Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Microbiology (Reading) ; 170(9)2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39311857

RESUMO

Next-generation sequencing methods have become essential for studying bacterial biology and pathogenesis, often depending on high-quality, closed genomes. In this study, we utilized a hybrid sequencing approach to assemble the genome of C6706, a widely used Vibrio cholerae model strain. We present a manually curated annotation of the genome, enhancing user accessibility by linking each coding sequence to its counterpart in N16961, the first sequenced V. cholerae isolate and a commonly used reference genome. Comparative genomic analysis between V. cholerae C6706 and N16961 uncovered multiple genetic differences in genes associated with key biological functions. To determine whether these genetic variations result in phenotypic differences, we compared several phenotypes relevant to V. cholerae pathogenicity like genetic stability, acid sensitivity, biofilm formation and motility. Notably, V. cholerae N16961 exhibited greater motility and reduced biofilm formation compared to V. cholerae C6706. These phenotypic differences appear to be mediated by variations in quorum sensing and cyclic di-GMP signalling pathways between the strains. This study provides valuable insights into the regulation of biofilm formation and motility in V. cholerae.


Assuntos
Biofilmes , Genoma Bacteriano , Fenótipo , Vibrio cholerae , Vibrio cholerae/genética , Biofilmes/crescimento & desenvolvimento , Percepção de Quorum/genética , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , GMP Cíclico/metabolismo , GMP Cíclico/análogos & derivados
2.
J Appl Microbiol ; 133(3): 1506-1519, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35686660

RESUMO

AIMS: The role of a Acinetobacter johnsonii strain, isolated from a soil sample, in the biotransformation of bile acids (BAs) was already described but the enzymes responsible for these transformations were only partially purified and molecularly characterized. METHODS AND RESULTS: This study describes the use of hybrid de novo assemblies, that combine long-read Oxford Nanopore and short-read Illumina sequencing strategies, to reconstruct the entire genome of A. johnsonii ICE_NC strain and to identify the coding region for a 12α-hydroxysteroid dehydrogenase (12α-HSDH), involved in BAs metabolism. The de novo assembly of the A. johnsonii ICE_NC genome was generated using Canu and Unicycler, both strategies yielded a circular chromosome of about 3.6 Mb and one 117 kb long plasmid. Gene annotation was performed on the final assemblies and the gene for 12α-HSDH was detected on the plasmid. CONCLUSIONS: Our findings illustrate the added value of long read sequencing in addressing the challenges of whole genome characterization and plasmid reconstruction in bacteria. These approaches also allowed the identification of the A. johnsonii ICE_NC gene for the 12α-HSDH enzyme, whose activity was confirmed at the biochemical level. SIGNIFICANCE AND IMPACT OR THE STUDY: At present, this is the first report on the characterization of a 12α-HSDH gene in an A. johnsonii strain able to biotransform cholic acid into ursodeoxycholic acid, a promising therapeutic agent for several diseases.


Assuntos
Acinetobacter , Hidroxiesteroide Desidrogenases , Acinetobacter/genética , Acinetobacter/metabolismo , Ácidos e Sais Biliares , Genoma Bacteriano , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Hidroxiesteroide Desidrogenases/química , Hidroxiesteroide Desidrogenases/genética , Hidroxiesteroide Desidrogenases/metabolismo
3.
Plant J ; 98(6): 1015-1032, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30891832

RESUMO

Wheat (Triticum aestivum L.), a globally important crop, is challenged by increasing temperatures (heat stress, HS). However its polyploid nature, the incompleteness of its genome sequences and annotation, the lack of comprehensive HS-responsive transcriptomes and the unexplored heat sensing and signaling of wheat hinder our full understanding of its adaptations to HS. The recently released genome sequences of wheat, as well as emerging single-molecular sequencing technologies, provide an opportunity to thoroughly investigate the molecular mechanisms of the wheat response to HS. We generated a high-resolution spatio-temporal transcriptome map of wheat flag leaves and filling grain under HS at 0 min, 5 min, 10 min, 30 min, 1 h and 4 h by combining full-length single-molecular sequencing and Illumina short reads sequencing. This hybrid sequencing newly discovered 4947 loci and 70 285 transcripts, generating the comprehensive and dynamic list of HS-responsive full-length transcripts and complementing the recently released wheat reference genome. Large-scale analysis revealed a global landscape of heat adaptations, uncovering unexpected rapid heat sensing and signaling, significant changes of more than half of HS-responsive genes within 30 min, heat shock factor-dependent and -independent heat signaling, and metabolic alterations in early HS-responses. Integrated analysis also demonstrated the differential responses and partitioned functions between organs and subgenomes, and suggested a differential pattern of transcriptional and alternative splicing regulation in the HS response. This study provided comprehensive data for dissecting molecular mechanisms of early HS responses in wheat and highlighted the genomic plasticity and evolutionary divergence of polyploidy wheat.


Assuntos
Regulação da Expressão Gênica de Plantas , Resposta ao Choque Térmico/genética , Transdução de Sinais , Transcriptoma , Triticum/genética , Adaptação Fisiológica , Processamento Alternativo , Produtos Agrícolas , Grão Comestível/genética , Grão Comestível/fisiologia , Folhas de Planta/genética , Folhas de Planta/fisiologia , Poliploidia , Triticum/fisiologia
4.
Microb Genom ; 10(2)2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38376381

RESUMO

Many environmentally relevant micro-organisms cannot be cultured, and even with the latest metagenomic approaches, achieving complete genomes for specific target organisms of interest remains a challenge. Cable bacteria provide a prominent example of a microbial ecosystem engineer that is currently unculturable. They occur in low abundance in natural sediments, but due to their capability for long-distance electron transport, they exert a disproportionately large impact on the biogeochemistry of their environment. Current available genomes of marine cable bacteria are highly fragmented and incomplete, hampering the elucidation of their unique electrogenic physiology. Here, we present a metagenomic pipeline that combines Nanopore long-read and Illumina short-read shotgun sequencing. Starting from a clonal enrichment of a cable bacterium, we recovered a circular metagenome-assembled genome (5.09 Mbp in size), which represents a novel cable bacterium species with the proposed name Candidatus Electrothrix scaldis. The closed genome contains 1109 novel identified genes, including key metabolic enzymes not previously described in incomplete genomes of cable bacteria. We examined in detail the factors leading to genome closure. Foremost, native, non-amplified long reads are crucial to resolve the many repetitive regions within the genome of cable bacteria, and by analysing the whole metagenomic assembly, we found that low strain diversity is key for achieving genome closure. The insights and approaches presented here could help achieve genome closure for other keystone micro-organisms present in complex environmental samples at low abundance.


Assuntos
Deltaproteobacteria , Metagenoma , Ecossistema , Sequenciamento de Nucleotídeos em Larga Escala , Bactérias/genética
5.
Microbiol Resour Announc ; 13(6): e0017824, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38738897

RESUMO

Campylobacter jejuni subsp. jejuni is a leading bacterial cause of human gastroenteritis. C. jejuni strain P4549 was isolated from an asymptomatic rhesus monkey, Macaca mulatta. We report the genome sequences have a circular chromosome of 1,729,940 bp and two plasmids of 50,482 bp and 7,259 bp, respectively.

6.
Imeta ; 2(4): e139, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38868213

RESUMO

Structural variants (SVs, including large-scale insertions, deletions, inversions, and translocations) significantly impact the functions of genes in the microbial genome, and SVs in the microbiome are associated with diverse biological processes and human diseases. With the advancements in sequencing and bioinformatics technologies, increasingly, sequencing data and analysis tools are already being extensively utilized for microbiome SV analyses, leading to a higher demand for more dedicated SV analysis workflows. Moreover, due to the unique detection biases of various sequencing technologies, including short-read sequencing (such as Illumina platforms) and long-read sequencing (e.g., Oxford Nanopore and PacBio), SV discovery based on multiple platforms is necessary to comprehensively identify the wide variety of SVs. Here, we establish an integrated pipeline MetaSVs combining Nanopore long reads and Illumina short reads to analyze SVs in the microbial genomes from gut microbiome and further identify differential SVs that can be reflective of metabolic differences. Our pipeline provides researchers easy access to SVs and relevant metabolites in the microbial genomes without the requirement of specific technical expertise, which is particularly useful to researchers interested in metagenomic SVs but lacking sophisticated bioinformatic knowledge.

7.
Heliyon ; 9(2): e13536, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36816321

RESUMO

Common vetch is an important leguminous forage for both livestock fodder and green manure and has a tremendous latent capacity in a sustainable agroecosystem. In the present study, a comprehensive transcriptome analysis of the aboveground leaves and underground roots of common vetch under multiple abiotic stress treatments, including NaCl, drought, cold, and cold drought, was performed using hybrid-sequencing technology, i. e. single-molecule real-time sequencing technology (SMRT) and supplemented by next-generation sequencing (NGS) technology. A total of 485,038 reads of insert (ROIs) with a mean length of 2606 bp and 228,261 full-length nonchimeric (FLNC) reads were generated. After deduplication, 39,709 transcripts were generated. Of these transcripts, we identified 1059 alternative splicing (AS) events, 17,227 simple sequence repeats (SSRs), and 1647 putative transcription factors (TFs). Furthermore, 640 candidates long noncoding RNAs (lncRNAs) and 28,256 complete coding sequences (CDSs) were identified. In gene annotation analyses, a total of 38,826 transcripts (97.78%) were annotated in eight public databases. Finally, seven multiple abiotic stress-responsive candidate genes were obtained through gene expression, annotation information, and protein-protein interaction (PPI) networks. Our research not only enriched the structural information of FL transcripts in common vetch, but also provided useful information for exploring the molecular mechanism of multiple abiotic stress tolerance between aboveground and underground tissues in common vetch and related legumes.

8.
Imeta ; 2(1): e72, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38868337

RESUMO

Metagenomic strategy serves as the foundation for the ecological exploration of novel bioresources (e.g., industrial enzymes and bioactive molecules) and biohazards (e.g., pathogens and antibiotic resistance genes) in natural and engineered microbial systems across multiple disciplines. Recent advancements in sequencing technology have fostered rapid development in the field of microbiome research where an increasing number of studies have applied both illumina short reads (SRs) and nanopore long reads (LRs) sequencing in their metagenomic workflow. However, given the high complexity of an environmental microbiome data set and the bioinformatic challenges caused by the unique features of these sequencing technologies, integrating SRs and LRs is not as straightforward as one might assume. The fast renewal of existing tools and growing diversity of new algorithms make access to this field even more difficult. Therefore, here we systematically summarized the complete workflow from DNA extraction to data processing strategies for applying illumina and nanopore-integrated metagenomics in the investigation in environmental microbiomes. Overall, this review aims to provide a timely knowledge framework for researchers that are interested in or are struggling with the SRs and LRs integration in their metagenomic analysis. The discussions presented will facilitate improved ecological understanding of community functionalities and assembly of natural, engineered, and human microbiomes, benefiting researchers from multiple disciplines.

9.
Gigascience ; 112022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36472574

RESUMO

BACKGROUND: The advancement of hybrid sequencing technologies is increasingly expanding genome assemblies that are often annotated using hybrid sequencing transcriptomics, leading to improved genome characterization and the identification of novel genes and isoforms in a wide variety of organisms. RESULTS: We developed an easy-to-use genome-guided transcriptome annotation pipeline that uses assembled transcripts from hybrid sequencing data as input and distinguishes between coding and long non-coding RNAs by integration of several bioinformatic approaches, including gene reconciliation with previous annotations in GTF format. We demonstrated the efficiency of this approach by correctly assembling and annotating all exons from the chicken SCO-spondin gene (containing more than 105 exons), including the identification of missing genes in the chicken reference annotations by homology assignments. CONCLUSIONS: Our method helps to improve the current transcriptome annotation of the chicken brain. Our pipeline, implemented on Anaconda/Nextflow and Docker is an easy-to-use package that can be applied to a broad range of species, tissues, and research areas helping to improve and reconcile current annotations. The code and datasets are publicly available at https://github.com/cfarkas/annotate_my_genomes.


Assuntos
Análise de Sequência de RNA
10.
Data Brief ; 41: 107857, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35141371

RESUMO

The Indian rhinoceros (Rhinoceros unicornis) is a large herbivore found in northern India and southern Nepal. It is a critically endangered species, with an estimated population of approximately 3,600 in the wild. Genetic factors, such as the loss of genetic diversity and the accumulation of deleterious variations, are critical risk factors for the extinction of endangered species, such as the Indian rhinoceros. To support the conservation efforts of the Indian rhinoceros, we assembled its draft genome. The new genomic data will enable the study of functional genes associated with the ecological and physiological characteristics of Indian rhinoceros and help us establish more effective conservation measures. The muscles of an Indian rhinoceros that died from prostration at a zoo were collected, and the samples were stored at the National Institute for Environmental Studies (Tsukuba, Japan). Sequence data were obtained using an Illumina NovaSeq 6000 platform for short reads and an Oxford Nanopore Technologies PromethION for long reads. We generated approximately 235.2 Gbp of data. From these sequences, we assembled a 2,375,051,758 bp genome consisting of 7,615 contigs. The genome data are available from the National Center Biotechnology Information BioProject database under accession number BOSQ00000000.

11.
Front Genet ; 13: 841957, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35368689

RESUMO

Japanese iris (Iris japonica) is a popular perennial ornamental that originated in China; it has a long display period and remains green outdoors throughout the year. winter dormancy characteristics contribute greatly to the evergreenness of herbaceous perennials. Thus, it is crucial to explore the mechanism of winter dormancy in this evergreen herbaceous perennial. Here, we used the hybrid RNA-seq strategy including single-molecule real-time (SMRT) and next-generation sequencing (NGS) technologies to generate large-scale Full-length transcripts to examine the shoot apical meristems of Japanese iris. A total of 10.57 Gb clean data for SMRT and over 142 Gb clean data for NGS were generated. Using hybrid error correction, 58,654 full-length transcripts were acquired and comprehensively analysed, and their expression levels were validated by real-time qPCR. This is the first full-length RNA-seq study in the Iris genus; our results provide a valuable resource and improve understanding of RNA processing in this genus, for which little genomic information is available as yet. In addition, our data will facilitate in-depth analyses of winter dormancy mechanisms in herbaceous perennials, especially evergreen monocotyledons.

12.
Antibiotics (Basel) ; 11(9)2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36140031

RESUMO

Klebsiella pneumoniae of sequence type (ST) 11 is a hyper-epidemic nosocomial clone, which is spreading worldwide among humans and emerging in pets. This is the first report, to the best of our knowledge, of multidrug-resistant (MDR) K. pneumoniae ST11 carrying blaSCO-1 and blaDHA-1, isolated from a four-month-old dog in Belgium. Antimicrobial susceptibility testing (AST) of the isolate, performed via broth microdilution following the European Committee on Antimicrobial Susceptibility Testing (EUCAST) guidelines, revealed resistance to eight different classes of antimicrobials, including carbapenems, in particular ertapenem, third-generation cephalosporins and fluoroquinolones. A hybrid approach, combining long- and short-read sequencing, was employed for in silico plasmid characterization, multi-locus sequence typing (MLST) and the identification and localization of antimicrobial resistance (AMR) and virulence-associated genes. Three plasmids were reconstructed from the whole-genome sequence (WGS) data: the conjugative IncFIB(K), the non-mobilizable IncR and the mobilizable but unconjugative ColRNAI. The IncFIB(K) plasmid carried the blaSCO-1 gene, whereas IncR carried blaDHA-1, both alongside several other antimicrobial resistance genes (ARGs). No virulence genes could be detected. Here, we suggest that the resistance to ertapenem associated with susceptibility to imipenem and meropenem in K. pneumoniae could be related to the presence of blaSCO-1 and blaDHA-1, combined with permeability defects caused by point mutations in an outer membrane porin (OmpK37). The presence of the blaSCO-1 gene on a conjugative IncFIB(K) plasmid is worrisome as it can increase the risk of transmission to humans, to animals and to the environment.

13.
Biosci Rep ; 41(8)2021 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-34282833

RESUMO

The Chinese giant salamander, Andrias davidianus, is the largest amphibian species in the world; it is thus an economically and ecologically important species. The skin of A. davidianus exhibits complex adaptive structural and functional adaptations to facilitate survival in aquatic and terrestrial ecosystems. Here, we report the first full-length amphibian transcriptome from the dorsal skin of A. davidianus, which was assembled using hybrid sequencing and the PacBio and Illumina platforms. A total of 153,038 transcripts were hybrid assembled (mean length of 2039 bp and N50 of 2172 bp), and 133,794 were annotated in at least one database (nr, Swiss-Prot, KEGG, KOGs, GO, and nt). A total of 58,732, 68,742, and 115,876 transcripts were classified into 24 KOG categories, 1903 GO term categories, and 46 KEGG pathways (level 2), respectively. A total of 207,627 protein-coding regions, 785 transcription factors, 27,237 potential long non-coding RNAs, and 8299 simple sequence repeats were also identified. The hybrid-assembled transcriptome recovered more full-length transcripts, had a higher N50 contig length, and a higher annotation rate of unique genes compared with that assembled in previous studies using next-generation sequencing. The high-quality full-length reference gene set generated in this study will help elucidate the genetic characteristics of A. davidianus skin and aid the identification of functional skin proteins.


Assuntos
Proteínas de Anfíbios/genética , Perfilação da Expressão Gênica , Análise de Célula Única , Pele/metabolismo , Transcriptoma , Urodelos/genética , Proteínas de Anfíbios/metabolismo , Animais , Bases de Dados Genéticas , Feminino , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Sequenciamento de Nucleotídeos em Larga Escala , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Pele/citologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Urodelos/metabolismo
14.
J Glob Antimicrob Resist ; 26: 227-229, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34273590

RESUMO

OBJECTIVES: Brucella anthropi is a Gram-negative, aerobic, motile, oxidase-positive, non-fermentative Alphaproteobacteria belonging to the family Brucellaceae. It is most commonly found in soil but is an emerging, opportunistic, nosocomial human pathogen. The objective of this study was to understand the genome features of a drug-resistant B. anthropi (SOA01) isolated from a blood culture of a 4-day-old neonate and to determine its antimicrobial resistance and pathogenic potential. METHODS: Hybrid genome assembly of B. anthropi strain SOA01 was generated using quality-trimmed short Illumina and long MinION reads. Identification and antimicrobial susceptibility profile were determined by MALDI-TOF, in silico ribosomal multilocus sequence typing (rMLST) and VITEK®2, respectively. PATRIC webserver and VFDB were used to identify antimicrobial resistance (AMR), virulence factor (VF) and transporter genes. RESULTS: Multidrug-resistant B. anthropi strain SOA01 has a genome of 4 975 830 bp with a G+C content of 56.29%. Several AMR, VF and transporter genes were identified in the genome. Antimicrobial susceptibility testing revealed resistance to different classes of antibiotics in strain SOA01. CONCLUSION: Brucella anthropi SOA01 is a multidrug-resistant strain. Several AMR and VF genes were identified in the genome, revealing the potential threat posed by this pathogen. The genome data generated in this study are likely to be useful in better understanding its AMR mechanisms, pathogenic potential and successful adaptation from its primary habitat of soil to the human system. Since it is often misidentified as Brucella melitensis or Brucella suis, genome characterisation and detailed understanding of its biology are crucial.


Assuntos
Brucella melitensis , Sepse Neonatal , Genoma Bacteriano , Genômica , Humanos , Recém-Nascido , Tipagem de Sequências Multilocus
15.
Animals (Basel) ; 11(10)2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34679927

RESUMO

Domestic goats are commonly reared for meat and milk production in several regions of the world. However, the genetic mechanism underlying muscle development and meat quality of goats is limited. Therefore, the aim of this study was to identify known and novel genes regulating muscle development and meat quality of goats using second- and third-generation sequencing technologies. To achieve this, the meat quality and transcriptomes of longissimus dorsi (LD) and biceps femoris (BF) muscle tissues of Lingqiu Greyback goats were examined and compared. Differentially expressed genes (DEGs) and isoforms (DEIs) were functionally annotated. Results showed that 45,574 full-length transcripts covering 18,491 loci were characterized, and 12,566 genes were co-expressed in all samples. Differential expression analysis identified 231 DEGs, including 45 novel genes in the LD and BF muscles of the goats. Additionally, 1173 DEIs were found, in which 642 novel isoforms were identified in this study. Functional annotation and pathway analysis of the DEGs and DEIs revealed that some of them were associated with muscle growth and lipid metabolism. Overall, the findings of this study contribute to the understanding of the transcriptomic diversity underlying meat quality and muscle development of goat.

16.
J Glob Antimicrob Resist ; 25: 323-325, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33965629

RESUMO

OBJECTIVES: The genus Burkholderia comprises rod-shaped, non-spore-forming, obligately aerobic Gram-negative bacteria that is found across diverse ecological niches. Burkholderia contaminans, an emerging pathogen associated with cystic fibrosis, is frequently isolated from contaminated medical devices in hospital settings. The aim of this study was to understand the genomic characteristics, antimicrobial resistance profile and virulence determinants of B. contaminans strain SBC01 isolated from the eye of a patient hit by a cow's tail. METHODS: A hybrid sequence of isolate SBC01 was generated using Illumina HiSeq and Oxford Nanopore Technology platforms. Unicycler was used to assemble the hybrid genomic sequence. The draft genome was annotated using the NCBI Prokaryotic Genome Annotation Pipeline. Antimicrobial susceptibility testing was performed by VITEK®2. Antimicrobial resistance and virulence genes were identified using validated bioinformatics tools. RESULTS: The assembled genome size is 8 841 722 bp with a G+C content of 66.33% distributed in 19 contigs. Strain SBC01 was found to possess several antimicrobial resistance and efflux pump genes. The isolate was susceptible to tetracyclines, meropenem and ceftazidime. Many genes encoding potential virulence factors were identified. CONCLUSION: Burkholderia contaminans SBC01 belonging to sequence type 482 (ST482) is a multidrug-resistant strain containing diverse antimicrobial resistance genes, revealing the risks associated with infections by new Burkholderia spp. The large G+C-rich genome has a myriad of virulence factors, highlighting its pathogenic potential. Thus, while providing insights into the antimicrobial resistance and virulence potential of this uncommon species, the present analysis will aid in understanding the evolution and speciation in the Burkholderia genus.


Assuntos
Infecções Oculares , Genoma Bacteriano , Animais , Burkholderia , Bovinos , Genômica , Humanos , Filogenia
17.
Front Microbiol ; 12: 783195, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34858382

RESUMO

Our previous study identified a new ß-galactosidase in Erwinia sp. E602. To further understand the lactose metabolism in this strain, de novo genome assembly was conducted by using a strategy combining Illumina and PacBio sequencing technology. The whole genome of Erwinia sp. E602 includes a 4.8 Mb chromosome and a 326 kb large plasmid. A total of 4,739 genes, including 4,543 protein-coding genes, 25 rRNAs, 82 tRNAs and 7 other ncRNAs genes were annotated. The plasmid was the largest one characterized in genus Erwinia by far, and it contained a number of genes and pathways responsible for lactose metabolism and regulation. Moreover, a new plasmid-borne lac operon that lacked a typical ß-galactoside transacetylase (lacA) gene was identified in the strain. Phylogenetic analysis showed that the genes lacY and lacZ in the operon were under positive selection, indicating the adaptation of lactose metabolism to the environment in Erwinia sp. E602. Our current study demonstrated that the hybrid de novo genome assembly using Illumina and PacBio sequencing technologies, as well as the metabolic pathway analysis, provided a useful strategy for better understanding of the evolution of undiscovered microbial species or strains.

18.
Antibiotics (Basel) ; 10(3)2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33803068

RESUMO

Colistin use has mostly been stopped in human medicine, due to its toxicity. However, nowadays, it still is used as a last-resort antibiotic to treat hospital infections caused by multi-drug resistant Enterobacteriaceae. On the contrary, colistin has been used in veterinary medicine until recently. In this study, 210 fecal samples from pigs (n = 57), calves (n = 152), and the farmer (n = 1) were collected from a farm where E. coli harboring mcr-1-mcr-3 was previously detected. Samples were plated, and mcr-genes presence was confirmed by multiplex-PCR. Hybrid sequencing which determined the presence and location of mcr-1, other antibiotic resistance genes, and virulence factors. Eighteen colistin resistant isolates (13 from calves, four from pigs, and one from the farmer) contained mcr-1 associated with plasmids (IncX4, IncI2, and IncHI2), except for two that yielded mcr-1 in the chromosome. Similar plasmids were distributed in different E. coli lineages. Transmission of mcr-1 to the farmer most likely occurred by horizontal gene transfer from E. coli of calf origin, since plasmids were highly similar (99% coverage, 99.97% identity). Moreover, 33 virulence factors, including stx2 for Shiga toxin E. coli (STEC) were detected, highlighting the role of livestock as a reservoir of pathotypes with zoonotic potential.

19.
BMC Genom Data ; 22(1): 27, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-34399683

RESUMO

OBJECTIVE: M. morganii is a gram-negative, non-lactose fermenting and an opportunistic pathogen frequently associated with nosocomial infections. Although first isolated in 1906 from a pediatric fecal sample, not many M. morganii isolates have been sequenced. The objective of this work is to determine the complete genome sequence of an XDR M. morganii strain (SMM01) isolated from the urine of a patient with urinary and fecal incontinence and to characterize its antimicrobial resistance profile. DATA DESCRIPTION: Here, we report the complete genome sequence of M. morganii SMM01 generated from the hybrid assembly of Illumina HiSeq X and Nanopore MinION reads. The assembly is 100% complete with genome size of 39,30,130 bp and GC content of 51%. Genomic features include 3617 CDS, 18 rRNAs, 78 tRNAs, 4 ncRNAs and 60 pseudogenes. Antimicrobial resistance profile was characterized by the presence of genes conferring resistance to aminoglycosides, ß-lactams, fluoroquinolones, chloramphenicol, and tetracyclines. Secondary metabolite biosynthetic gene clusters like NRPS, T1PKS, thiopeptide, beta-lactone, and bacteriocin were identified. The genome data described here would be the first complete genome of an Indian M. morganii isolate providing crucial information on antimicrobial resistance patterns, paving the way for further comparative genome analyses.


Assuntos
Incontinência Fecal , Genoma Bacteriano , Morganella morganii , Preparações Farmacêuticas , Antibacterianos , Criança , Farmacorresistência Bacteriana , Genoma Bacteriano/genética , Genômica , Humanos , Morganella morganii/genética , Morganella morganii/patogenicidade
20.
Front Microbiol ; 12: 592291, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33613476

RESUMO

Plasmid-mediated extended-spectrum beta-lactamase (ESBL), AmpC, and carbapenemase producing Enterobacteriaceae, in particular Escherichia coli and Klebsiella pneumoniae, with potential zoonotic transmission routes, are one of the greatest threats to global health. The aim of this study was to investigate global food products as potential vehicles for ESBL/AmpC-producing bacteria and identify plasmids harboring resistance genes. We sampled 200 food products purchased from Finland capital region during fall 2018. Products originated from 35 countries from six continents and represented four food categories: vegetables (n = 60), fruits and berries (n = 50), meat (n = 60), and seafood (n = 30). Additionally, subsamples (n = 40) were taken from broiler meat. Samples were screened for ESBL/AmpC-producing Enterobacteriaceae and whole genome sequenced to identify resistance and virulence genes and sequence types (STs). To accurately identify plasmids harboring resistance and virulence genes, a hybrid sequence analysis combining long- and short-read sequencing was employed. Sequences were compared to previously published plasmids to identify potential epidemic plasmid types. Altogether, 14 out of 200 samples were positive for ESBL/AmpC-producing E. coli and/or K. pneumoniae. Positive samples were recovered from meat (18%; 11/60) and vegetables (5%; 3/60) but were not found from seafood or fruit. ESBL/AmpC-producing E. coli and/or K. pneumoniae was found in 90% (36/40) of broiler meat subsamples. Whole genome sequencing of selected isolates (n = 21) revealed a wide collection of STs, plasmid replicons, and genes conferring multidrug resistance. bla CTX-M-15-producing K. pneumoniae ST307 was identified in vegetable (n = 1) and meat (n = 1) samples. Successful IncFII plasmid type was recovered from vegetable and both IncFII and IncI1-Iγ types from meat samples. Hybrid sequence analysis also revealed chromosomally located beta-lactamase genes in two of the isolates and indicated similarity of food-derived plasmids to other livestock-associated sources and also to plasmids obtained from human clinical samples from various countries, such as IncI type plasmid harboring bla TEM-52C from a human urine sample obtained in the Netherlands which was highly similar to a plasmid obtained from broiler meat in this study. Results indicate certain foods contain bacteria with multidrug resistance and pose a possible risk to public health, emphasizing the importance of surveillance and the need for further studies on epidemiology of epidemic plasmids.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA