carbohydrate diets (P < 0.05). Significant interactions between diet and berberine were observed in fish intestinal barrier (physical, chemical, immunological and microbiological barriers) (P < 0.05). High-fat and high-carbohydrate diets could increase significantly intestinal permeability and inflammatory response, decrease intestinal mucins gene expression levels, and make the intestinal microbiota out of balance (P < 0.05). Berberine significantly inhibited inflammation response and modulated intestinal microflora profile (P < 0.05). Taken together, berberine could alleviate intestinal barrier damage injured by high-fat or high-carbohydrate diet and improve the growth performance of blunt snout bream.


Assuntos
Berberina/metabolismo , Cyprinidae/imunologia , Carboidratos da Dieta/administração & dosagem , Gorduras na Dieta/administração & dosagem , Microbioma Gastrointestinal/efeitos dos fármacos , Intestinos/fisiologia , Ração Animal/análise , Animais , Berberina/administração & dosagem , Dieta/veterinária , Suplementos Nutricionais/análise , Relação Dose-Resposta a Droga , Intestinos/efeitos dos fármacos , Distribuição Aleatória
19.
Exp Cell Res ; 381(1): 29-38, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31071317

RESUMO

Maternal obesity is associated with adverse effects on the health of offsprings. Consumption of a high-carbohydrate (HC) diet has been found to promote abnormal fatty acid metabolism in adipose tissue. Therefore, we hypothesised that maternal obesity combined with an offspring HC diet would alter the fatty acid metabolism of adipose tissue and subsequently contribute to offspring obesity. Leprdb/+ mice were used to model pre-pregnancy maternal obesity and the C57BL/6 wildtype were used as a control group. Offspring were fed either HC diet or a normal-carbohydrate (NC) diet after weaning. Brown adipose tissue (BAT) and white adipose tissue (WAT) were collected from offspring at 20 weeks of age and their fatty acid metabolome was characterized using gas chromatography-mass spectrometry. We found that HC diet increased the body weight of offspring (males increased by 14.70% and females increased by 1.05%) compared to control mothers. However, maternal obesity alone caused a 7.9% body weight increase in female offspring. Maternal obesity combined with an offspring HC diet resulted in dynamic alterations of the fatty acid profiles of adipose tissue in male offspring. Under the impact of a HC diet, the fatty acid metabolome was solely elevated in female WAT, whereas, the fatty acid metabolites in BAT showed a similar trend in the male and female offsprings. 6,9-octadecadienoic acid and 12,15-cis-octadecatrienoic acid were significantly affected in female WAT, in response to offspring consumption of a HC diet. Our study demonstrated that maternal obesity and offspring HC diet have different metabolic effects on adipose tissue in male and female offsprings.


Assuntos
Tecido Adiposo/metabolismo , Dieta da Carga de Carboidratos , Obesidade/metabolismo , Complicações na Gravidez/metabolismo , Adipócitos Marrons/metabolismo , Adipócitos Brancos/metabolismo , Animais , Glicemia/metabolismo , Peso Corporal , Carboidratos da Dieta/administração & dosagem , Feminino , Masculino , Metaboloma , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Gravidez , Receptores para Leptina/genética , Receptores para Leptina/metabolismo
20.
Gen Comp Endocrinol ; 296: 113537, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32540489

RESUMO

High carbohydrate diet (HCD) can induce lipid metabolism disorder, characterized by excessive lipid in farmed fish. Peroxisome proliferator activated receptor-α (PPARα) plays an important role in lipid homeostasis. In this study, we hypothesize that PPARα can improve lipid metabolism in fish fed HCD. Fish (3.03 ± 0.11 g) were fed with three diets: control (30% carbohydrate), HCD (45% carbohydrate) and HCG (HCD supplemented with 200 mg/kg gemfibrozil, an agonist of PPARα) for eight weeks. The fish fed HCG had higher growth rate and protein effiency than those fed the HCD diet, whereas the opposite trend was observed in feed conversion ratio, hepatosomatic index and mesenteric fat index. Additionally, fish fed HCG significantly decreased lipid accumulation in the whole body, liver and adipose tissues compared to those fed the HCD diet. Furthermore, fish in the HCG group significantly increased the mRNA and protein expression and protein dephosphorylation of PPARα. The HCG group also significantly increased the mRNA level of the downstream target genes of PPARα, whereas the opposite trend occured in the mRNA level of lipolysis-related genes compared to the HCD group. Besides, fish in the HCG group remarkably decreased the contents of alanine aminotransferase, aspartate aminotransferase and malondialdehyde, whereas the opposite occured in the activities of antioxidative enzymes and anti-inflammatory cytokine genes compared to the HCD group. This study indicates that gemfibrozil can improve lipid metabolism and maintain high antioxidant and anti-inflammatory capacity through activating PPARα in Nile tilapia fed a high carbohydrate diet.


Assuntos
Ciclídeos/metabolismo , Carboidratos da Dieta/farmacologia , Comportamento Alimentar , Genfibrozila/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , PPAR alfa/metabolismo , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Antioxidantes/metabolismo , Composição Corporal/efeitos dos fármacos , Ciclídeos/sangue , Ciclídeos/genética , Ciclídeos/crescimento & desenvolvimento , Dieta , Inflamação/genética , Inflamação/patologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fosforilação/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Estresse Fisiológico/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA