Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Molecules ; 29(2)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38257295

RESUMO

Three novel anti-perovskite compounds, formulated as Cs3X[B12H12] (X- = [NO3]-, [ClO3]-, and [ClO4]-), were successfully synthesized through the direct mixing of aqueous solutions containing Cs2[B12H12] and CsX (X-: [NO3]-, [ClO3]-, [ClO4]-), followed by isothermal evaporation. All three compounds crystallize in the orthorhombic space group Pnma, exhibiting relatively similar unit-cell parameters (e.g., Cs3[ClO3][B12H12]: a = 841.25(5) pm, b = 1070.31(6) pm, c = 1776.84(9) pm). The crystal structures were determined using single-crystal X-ray diffraction, revealing a distorted hexagonal anti-perovskite order for each. Thermal analysis indicated that the placing oxidizing anions X- into the 3 Cs+ + [B12H12]2- blend leads to a reduction in the thermal stability of the resulting anti-perovskites Cs3X[B12H12] as compared to pure Cs2[B12H12], so thermal decomposition commences at lower temperatures, ranging from 320 to 440 °C. Remarkably, the examination of the energy release through DSC studies revealed that these compounds are capable of setting free a substantial amount of energy, up to 2000 J/g, upon their structural collapse under an inert-gas atmosphere (N2). These three compounds represent pioneering members of the first ever anti-perovskite high-energy compounds based on hydro-closo-borates.

2.
Chemistry ; 29(62): e202301662, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37505482

RESUMO

Nitrate esters are important organic compounds having wide application in energetic materials, medicines and fuel additives. They are synthesized through nitration of aliphatic polyols. But the process safety challenges associated with nitration reaction makes the production process complicated and economically unviable. Herein, we have developed a continuous flow process wherein polyol and nitric acid are reacted in a microreactor to produce nitrate ester continuously. Our developed process is inherently safer and efficient. The process was optimized for industrially important nitrate esters containing two, three and four nitro groups. Substrates include glycol dinitrates: 1,2-propylene glycol dinitrate (PGDN), ethylene glycol dinitrate (EGDN), diethylene glycol dinitrate (DEGDN), triethylene glycol dinitrate (TEGDN); trinitrates: trimethylolethane trinitrate (TMETN), 1,2,4-butanetriol trinitrate (BTTN); and tetranitrates: erythritol tetranitrate (ETN). The optimized process for each molecule provided yield >90 % in a short residence time of 1 min corresponding to a space time yield of >18 g/h/mL of reactor volume.

3.
Chemistry ; 27(59): 14628-14637, 2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34324750

RESUMO

A series of novel energetic materials comprising of azo-bridged furoxanylazoles enriched with energetic functionalities was designed and synthesized. These high-energy materials were thoroughly characterized by IR and multinuclear NMR (1 H, 13 C, 14 N) spectroscopy, high-resolution mass spectrometry, elemental analysis, and differential scanning calorimetry (DSC). The molecular structures of representative amino and azo oxadiazole assemblies were additionally confirmed by single-crystal X-ray diffraction and X-ray powder diffraction. A comparison of contributions of explosophoric moieties into the density of energetic materials revealed that furoxan and 1,2,4-oxadiazole rings are the densest motifs while the substitution of the azide and amino fragments on the nitro and azo ones leads to an increase of the density. Azo bridged energetic materials have high nitrogen-oxygen contents (68.8-76.9 %) and high thermal stability. The synthesized compounds exhibit good experimental densities (1.62-1.88 g cm-3 ), very high enthalpies of formation (846-1720 kJ mol-1 ), and, as a result, excellent detonation performance (detonation velocities 7.66-9.09 km s-1 and detonation pressures 25.0-37.7 GPa). From the application perspective, the detonation parameters of azo oxadiazole assemblies exceed those of the benchmark explosive RDX, while a combination of high detonation performance and acceptable friction sensitivity of azo(1,2,4-triazolylfuroxan) make it a promising potential alternative to PETN.

4.
Molecules ; 26(18)2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34576908

RESUMO

The existence of areas of strongly positive electrostatic potential in the central regions of the molecular surface of high-energy molecules is a strong indicator that these compounds are very sensitive towards detonation. Development of high-energy compounds with reduced sensitivity towards detonation and high efficiency is hard to achieve since the energetic molecules with high performance are usually very sensitive. Here we used Density Functional Theory (DFT) calculations to study a series of bis(acetylacetonato) and nitro-bis(acetylacetonato) complexes and to elucidate their potential application as energy compounds with moderate sensitivities. We calculated electrostatic potential maps for these molecules and analyzed values of positive potential in the central portions of molecular surfaces in the context of their sensitivity towards detonation. Results of the analysis of the electrostatic potential demonstrated that nitro-bis(acetylacetonato) complexes of Cu and Zn have similar values of electrostatic potential in the central regions (25.25 and 25.06 kcal/mol, respectively) as conventional explosives like TNT (23.76 kcal/mol). Results of analysis of electrostatic potentials and bond dissociation energies for the C-NO2 bond indicate that nitro-bis(acetylacetonato) complexes could be used as potential energetic compounds with satisfactory sensitivity and performance.

5.
Molecules ; 25(16)2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-32764466

RESUMO

In this work, Al-Mg intermetallic powders were characterized and obtained by melting, casting into a steel chill and subsequent mechanical activation in a planetary mill. The method for producing Al12Mg17 intermetallic powder is presented. The dispersity, morphology, chemical composition, and phase composition of the obtained powder materials were investigated. Certain thermodynamic properties of high-energy materials containing the Al-Mg powder after mechanical activation of various durations were investigated. The addition of the Al-Mg powders to the high-energy composition (synthetic rubber SKDM-80 + ammonium perchlorate AP + boron B) can significantly increase the burning rate by approximately 47% and the combustion heat by approximately 23% compared with the high-energy compositions without the Al-Mg powder. The addition of the Al12Mg17 powder obtained after 6 h of mechanical activation provides an increase in the burning rate by 8% (2.5 ± 0.1 mm/s for the mechanically activated Al12Mg17 powder and 2.3 ± 0.1 mm/s for the commercially available powder) and an increase in the combustion heat by 3% (7.4 ± 0.2 MJ/kg for the mechanically activated Al-Mg powder and 7.1 ± 0.2 MJ/kg for the commercially available powder). The possibility of using the Al-Mg intermetallic powders as the main component of pyrotechnic and special compositions is shown.


Assuntos
Ligas/química , Alumínio/química , Magnésio/química , Pós/química , Dureza , Teste de Materiais , Tamanho da Partícula
6.
Chemistry ; 25(16): 4225-4233, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30644611

RESUMO

A series of highly energetic organic salts comprising a tetrazolylfuroxan anion, explosophoric azido or azo functionalities, and nitrogen-rich cations were synthesized by simple, efficient, and scalable chemical routes. These energetic materials were fully characterized by IR and multinuclear NMR (1 H, 13 C, 14 N, 15 N) spectroscopy, elemental analysis, and differential scanning calorimetry (DSC). Additionally, the structure of an energetic salt consisting of an azidotetrazolylfuroxan anion and a 3,6,7-triamino-7H-[1,2,4]triazolo[4,3-b][1,2,4]triazolium cation was confirmed by single-crystal X-ray diffraction. The synthesized compounds exhibit good experimental densities (1.57-1.71 g cm-3 ), very high enthalpies of formation (818-1363 kJ mol-1 ), and, as a result, excellent detonation performance (detonation velocities 7.54-8.26 kms-1 and detonation pressures 23.4-29.3 GPa). Most of the synthesized energetic salts have moderate sensitivity toward impact and friction, which makes them promising candidates for a variety of energetic applications. At the same time, three compounds have impact sensitivity on the primary explosives level (1.5-2.7 J). These results along with high detonation parameters and high nitrogen contents (66.0-70.2 %) indicate that these three compounds may serve as potential environmentally friendly alternatives to lead-based primary explosives.

7.
Toxicol Appl Pharmacol ; 355: 103-111, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-29959026

RESUMO

The high-energy compound 3,4,5-trinitropyrazole (TNP) was developed as an alternative to other less energetic and more sensitive explosive materials, in particular 1-methyl-2,4,6-trinitrobenzene (TNT). However, the level of toxicity of TNP remains understudied. Here using an in vivo CD1 mouse model, we mimicked an acute exposure (24 h) to TNP, given either orally or intravenously, and determined the maximum administrable doses (190 mg/kg and 11 mg/kg, respectively), as well as the lethal dose for 50% (LD50) of female or male mice (390 mg/kg for both) treated intravenously with TNP alone. Several metabolites including nitroso-dinitro-pyrazole, hydroxylamino-dinitro-pyrazole, hydroxyl-dinitro-pyrazole and amino-dinitro-pyrazole were identified in urine. TNP is quickly metabolized and eliminated via urine as two main amino-dinitro-pyrazole metabolites. A comparison of the transcriptomic effects of TNP and TNT after 10 days exposure enabled us to demonstrate no major induction of transcripts involved both in cell death mechanisms (apoptosis, necrosis, autophagy) and physiological pathways (glycolysis, ATP production). Finally, subchronic exposure to TNP was replicated in female mice, fed 16.8-52.8 mg/kg/day of TNP for one month, to study the impact on cellular functions. Although blood TNP levels remained high, a lower rate of TNP accumulation in the liver and lungs were observed than during an acute exposure. Conversely, cellular stress functions explored using the RT2 Profiler™ PCR Array Mouse Molecular Toxicology PathwayFinder remained unaltered after this chronic exposure. These findings demonstrate that TNP can be rapidly eliminated in vivo without accumulating in vital organs.


Assuntos
Substâncias Explosivas/toxicidade , Trifosfato de Adenosina/biossíntese , Animais , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Biotransformação , Substâncias Explosivas/farmacocinética , Feminino , Glicólise/efeitos dos fármacos , Dose Letal Mediana , Masculino , Camundongos , Necrose , Pirazóis/toxicidade , Distribuição Tecidual , Transcriptoma/efeitos dos fármacos
8.
Chemistry ; 22(3): 1141-5, 2016 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-26663482

RESUMO

Metal-organic framework (MOF)-based energetic material [Cu3 (MA)2 (N3 )3 ] (1; MA=melamine) was synthesized and structurally characterized (47.55 % N). The structural analysis revealed the existence of unusual multiwalled tubular channels and interweaving of single and double helical units in 1. The standard molar enthalpy of formation was found to be 1788.73 kJ mol(-1) , which is the highest value among previously reported MOF-based energetic materials. The calculated detonation properties showed that 1 can be used as a potential explosive. Sensitivity tests revealed that 1 is insensitive and thus can function as a high-energy-density material with a favorable level of safety.

9.
Chemistry ; 21(19): 7285-91, 2015 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-25801532

RESUMO

The synthesis of a series of nitroxy- and azido-functionalized compounds, based on 4-amino-3,5-di(hydroxymethyl)-1,2,4-triazole, for possible use as an energetic plasticizers is described. All compounds were fully characterized. Two of them were further confirmed by X-ray single crystal diffraction. Energetic performance was calculated by using EXPLO5 v6.01 based on calculated heats of formation (Gaussian 03) and experimentally determined densities at 25 °C. The results show that the nitration product 1-nitro-3,5-di(nitroxymethyl)-1,2,4-triazole, containing a nitro group and two nitroxy groups, exhibits good detonation properties (D=8574 m s(-1) , P=32.7 GPa). In addition, its low melting point makes it very attractive as an energetic plasticizer in solid propellants.

10.
Molecules ; 20(10): 19142-71, 2015 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-26506330

RESUMO

Aromatic polyazides are widely used as starting materials in organic synthesis and photochemical studies, as well as photoresists in microelectronics and as cross-linking agents in polymer chemistry. Some aromatic polyazides possess high antitumor activity, while many others are of considerable interest as high-energy materials and precursors of high-spin nitrenes and C3N4 carbon nitride nanomaterials. The use of aromatic polyazides in click-reactions may be a new promising direction in the design of various supramolecular systems possessing interesting chemical, physical and biological properties. This review is devoted to the synthesis, properties and applications of six-membered aromatic compounds containing three and more azido groups in the ring.


Assuntos
Azidas/síntese química , Química Click , Compostos Heterocíclicos/síntese química , Nitrilas/química , Fosfinas/síntese química , Fotólise
11.
Chemistry ; 20(26): 7906-10, 2014 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-24888451

RESUMO

Reaction of Co(II) with the nitrogen-rich ligand N,N-bis(1H-tetrazole-5-yl)-amine (H2bta) leads to a mixed-valence, 3D, porous, metal-organic framework (MOF)-based, energetic material with the nitrogen content of 51.78%, [Co9(bta)10(Hbta)2(H2O)10]n⋅(22 H2O)n (1). Compound 1 was thermohydrated to produce a new, stable, energetic material with the nitrogen content of 59.85% and heat of denotation of 4.537 kcal cm(-3), [Co9(bta)10(Hbta)2(H2O)10]n (2). Sensitivity tests show that 2 is more sensitivity to external stimuli than 1, reflecting guest-dependent energy and sensitivity of 3D, MOF-based, energetic materials. Less-sensitive 1 can be regarded as a more safe form for storage and transformation to sensitive 2.


Assuntos
Compostos Organometálicos/química , Adsorção , Modelos Moleculares , Estrutura Molecular , Propriedades de Superfície
12.
Chem Asian J ; 19(13): e202400212, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38602240

RESUMO

Reactivity and regioselectivity of SNAr-type fluorine substitution with azide in polyfluorosubstituted nitrobenzenes was studied both theoretically and experimentally. The obtained polyazido-substituted nitrobenzene derivatives were extensively characterized by NMR, IR, HPLC, X-ray, and DFT methods. It was found that the substitution with the azide nucleophile occurs first at the para- and the ortho-positions to the NO2-group and that transazidation reactions also occur here. Thermal decomposition of prepared azidonitrobenzenes was studied both in controlled (kinetic decay) and uncontrolled (explosion) modes. In case of the controlled thermal decomposition of ortho-azidonitrobenzenes, benzofuroxans were found as major products of the reaction unless another azido group was adjacent to the furoxan moiety. The bursting power of azidonitrobenzenes was found to rise gradually with the number of the azide substituents in the aromatic ring.

13.
Polymers (Basel) ; 16(12)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38931974

RESUMO

3-nitro-1,2,4-triazol-5-one (NTO) has been widely used as a kind of insensitive single-compound explosive owing to its excellent balance between safety and explosive energy. To reduce its possible acid corrosion and extend its application to insensitive ammunition, acid protection research on NTO-based explosives is significant. Traditionally, the acid protection effect was evaluated by metal corrosion, which is time-consuming and qualitative. An efficient and quantitative method is desirable for evaluating the acid protection effect and exploring novel protection materials. Herein, a polyimide of 4,4'-(hexafluoroisopropene)diphthalic anhydride (6FDA)/2,2-bis(trifluoromethyl)-4,4-diaminobiphenyl (TFMB) was synthesized by replacing the 4,4'-diaminodiphenyl ether (ODA) monomer with a TFMB monomer to act as an acid-protective coating material for NTO-based explosives. Compared with three other coating materials, polyvinylidene fluoride (PVDF), polyetherimide (PEI), and copolyimide (P84), the fluorinated polyimide exhibits the best acid protection effect. Moreover, a new method was constructed to obtain the pH time-dependent curve in order to evaluate efficiently the acid protection effect of the polymer materials. By the virtue of molecular dynamic simulation (Materials Studio 2023), the interfacial effects of the coating materials with NTO-based explosives were obtained. The study provides an interpretation of the acid protection effect on the molecular level, suggesting that the higher content of fluorine atoms is beneficial for stabilizing the active hydrogen atom of the NTO by forming intermolecular hydrogen bonds.

14.
Polymers (Basel) ; 15(21)2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37959932

RESUMO

Digital light processing (DLP) or stereolithography is the most promising method of additive manufacturing (3D printing) of products based on high-energy materials due to, first of all, the absence of a high-temperature impact on the material. This paper presents research results of an ultraviolet (UV)-cured urethane methacrylate polymer containing 70 wt.% of high-energy solid powder based on ammonium salts, which is intended for digital light processing. Polymerization of the initial slurry is studied herein. It is shown that the addition of coarse powder transparency for the UV radiation to resin increases its curing depth. The thickness of the layer, which can polymerize, varies from 600 µm to 2 mm when the light power density ranges from 20 to 400 mJ/cm2, respectively. In DLP-based 3D printing, the obtained material density is 92% of the full density, while the compressive strength is 29 ± 3 MPa, and the ultimate tensile strength is 13 ± 1.3 MPa. The thermogravimetric analysis shows the decrease in the thermal decomposition temperature of UV-cured resin with high-energy additives compared to the thermal decomposition temperatures of the initial components separately. Thermal decomposition is accompanied by intensive heat generation. The burning rate of obtained samples grows from 0.74 to 3.68 mm/s, respectively, at the pressure growth from 0.1 to 4 MPa. Based on the results, it can be concluded that DLP-based 3D printing with the proposed UV photocurable resin is rather promising for the fabrication of multicomponent high-energy systems and complex profile parts produced therefrom.

15.
Heliyon ; 9(1): e12026, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36699269

RESUMO

In this paper, a mathematical model of the extrusion process in 3D printing of high-energy composites is studied. These composites are formed from polymer binder and powder with bimodal particles obtained by electric explosion technique. The main difficulty of extrusion 3D printing method is primarily linked to the high viscosity of utilized material, especially one with high concentration of particles. In this case, the viscosity of the initial mixture depends on the pressure, temperature and concentration of the filler, as well as on the particle dispersion. Under certain conditions the ignition of high-energy material in the nozzle is possible, thus the search for optimal printing parameters based on the mathematical modeling and the following experimental verification are the main purposes of the current work.

16.
Materials (Basel) ; 15(9)2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35591548

RESUMO

One of the groups of pyrotechnic compositions is thermite compositions, so-called thermites, which consist of an oxidant, usually in the form of a metal oxide or salt, and a free metal, which is the fuel. A characteristic feature of termite combustion reactions, apart from their extremely high exothermicity, is that they proceed, for the most part, in liquid and solid phases. Nanothermites are compositions, which include at least one component whose particles size is on the order of nanometers. The properties of nanothermites, such as high linear burning velocities, high reaction heats, high sensitivity to stimuli, low ignition temperature, ability to create hybrid compositions with other high-energy materials allow for a wide range of applications. Among the applications of nanothermites, one should mention igniters, detonators, microdetonators, micromotors, detectors, elements of detonation chain or elements allowing self-destruction of systems (e.g., microchips). The aim of this work is to discuss the preparation methods, research methods, direction of the future development, eventual challenges or problems and to highlight the applications and emerging novel avenues of use of these compositions.

17.
Materials (Basel) ; 15(22)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36431701

RESUMO

A mathematical model of the pulse generation of decontaminating aerosols utilizing the energy of high-energy materials (HEM) is proposed with account for the physical and chemical properties of the atomized substance, HEM characteristics, and gas generator parameters. Such a model is needed to counter the environmental hazards, process emissions, and terrorist attacks with hazardous and dangerous aerosols. Another aspect of the problem is the danger of biological aerosols carrying viral or microbial particles that are spread naturally or induced using biological weapons. In many cases, the mission is not only to neutralize aerosol particles in indoor air and on surfaces but also to do it quickly. In this regard, an attractive option is the pulse method for generating special aerosols aimed at quickly, within a few seconds, creating a cloud of particles that will interact with hazardous aerosol particles and decontaminate them. HEM energy is proposed to be used for the pulse generation of such aerosols. It is important not only to atomize the decontaminating aerosol quickly and evenly in space but also to preserve the useful physical and chemical properties of the particles. To test the regimes and methods of pulse generation, an adequate mathematical model of the process is required, which is proposed in this manuscript.

18.
Materials (Basel) ; 15(9)2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35591373

RESUMO

Lithium-rich disordered rocksalt Li2TiS3 offers large discharge capacities (>350 mAh·g−1) and can be considered a promising cathode material for high-energy lithium-ion battery applications. However, the quick fading of the specific capacity results in a poor cycle life of the system, especially when liquid electrolyte-based batteries are used. Our efforts to solve the cycling stability problem resulted in the discovery of new high-energy selenium-substituted materials (Li2TiSexS3−x), which were prepared using a wet mechanochemistry process. X-ray diffraction analysis confirmed that all compositions were obtained in cation-disordered rocksalt phase and that the lattice parameters were expanded by selenium substitution. Substituted materials delivered large reversible capacities, with smaller average potentials, and their cycling stability was superior compared to Li2TiS3 upon cycling at a rate of C/10 between 3.0−1.6 V vs. Li+/Li.

19.
Materials (Basel) ; 15(23)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36499818

RESUMO

The preparation and properties of a series of novel 1,3-dihydro-2H-benzimidazol-2-one nitro and nitramino derivatives are described. A detailed crystal structure of one of the obtained compounds, 4,5,6-trinitro-1,3-dihydro-2H-benzimidazol-2-one (TriNBO), was characterized using low temperature single crystal X-ray diffraction, namely an orthorhombic yellow prism, space group 'P 2 21 21', experimental crystal density 1.767 g/cm3 (at 173 K). Methyl analog, 5-Me-TriNBO-monoclinic red plates, space group, P 21/c, crystal density 1.82 g/cm3. TriNBO contains one activated nitro group at the fifth position, which was used for the nucleophilic substitution in the aminolysis reactions with three monoalkylamines (R=CH3, C2H5, (CH2)2CH3) and ethanolamine. The 5-R-aminoderivatives were further nitrated with N2O5/ HNO3 and resulted in a new group of appropriate nitramines: 1,3-dihydro-2H-5-R-N(NO2)-4,6-dinitrobenzimidazol-2-ones. Thermal analysis (TGA) of three selected representatives was performed. The new compounds possess a high melting point (200-315 °C) and thermal stability and can find a potential application as new thermostable energetic materials. Some calculated preliminary energetic characteristics show that TriNBO, 5-Me-TriNBO, 5-methylnitramino-1,3-dihydro-2H-4,6-dinitrobenzimidazol-2-one, and 5-nitratoethylnitramino-1,3-dihydro-2H-4,6-dinitrobenzimidazol-2-one possess increased energetic characteristics in comparison with TNT and tetryl. The proposed nitrocompounds may find potential applications as thermostable high-energy materials.

20.
J Phys Condens Matter ; 35(6)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36351301

RESUMO

This work highlights the effect of pressure ranging from 0 to 9 GPa on structural, directional dependent mechanical properties and unravel the previously unknown phase transitions of two important high energy molecular solids namely monoclinic-ß-Nitrotriazole (NTO) and 2,4,6-triamino-1,3,5-trinitrobenzene (TATB). The projected augmented plane wave method with generalized gradient approximation Perdew-Burke-Ernzerhof functional with the D2 van der Waals corrections method of Grimme is used to reproduce the experimental data within ∼1% error. The structural optimization results reveal thatß-NTO undergoes a previously unknown structural phase transition at 9 GPa which is evident from the abrupt change of calculated lattice vectors, volume (V), lattice angleßat 9 GPa. The single crystal elastic properties analysis also supports these findings and NTO voilate the Born's mechanical stability criteria at 9 GPa. Besides to it, all the calculated volumetric and directional dependent shear modulus (G), bulk modulus (B), compressibility results ofß-NTO in (100), (010), (001) planes also suggest a possible phase transition around 9 GPa. The directional dependent polycrystalline compressibility anisotropy analysis of TATB with pressure in (100), (010), (001) planes unreveal the origin of experimentally reported new phase transition around 4 GPa. The calculated PughB/Gratio suggests that, both the materials found to be brittle in the studied pressure range except NTO at 9 GPa. The degree of mechanical anisotropy ofß-NTO found to increase with increasing pressure from (100)->(010)->(001) planes, while the TATB anisotropy results were found to be relatively small and stable. The Young's modulus (E), Poisson's ratio (σ), P-wave modulus, universal elastic anisotropy (AU), Chung-Buessen anisotropy (Ac), Vickers hardness coefficient (Hv), sound velocities ((Vm) average, (Vl) longitudinal, (Vt) transverse) and (θD) Debye temperature are also predicted. The calculated intermolecular interaction strength contribution to the total Hirsh Field Surface at different pressures confirms the initial decomposition mechanism of NTO, TATB and the results are good in agreement with previous observations. Thus our work has accentuated the reasons behind the impact and friction sensitivity differences ofß-NTO, TATB through the two new phase transitions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA