Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 888
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 186(10): 2208-2218.e15, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37098345

RESUMO

Semliki Forest virus (SFV) is an alphavirus that uses the very-low-density lipoprotein receptor (VLDLR) as a receptor during infection of its vertebrate hosts and insect vectors. Herein, we used cryoelectron microscopy to study the structure of SFV in complex with VLDLR. We found that VLDLR binds multiple E1-DIII sites of SFV through its membrane-distal LDLR class A (LA) repeats. Among the LA repeats of the VLDLR, LA3 has the best binding affinity to SFV. The high-resolution structure shows that LA3 binds SFV E1-DIII through a small surface area of 378 Å2, with the main interactions at the interface involving salt bridges. Compared with the binding of single LA3s, consecutive LA repeats around LA3 promote synergistic binding to SFV, during which the LAs undergo a rotation, allowing simultaneous key interactions at multiple E1-DIII sites on the virion and enabling the binding of VLDLRs from divergent host species to SFV.


Assuntos
Receptores de LDL , Vírus da Floresta de Semliki , Alphavirus/metabolismo , Microscopia Crioeletrônica , Vírus da Floresta de Semliki/metabolismo , Vírus da Floresta de Semliki/ultraestrutura , Receptores de LDL/metabolismo , Receptores de LDL/ultraestrutura , Receptores Virais/metabolismo , Receptores Virais/ultraestrutura
2.
Proc Natl Acad Sci U S A ; 121(4): e2312556121, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38227655

RESUMO

Hemorrhagic fever with renal syndrome (HFRS) is a zoonotic disease caused by the rodent-transmitted orthohantaviruses (HVs), with China possessing the most cases globally. The virus hosts in China are Apodemus agrarius and Rattus norvegicus, and the disease spread is strongly influenced by global climate dynamics. To assess and predict the spatiotemporal trends of HFRS from 2005 to 2098, we collected historical HFRS data in mainland China (2005-2020), historical and projected climate and population data (2005-2098), and spatial variables including biotic, environmental, topographical, and socioeconomic. Spatiotemporal predictions and mapping were conducted under 27 scenarios incorporating multiple integrated representative concentration pathway models and population scenarios. We identify the type of magistral HVs host species as the best spatial division, including four region categories. Seven extreme climate indices associated with temperature and precipitation have been pinpointed as key factors affecting the trends of HFRS. Our predictions indicate that annual HFRS cases will increase significantly in 62 of 356 cities in mainland China. Rattus regions are predicted to be the most active, surpassing Apodemus and Mixed regions. Eighty cities are identified as at severe risk level for HFRS, each with over 50 reported cases annually, including 22 new cities primarily located in East China and Rattus regions after 2020, while 6 others develop new risk. Our results suggest that the risk of HFRS will remain high through the end of this century, with Rattus norvegicus being the most active host, and that extreme climate indices are significant risk factors. Our findings can inform evidence-based policymaking regarding future risk of HFRS.


Assuntos
Febre Hemorrágica com Síndrome Renal , Ratos , Animais , Febre Hemorrágica com Síndrome Renal/epidemiologia , Febre Hemorrágica com Síndrome Renal/etiologia , Clima , Zoonoses , China/epidemiologia , Murinae , Incidência
3.
Clin Microbiol Rev ; 37(2): e0009923, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38546225

RESUMO

SUMMARYAs Chagas disease remains prevalent in the Americas, it is important that healthcare professionals and researchers are aware of the screening, diagnosis, monitoring, and treatment recommendations for the populations of patients they care for and study. Management of Trypanosoma cruzi infection in immunocompromised hosts is challenging, particularly because, regardless of antitrypanosomal treatment status, immunocompromised patients with Chagas disease are at risk for T. cruzi reactivation, which can be lethal. Evidence-based practices to prevent and manage T. cruzi reactivation vary depending on the type of immunocompromise. Here, we review available data describing Chagas disease epidemiology, testing, and management practices for various populations of immunocompromised individuals, including people with HIV and patients undergoing solid organ and hematopoietic stem cell transplantation.


Assuntos
Doença de Chagas , Hospedeiro Imunocomprometido , Humanos , Doença de Chagas/diagnóstico , Doença de Chagas/epidemiologia , Doença de Chagas/imunologia , Doença de Chagas/terapia , Trypanosoma cruzi/imunologia
4.
Mol Biol Evol ; 41(8)2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39107250

RESUMO

Crop disease pandemics are often driven by asexually reproducing clonal lineages of plant pathogens that reproduce asexually. How these clonal pathogens continuously adapt to their hosts despite harboring limited genetic variation, and in absence of sexual recombination remains elusive. Here, we reveal multiple instances of horizontal chromosome transfer within pandemic clonal lineages of the blast fungus Magnaporthe (Syn. Pyricularia) oryzae. We identified a horizontally transferred 1.2Mb accessory mini-chromosome which is remarkably conserved between M. oryzae isolates from both the rice blast fungus lineage and the lineage infecting Indian goosegrass (Eleusine indica), a wild grass that often grows in the proximity of cultivated cereal crops. Furthermore, we show that this mini-chromosome was horizontally acquired by clonal rice blast isolates through at least nine distinct transfer events over the past three centuries. These findings establish horizontal mini-chromosome transfer as a mechanism facilitating genetic exchange among different host-associated blast fungus lineages. We propose that blast fungus populations infecting wild grasses act as genetic reservoirs that drive genome evolution of pandemic clonal lineages that afflict cereal crops.


Assuntos
Evolução Molecular , Transferência Genética Horizontal , Cromossomos Fúngicos/genética , Ascomicetos/genética , Doenças das Plantas/microbiologia , Genoma Fúngico
5.
Nano Lett ; 24(22): 6625-6633, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38788161

RESUMO

All-solid-state lithium-sulfur batteries (ASSLSBs) are promising next-generation battery technologies with a high energy density and excellent safety. Because of the insulating nature of sulfur/Li2S, conventional cathode designs focus on developing porous hosts with high electronic conductivities such as porous carbon. However, carbon hosts boost the decomposition of sulfide electrolytes and suffer from sulfur detachment due to their weak bonding with sulfur/Li2S, resulting in capacity decays. Herein, we propose a counterintuitive design concept of host materials in which nonconductive polar mesoporous hosts can enhance the cycling life of ASSLSBs through mitigating the decomposition of adjacent electrolytes and bonding sulfur/Li2S steadily to avoid detachment. By using a mesoporous SiO2 host filled with 70 wt % sulfur as the cathode, we demonstrate steady cycling in ASSLSBs with a capacity reversibility of 95.1% in the initial cycle and a discharge capacity of 1446 mAh/g after 500 cycles at C/5 based on the mass of sulfur.

6.
Infect Immun ; 92(1): e0024423, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38099660

RESUMO

Interactions among pathogen genotypes that vary in host specificity may affect overall transmission dynamics in multi-host systems. Borrelia burgdorferi, a bacterium that causes Lyme disease, is typically transmitted among wildlife by Ixodes ticks. Despite the existence of many alleles of B. burgdorferi's sensu stricto outer surface protein C (ospC) gene, most human infections are caused by a small number of ospC alleles ["human infectious alleles" (HIAs)], suggesting variation in host specificity associated with ospC. To characterize the wildlife host association of B. burgdorferi's ospC alleles, we used metagenomics to sequence ospC alleles from 68 infected individuals belonging to eight mammalian species trapped at three sites in suburban New Brunswick, New Jersey (USA). We found that multiple allele ("mixed") infections were common. HIAs were most common in mice (Peromyscus spp.) and only one HIA was detected at a site where mice were rarely captured. ospC allele U was exclusively found in chipmunks (Tamias striatus), and although a significant number of different alleles were observed in chipmunks, including HIAs, allele U never co-occurred with other alleles in mixed infections. Our results suggest that allele U may be excluding other alleles, thereby reducing the capacity of chipmunks to act as reservoirs for HIAs.


Assuntos
Borrelia burgdorferi , Borrelia , Coinfecção , Ixodes , Doença de Lyme , Animais , Humanos , Borrelia burgdorferi/genética , Borrelia/genética , Alelos , Doença de Lyme/microbiologia , Ixodes/genética , Ixodes/microbiologia , Antígenos de Bactérias/genética , Proteínas da Membrana Bacteriana Externa/genética , Sciuridae/genética , Especificidade de Hospedeiro
7.
Small ; : e2403831, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949398

RESUMO

Lithium metal batteries are regarded as promising candidates for next-generation energy storage systems. However, their anodes are susceptible to interfacial instability due to significant volume changes, which significantly impacts the cycle life of lithium metal batteries. Here, a rapid method for the fabrication of 3D-hosts with interface modified layers is reported. A simple infiltration and heating process enables the transformation of copper foam into Zn-BDC-modified copper foam within 1 min, rendering it suitable for use as a current collector for lithium metal anodes. The Zn-BDC nanosheets with high lithiophilicity are uniformly distributed on the surface of the current collector, facilitating the uniform deposition of lithium and reducing the volume change. Consequently, the half cell exhibits a remarkably low overpotential (26 mV) at a current-density of 4 mA cm-2 and is cycled stably for 1000 h. Furthermore, it demonstrates a significant enhancement in performance in the LiFePO4 full cell. This study provides a crucial reference on the connection between the interfacial modification of the current collector and the lithium deposition behavior, which promotes the practicalization of lithium metal anodes.

8.
J Clin Microbiol ; 62(3): e0153723, 2024 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-38349145

RESUMO

Rhodococcus equi is an opportunistic pathogen known to cause pulmonary and extrapulmonary disease among immunocompromised patients. Treatment is frequently challenging due to intrinsic resistance to multiple antibiotic classes. While non-equi Rhodococcus spp. are prevalent, their clinical significance is poorly defined. There is also limited data on antibiotic susceptibility testing (AST) of Rhodococcus infection in humans. We conducted a single-center, retrospective cohort study evaluating clinical characteristics, microbiologic profile, and AST of Rhodococcus infections between June 2012 and 2022 at our tertiary academic medical center. Identification of Rhodococcus spp. was performed by Sanger 16S rRNA gene sequencing and/or matrix-assisted laser desorption ionization-time of flight mass spectrometry, and AST was performed by agar dilution. Three hundred twenty-two isolates of Rhodococcus spp. were identified from blood (50%), pulmonary (26%), and bone/joint (12%) sources. R. equi/hoagii, R. corynebacterioides, and R. erythropolis were the most frequently isolated species, with 19% of isolates identified only to genus level. One hundred ninety-nine isolates evaluated for AST demonstrated high-level resistance to amoxicillin/clavulanate, cephalosporins, and aminoglycosides. More than 95% susceptibility to imipenem, vancomycin, linezolid, rifampin, and clarithromycin was observed. Non-equi species showed a significantly more favorable AST profile relative to R. equi. Clinically significant Rhodococcus infection was rare with 10 cases diagnosed (majority due to R. equi) and managed. The majority of patients received 2- or 3-drug combination therapy for 2-6 months, with favorable clinical response. Significant differences in AST were observed between R. equi and non-equi species. Despite high antimicrobial resistance to several antibiotic classes, imipenem and vancomycin remain appropriate empiric treatment options for R. equi. Future research evaluating mechanisms underlying antimicrobial resistance is warranted.


Assuntos
Infecções por Actinomycetales , Rhodococcus equi , Rhodococcus , Humanos , Rhodococcus/genética , Vancomicina/uso terapêutico , Estudos Retrospectivos , RNA Ribossômico 16S , Infecções por Actinomycetales/tratamento farmacológico , Antibacterianos/uso terapêutico , Rhodococcus equi/genética , Imipenem/uso terapêutico
9.
Biochem Soc Trans ; 52(3): 997-1010, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38813858

RESUMO

Advancements in synthetic biology have facilitated the incorporation of heterologous metabolic pathways into various bacterial chassis, leading to the synthesis of targeted bioproducts. However, total output from heterologous production pathways can suffer from low flux, enzyme promiscuity, formation of toxic intermediates, or intermediate loss to competing reactions, which ultimately hinder their full potential. The self-assembling, easy-to-modify, protein-based bacterial microcompartments (BMCs) offer a sophisticated way to overcome these obstacles by acting as an autonomous catalytic module decoupled from the cell's regulatory and metabolic networks. More than a decade of fundamental research on various types of BMCs, particularly structural studies of shells and their self-assembly, the recruitment of enzymes to BMC shell scaffolds, and the involvement of ancillary proteins such as transporters, regulators, and activating enzymes in the integration of BMCs into the cell's metabolism, has significantly moved the field forward. These advances have enabled bioengineers to design synthetic multi-enzyme BMCs to promote ethanol or hydrogen production, increase cellular polyphosphate levels, and convert glycerol to propanediol or formate to pyruvate. These pioneering efforts demonstrate the enormous potential of synthetic BMCs to encapsulate non-native multi-enzyme biochemical pathways for the synthesis of high-value products.


Assuntos
Bactérias , Engenharia Metabólica , Redes e Vias Metabólicas , Biologia Sintética , Engenharia Metabólica/métodos , Bactérias/metabolismo , Biologia Sintética/métodos , Proteínas de Bactérias/metabolismo , Propilenoglicóis/metabolismo , Etanol/metabolismo
10.
New Phytol ; 242(3): 1333-1347, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38515239

RESUMO

Warming and elevated CO2 (eCO2) are expected to facilitate vascular plant encroachment in peatlands. The rhizosphere, where microbial activity is fueled by root turnover and exudates, plays a crucial role in biogeochemical cycling, and will likely at least partially dictate the response of the belowground carbon cycle to climate changes. We leveraged the Spruce and Peatland Responses Under Changing Environments (SPRUCE) experiment, to explore the effects of a whole-ecosystem warming gradient (+0°C to 9°C) and eCO2 on vascular plant fine roots and their associated microbes. We combined trait-based approaches with the profiling of fungal and prokaryote communities in plant roots and rhizospheres, through amplicon sequencing. Warming promoted self-reliance for resource uptake in trees and shrubs, while saprophytic fungi and putative chemoorganoheterotrophic bacteria utilizing plant-derived carbon substrates were favored in the root zone. Conversely, eCO2 promoted associations between trees and ectomycorrhizal fungi. Trees mostly associated with short-distance exploration-type fungi that preferentially use labile soil N. Additionally, eCO2 decreased the relative abundance of saprotrophs in tree roots. Our results indicate that plant fine-root trait variation is a crucial mechanism through which vascular plants in peatlands respond to climate change via their influence on microbial communities that regulate biogeochemical cycles.


Assuntos
Microbiota , Micorrizas , Traqueófitas , Ecossistema , Dióxido de Carbono/farmacologia , Plantas , Árvores , Solo , Microbiologia do Solo , Raízes de Plantas
11.
Chemistry ; 30(42): e202401551, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38779975

RESUMO

In recent years, European Union member states have hastened energy policy deliberations to address supply and sustainability concerns, placing a significant emphasis on nuclear energy as a means to achieve decarbonization goals. However, despite its significant role in power generation, nuclear energy faces significant challenges linked to fuel reprocessing and waste disposal, that hinder its broader expansion. In this context, the separation of technetium represents a concerning issue. Indeed, technetium's catalytic activity can impede the extraction of uranium, neptunium, and plutonium, affecting waste reprocessing efficiency. Additionally, the stable form of technetium in aerobic conditions, pertechnetate (TcO4 -), poses risks of groundwater contamination due to its mobility and solubility. Hence, sensing and separation of TcO4 - is imperative for both nuclear fuel processing and minimising radioactive contamination in the environment. However, the binding of TcO4 - and its separation from contaminated solutions present challenges due to the acidic (or basic) waste components and the high ionic strength in real matrices. Supramolecular chemists have addressed these issues by designing receptors inspired by molecular recognition principles. This article explores recent advancements and future directions in TcO4 - sensing and separation (using extraction and sorption) with a focus on molecular hosts. Metal-organic receptors will also be discussed.

12.
Microb Cell Fact ; 23(1): 230, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39152436

RESUMO

BACKGROUND: Non-conventional yeasts and bacteria gain significance in synthetic biology for their unique metabolic capabilities in converting low-cost renewable feedstocks into valuable products. Improving metabolic pathways and increasing bioproduct yields remain dependent on the strategically use of various promoters in these microbes. The development of broad-spectrum promoter libraries with varying strengths for different hosts is attractive for biosynthetic engineers. RESULTS: In this study, five Yarrowia lipolytica constitutive promoters (yl.hp4d, yl.FBA1in, yl.TEF1, yl.TDH1, yl.EXP1) and five Kluyveromyces marxianus constitutive promoters (km.PDC1, km.FBA1, km.TEF1, km.TDH3, km.ENO1) were selected to construct promoter-reporter vectors, utilizing α-amylase and red fluorescent protein (RFP) as reporter genes. The promoters' strengths were systematically characterized across Y. lipolytica, K. marxianus, Pichia pastoris, Escherichia coli, and Corynebacterium glutamicum. We discovered that five K. marxianus promoters can all express genes in Y. lipolytica and that five Y. lipolytica promoters can all express genes in K. marxianus with variable expression strengths. Significantly, the yl.TEF1 and km.TEF1 yeast promoters exhibited their adaptability in P. pastoris, E. coli, and C. glutamicum. In yeast P. pastoris, the yl.TEF1 promoter exhibited substantial expression of both amylase and RFP. In bacteria E. coli and C. glutamicum, the eukaryotic km.TEF1 promoter demonstrated robust expression of RFP. Significantly, in E. coli, The RFP expression strength of the km.TEF1 promoter reached ∼20% of the T7 promoter. CONCLUSION: Non-conventional yeast promoters with diverse and cross-domain applicability have great potential for developing innovative and dynamic regulated systems that can effectively manage carbon flux and enhance target bioproduct synthesis across diverse microbial hosts.


Assuntos
Escherichia coli , Vetores Genéticos , Kluyveromyces , Regiões Promotoras Genéticas , Yarrowia , Vetores Genéticos/genética , Yarrowia/genética , Yarrowia/metabolismo , Kluyveromyces/genética , Kluyveromyces/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Proteína Vermelha Fluorescente , Genes Reporter , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Engenharia Metabólica/métodos , alfa-Amilases/genética , alfa-Amilases/metabolismo , Saccharomycetales
13.
Eur J Clin Microbiol Infect Dis ; 43(9): 1679-1688, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38922376

RESUMO

PURPOSE: To identify pathogenic microorganisms and microbiological risk factors causing high morbidity and mortality in immunocompromised patients requiring invasive mechanical ventilation due to pneumonia. METHODS: A retrospective single-center study was performed at the intensive care unit (ICU) of the Department of Internal Medicine at Heidelberg University Hospital (Germany) including 246 consecutive patients with hematological malignancies requiring invasive mechanical ventilation due to pneumonia from 08/2004 to 07/2016. Microbiological and radiological data were collected and statistically analyzed for risk factors for ICU and 1-year mortality. RESULTS: ICU and 1-year mortality were 63.0% (155/246) and 81.0% (196/242), respectively. Pneumonia causing pathogens were identified in 143 (58.1%) patients, multimicrobial infections were present in 51 (20.7%) patients. Fungal, bacterial and viral pathogens were detected in 89 (36.2%), 55 (22.4%) and 41 (16.7%) patients, respectively. Human herpesviruses were concomitantly reactivated in 85 (34.6%) patients. As significant microbiological risk factors for ICU mortality probable invasive Aspergillus disease with positive serum-Galactomannan (odds ratio 3.1 (1.2-8.0), p = 0.021,) and pulmonary Cytomegalovirus reactivation at intubation (odds ratio 5.3 (1.1-26.8), p = 0.043,) were identified. 1-year mortality was not significantly associated with type of infection. Of interest, 19 patients had infections with various respiratory viruses and Aspergillus spp. superinfections and experienced high ICU and 1-year mortality of 78.9% (15/19) and 89.5% (17/19), respectively. CONCLUSIONS: Patients with hematological malignancies requiring invasive mechanical ventilation due to pneumonia showed high ICU and 1-year mortality. Pulmonary Aspergillosis and pulmonary reactivation of Cytomegalovirus at intubation were significantly associated with negative outcome.


Assuntos
Neoplasias Hematológicas , Unidades de Terapia Intensiva , Respiração Artificial , Humanos , Masculino , Feminino , Estudos Retrospectivos , Pessoa de Meia-Idade , Fatores de Risco , Idoso , Neoplasias Hematológicas/complicações , Adulto , Alemanha/epidemiologia , Hospedeiro Imunocomprometido , Pneumonia/mortalidade , Pneumonia/microbiologia , Idoso de 80 Anos ou mais
14.
Nanotechnology ; 35(23)2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38497442

RESUMO

In contrast to lithium-ion batteries, lithium-sulfur batteries have higher theoretical energy density and lower cost, so they would become competitive in the practical application. However, the shuttle effect of polysulfides and slow oxidation-reduction kinetics can degrade their electrochemical performance and cycle life. In this work, we have first developed the porous FeNi Prussian blue cubes as precursors. The calcination in different atmospheres was employed to make precursors convert into common pyrolysis products or novel carbon-based phosphides, and sulfides, labeled as FeNiP/A-C, FeNiP/A-P, and FeNiP/A-S. When these products serve as host materials in the sulfur cathode, the electrochemical performance of lithium-sulfur batteries is in the order of S@FeNiP/A-P > S@FeNiP/A-S > S@FeNiP/A-C. Specifically, the initial discharge capacity of S@FeNiP/A-P can reach 679.1 mAh g-1at 1 C, and the capacity would maintain 594.6 mAh g-1after 300 cycles. That is because the combination of carbon-based porous structure and numerous well-dispersed Ni2P/Fe2P active sites contribute FeNiP/A-P to obtain larger lithium-ion diffusion, lower resistance, stronger chemisorption, and more excellent catalytic effect than other samples. This work may deliver that metal-organic framework-derived carbon-based phosphides are more suitable to serve as sulfur hosts than carbon-based sulfides or common pyrolysis products for enhancing Li-S batteries' performance.

15.
J Fluoresc ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38884827

RESUMO

In recent years, there has been a notable increase in efforts to advance efficient hosts for detecting cobalt and nickel ions, driven by their extensive industrial applications and environmental significance. This review meticulously examines the progress made in small organic colorimetric and fluorescent hosts tailored specifically for the sensitive and selective detection of cobalt and nickel ions. It delves into a diverse range of molecular architectures, including organic ligands, elucidating their unique attributes such as sensitivity, selectivity, and response time. Moreover, the review precisely explores the underlying principles governing the colorimetric and fluorescent mechanisms employed by these hosts, shedding light on the intricate interactions between the sensing moieties and the target metal ions. Furthermore, it critically evaluates the practical applicability of these hosts, considering crucial factors such as detection limits, recyclability, and compatibility with complex sample matrices. Additionally, exploration extends to potential challenges and prospects in the field, emphasizing the imperative for ongoing innovation to address emerging environmental and analytical demands. Eventually, through this comprehensive examination, the review seeks to contribute to the ongoing endeavor to develop robust and efficient tools for monitoring and detecting cobalt and nickel metal ions in diverse analytical scenarios.

16.
Oecologia ; 205(3-4): 669-680, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39097560

RESUMO

Organismal invasions have repeatedly been cited as a driving force behind the loss of biodiversity. Unlike many other impacts of invasion, the effect of invasion on native symbiont communities has received less attention. The introduction of invasive hosts presents a potential opportunity to native symbionts; invasive hosts could benefit native symbionts through providing a novel host environment that improves symbiont fitness relative to their fitness on native hosts. Alternatively, invasive hosts could noncompetent hosts for native symbionts, resulting in negative impacts on native symbiont abundance and diversity. Crayfish in the northern hemisphere host diverse assemblages of obligate annelid symbionts (P: Anellida, O: Branchiobdellida). Two invasive crayfish hosts in the genus Faxonius have been introduced and are interacting with the native crayfish hosts and their symbionts in three watersheds in western Virginia, USA. Previous studies suggest that the invasive host F. cristavarius is a less competent host for symbionts compared to native hosts in the genus Cambarus. We carried out an extensive survey in these watersheds to determine impacts of varying degrees of invasion on branchiobdellidan abundance and diversity. We also conducted a complementary host replacement experiment to investigate how increases in the relative abundance of invasive hosts contributes to observed patterns of symbiont abundance and diversity in the field. In our survey, as the proportion of invasive hosts at a site increased, branchiobdellidan abundance and diversity declined significantly. In the experiment, the worms dispersed onto both native and invasive hosts. As the percentage of noncompetent F. cristavarius hosts increased, the survival of branchiobdellidans declined. Both symbiont survival and opportunities for successful dispersal are reduced as this noncompetent invasive host progressively displaces native hosts, which imperils the integrity of native host-symbiont systems. Given that many native hosts accrue significant fitness benefits from their relationships with native symbionts, including hosts in our study system, losses of beneficial symbionts may produce a positive feedback loop that decreases invasion resistance of native species, exacerbates the effects of invasions, and presents a major conservation issue in invaded systems.


Assuntos
Água Doce , Simbiose , Animais , Espécies Introduzidas , Astacoidea , Biodiversidade
17.
Oecologia ; 205(3-4): 681-689, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39102022

RESUMO

Parasites comprise a substantial portion of global biodiversity and play critical roles in shaping ecosystems by modulating trophic networks and affecting their hosts' abundance and distribution. The dynamics of host migration introduce new complexity to these relationships. From the host perspective, migratory behavior can either act as a defense mechanism or augment exposure to a broader spectrum of pathogens. Conversely, for parasites, host migration represents a mechanism for their dispersion and an opportunity to infect new host species. This study investigates the complex interplay between migration and parasite-host interactions, focusing on the interaction between hosts and avian malaria and malaria-like parasites in the Brazilian Atlantic Rain Forest. We captured 1466 birds representing 70 different species, uncovering 322 infections with Plasmodium/Haemoproteus parasites. We observed variations in migration timing and fluctuations in host abundance across months. By comparing the observed patterns of interaction of migratory and non-migratory birds to patterns of interaction expected at random, we show that migration affects the roles hosts take in the parasite-host network. Interestingly, despite the fact migratory species hosted more exclusive and distinct parasites, migrants did not occupy central network positions, which are mostly occupied by resident birds. Overall, we highlight the role of resident birds as a key species within parasite-host communities and the high specialization among avian haemosporidians and their hosts.


Assuntos
Migração Animal , Aves , Interações Hospedeiro-Parasita , Animais , Brasil , Ecossistema , Plasmodium/fisiologia
18.
Appl Microbiol Biotechnol ; 108(1): 33, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38175234

RESUMO

Due to the limited resources and environmental problems associated with fossil fuels, there is a growing interest in utilizing renewable resources for the production of biofuels through microbial fermentation. Isobutanol is a promising biofuel that could potentially replace gasoline. However, its production efficiency is currently limited by the use of naturally isolated microorganisms. These naturally isolated microorganisms often encounter problems such as a limited range of substrates, low tolerance to solvents or inhibitors, feedback inhibition, and an imbalanced redox state. This makes it difficult to improve their production efficiency through traditional process optimization methods. Fortunately, recent advancements in genetic engineering technologies have made it possible to enhance microbial hosts for the increased production of isobutanol from renewable resources. This review provides a summary of the strategies and synthetic biology approaches that have been employed in the past few years to improve naturally isolated or non-natural microbial hosts for the enhanced production of isobutanol by utilizing different renewable resources. Furthermore, it also discusses the challenges that are faced by engineered microbial hosts and presents future perspectives to enhancing isobutanol production. KEY POINTS: • Promising potential of isobutanol to replace gasoline • Engineering of native and non-native microbial host for isobutanol production • Challenges and opportunities for enhanced isobutanol production.


Assuntos
Biocombustíveis , Gasolina , Butanóis , Clonagem Molecular
19.
Parasitol Res ; 123(6): 256, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38935203

RESUMO

Cutaneous leishmaniasis (CL), a neglected tropical disease, is a major public health concern in Yemen, with Leishmania tropica identified as the main causative agent. This study aims to investigate the occurrence and distribution of Leishmania parasites in domestic and wild animals in CL endemic areas in the western highlands of Yemen. A cross-sectional study was conducted in the Utmah District of western Yemen. Blood and skin scraping specimens were collected from 122 domestic and wild animals and tested for the Leishmania DNA using internal transcribed spacer 1 (ITS1) nested polymerase chain reaction. Phylogenetic analyses were performed on 20 L. tropica sequences obtained from animals in this study and 34 sequences from human isolates (collected concurrently from the same study area) retrieved from the GenBank. Overall, L. tropica was detected in 16.4% (20/122) of the examined animals, including 11 goats, two dogs, two bulls, one cow, one donkey, one rabbit, one rat and one bat. None of the examined cats and sheep was positive. The animal sequences were segregated into four different L. tropica haplotypes, with the majority of the animal (15/20) and human (32/34) sequences composed of one dominant haplotype/genotype. These findings represent the first confirmed evidence of natural L. tropica infections in different kinds of domestic and wild animals in western Yemen, suggesting these animals potentially have a role in the transmission of CL in Yemen. Therefore, a One Health approach is required for the effective prevention and control of this devastating disease among endemic populations.


Assuntos
Animais Domésticos , Animais Selvagens , Leishmania tropica , Leishmaniose Cutânea , Saúde Única , Filogenia , Animais , Leishmania tropica/genética , Leishmania tropica/isolamento & purificação , Leishmania tropica/classificação , Leishmaniose Cutânea/epidemiologia , Leishmaniose Cutânea/veterinária , Leishmaniose Cutânea/parasitologia , Iêmen/epidemiologia , Humanos , Estudos Transversais , Animais Selvagens/parasitologia , Animais Domésticos/parasitologia , DNA de Protozoário/genética , Doenças Negligenciadas/parasitologia , Doenças Negligenciadas/epidemiologia , Doenças Negligenciadas/veterinária , Doenças Endêmicas/veterinária , DNA Espaçador Ribossômico/genética , Reação em Cadeia da Polimerase/veterinária , Análise de Sequência de DNA , Masculino
20.
Parasitol Res ; 123(2): 118, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38296850

RESUMO

Dirofilaria immitis is a ubiquitous nematode parasite with zoonotic potential, transmitted by mosquitoes, that causes heartworm disease in various animal species. Dogs are the parasite's typical final host, and wild carnivores represent the parasite's reservoir in nature. Studies on D. immitis infections in wild animals are essential to assess infection pressure for domestic animals, and until now, there has been only one infection case reported in a European badger (Meles meles). The current report describes the first two European badger cases with cardiovascular dirofilariosis in Greece. Two adult male badgers were rescued in Heraklion and Chania, Crete Island, and admitted to "ANIMA -Wildlife Rehabilitation Centre" in Athens. The detailed clinical examination revealed that the first badger suffered from severe broncho-pneumonitis while the second one displayed clinical signs associated with severe brain trauma. Blood samples were taken for haematology and biochemistry analyses during their short hospitalisation period. In addition, different routine diagnostic tests were carried out, including heartworm antigen testing (ELISA) and the modified Knott's test for microfilariae. Both badgers were positive in both tests. The animals died a few hours after their admission and the detailed necropsies followed, revealed the presence of three parasites in each animal's right heart, morphologically identified as adults of D. immitis. These findings add the European badger in the list of additional potential reservoir hosts for D. immitis and highlight the potential role of wildlife for companion animals and human health.


Assuntos
Carnívoros , Dirofilaria immitis , Dirofilaria repens , Dirofilariose , Doenças do Cão , Mustelidae , Masculino , Animais , Humanos , Cães , Grécia/epidemiologia , Doenças do Cão/diagnóstico , Doenças do Cão/epidemiologia , Doenças do Cão/parasitologia , Prevalência , Dirofilariose/parasitologia , Animais Selvagens
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA