Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 27(23)2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36500619

RESUMO

Silicone elastomer composites with piezoelectric properties, conferred by incorporated polyimide copolymers, with pressure sensors similar to human skin and kinetic energy harvester capabilities, were developed as thin film (<100 micron thick) layered architecture. They are based on polymer materials which can be produced in industrial amounts and are scalable for large areas (m2). The piezoelectric properties of the tested materials were determined using a dynamic mode of piezoelectric force microscopy. These composite materials bring together polydimethylsiloxane polymers with customized poly(siloxane-imide) copolymers (2−20 wt% relative to siloxanes), with siloxane segments inserted into the structure to ensure the compatibility of the components. The morphology of the materials as free-standing films was studied by SEM and AFM, revealing separated phases for higher polyimide concentration (10, 20 wt%). The composites show dielectric behavior with a low loss (<10−1) and a relative permittivity superior (3−4) to pure siloxane within a 0.1−106 Hz range. The composite in the form of a thin film can generate up to 750 mV under contact with a 30 g steel ball dropped from 10 cm high. This capability to convert a pressure signal into a direct current for the tested device has potential for applications in self-powered sensors and kinetic energy-harvesting applications. Furthermore, the materials preserve the known electromechanical properties of pure polysiloxane, with lateral strain actuation values of up to 6.2% at 28.9 V/µm.


Assuntos
Eletricidade , Polímeros , Humanos , Polímeros/química , Siloxanas
2.
Chemphyschem ; 22(10): 944-951, 2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-33792153

RESUMO

The mediated oxidation of acetate and octanoate ions in acetonitrile was used to covalently modify carbon surfaces with films bearing saturated aliphatic chains of different length. Film thickness increases proportionally with the length of the aliphatic chain within the carboxylate precursor. The thickest film was obtained from octanoate oxidation and rectification occurs when ferrocene is used as redox probe in acetonitrile solution. This effect increases with the bulky and hydrophobic nature of the supporting electrolyte cations; n-Hx4 N+ >n-Bu4 N+ >Me4 N+ . The combination of the bulky and hydrophobic properties of the supporting electrolyte ions as well as the hydrophobic properties of the electrografted films is the basis of rectification of ferrocene in cyclic voltammetry experiments. This phenomenon was simulated through a CEC mechanism in solution, where the mass transport inside the film channels was emulated through single chemical equilibria.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA