Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Neurol Sci ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38775861

RESUMO

BACKGROUND: REM Sleep Behavior Disorder (RBD) is characterized by absence of physiological muscle atonia during REM sleep (REM sleep without atonia, RWA). Nigro-striatal dopaminergic impairment is a feature of Parkinson disease (PD) and can be identified in prodromal stages as well, such as idiopathic RBD (iRBD). Aims of this study are to explore the efficacy of an automatic RWA quantification in identifying RBD patients and the correlation between RWA and nigro-striatal dopaminergic function. METHODS: Forty-five iRBD, 46 PD with RBD, 24 PD without RBD patients and 11 healthy controls were enrolled in the Genoa Center (group A) and 25 patients with iRBD (group B) were enrolled in the Danish Center. Group A underwent brain [123I]FP-CIT-SPECT and group B underwent brain [18F]PE2I-PET as measures of nigro-striatal dopaminergic function. Chin muscle activity was recorded in all subjects and analyzed by applying a published automatic algorithm. Correlations between RWA and nigro-striatal dopaminergic function were explored. RESULTS: The automatic quantification of RWA significantly differentiated RBD from non-RBD subjects (AUC = 0.86), although with lower accuracy compared with conventional visual scoring (AUC = 0.99). No significant correlation was found between RWA and nigro-striatal dopaminergic function. CONCLUSION: The automatic quantification of RWA is a reliable tool to identify subjects with RBD and may be used as a first-line screening tool, but without correlations with nigro-striatal dopaminergic functioning.

2.
Int J Mol Sci ; 24(24)2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38138961

RESUMO

89Zr-iPET has been widely used for preclinical and clinical immunotherapy studies to predict patient stratification or evaluate therapeutic efficacy. In this study, we prepared and evaluated 89Zr-DFO-anti-PD-L1-mAb tracers with varying chelator-to-antibody ratios (CARs), including 89Zr-DFO-anti-PD-L1-mAb_3X (tracer_3X), 89Zr-DFO-anti-PD-L1-mAb_10X (tracer_10X), and 89Zr-DFO-anti-PD-L1-mAb_20X (tracer_20X). The DFO-anti-PD-L1-mAb conjugates with varying CARs were prepared using a random conjugation method and then subjected to quality control. The conjugates were radiolabeled with 89Zr and evaluated in a PD-L1-expressing CT26 tumor-bearing mouse model. Next, iPET imaging, biodistribution, pharmacokinetics, and ex vivo pathological and immunohistochemical examinations were conducted. LC-MS analysis revealed that DFO-anti-PD-L1-mAb conjugates were prepared with CARs ranging from 0.4 to 2.0. Radiochemical purity for all tracer groups was >99% after purification. The specific activity levels of tracer_3X, tracer_10X, and tracer_20X were 2.2 ± 0.6, 8.2 ± 0.6, and 10.5 ± 1.6 µCi/µg, respectively. 89Zr-iPET imaging showed evident tumor uptake in all tracer groups and reached the maximum uptake value at 24 h postinjection (p.i.). Biodistribution data at 168 h p.i. revealed that the tumor-to-liver, tumor-to-muscle, and tumor-to-blood uptake ratios for tracer_3X, tracer_10X, and tracer_20X were 0.46 ± 0.14, 0.58 ± 0.33, and 1.54 ± 0.51; 4.7 ± 1.3, 7.1 ± 3.9, and 14.7 ± 1.1; and 13.1 ± 5.8, 19.4 ± 13.8, and 41.3 ± 10.6, respectively. Significant differences were observed between tracer_3X and tracer_20X in the aforementioned uptake ratios at 168 h p.i. The mean residence time and elimination half-life for tracer_3X, tracer_10X, and tracer_20X were 25.4 ± 4.9, 24.2 ± 6.1, and 25.8 ± 3.3 h and 11.8 ± 0.5, 11.1 ± 0.7, and 11.7 ± 0.6 h, respectively. No statistical differences were found between-tracer in the aforementioned pharmacokinetic parameters. In conclusion, 89Zr-DFO-anti-PD-L1-mAb tracers with a CAR of 1.4-2.0 may be better at imaging PD-L1 expression in tumors than are traditional low-CAR 89Zr-iPET tracers.


Assuntos
Quelantes , Neoplasias , Humanos , Camundongos , Animais , Quelantes/uso terapêutico , Radioisótopos/uso terapêutico , Tomografia por Emissão de Pósitrons/métodos , Anticorpos Monoclonais/uso terapêutico , Distribuição Tecidual , Antígeno B7-H1 , Desferroxamina/uso terapêutico , Neoplasias/tratamento farmacológico , Zircônio/farmacocinética , Linhagem Celular Tumoral
3.
ACS Nano ; 18(12): 9114-9127, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38477305

RESUMO

Immune checkpoint blockade (ICB) therapy is promising to revolutionize cancer regimens, but the low response rate and the lack of a suitable patient stratification method have impeded universal profit to cancer patients. Noninvasive positron emission tomography (PET) imaging in the whole body, upon coupling with specific biomarkers closely related to the immune response, could provide spatiotemporal information to prescribe cancer therapy. Herein, we demonstrate that antisilencing function 1a (ASF1a) could serve as a biomarker target to delineate tumor immune microenvironments by immune PET (iPET). The iPET radiotracer (68Ga-AP1) is designed to target ASF1a in tumors and predict immune response, and the signal intensity predicts anti-PD-1 (αPD-1) therapy response in a negative correlation manner. The ICB-resistant tumors with a high level of ASF1a as revealed by iPET (ASF1aHigh-iPET) are prescribed to be treated by either the combined 177Lu-labeled AP1 and αPD-1 or the standalone α particle-emitting 225Ac-labeled AP1, both achieving enhanced therapeutic efficacy and prolonged survival time. Our study not only replenishes the iPET arsenal for immune-related response evaluation by designing a reliable biomarker and a facile radiotracer but also provides optional therapeutic strategies for ICB-resistant tumors with versatile radionuclide-labeled AP1 peptides, which is promising for real-time clinical diagnosis and individualized therapy planning simultaneously.


Assuntos
Neoplasias , Radioisótopos , Humanos , Tomografia por Emissão de Pósitrons/métodos , Biomarcadores , Peptídeos , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Microambiente Tumoral
4.
J Zhejiang Univ Sci B ; 24(10): 905-921, 2023 Oct 15.
Artigo em Inglês, Zh | MEDLINE | ID: mdl-37752092

RESUMO

Recent advances in lymphoma treatment have significantly improved the survival of patients; however, the current approaches also have varying side effects. To overcome these, it is critical to implement individualized treatment according to the patient's condition. Therefore, the early identification of high-risk groups and targeted treatment are important strategies for prolonging the survival time and improving the quality of life of patients. Interim positron emission tomography-computed tomography (PET-CT) has a high prognostic value, which can reflect chemosensitivity and identify patients for whom treatment may fail under this regimen. To date, many prospective clinical studies on interim PET (iPET)|-adapted therapy have been conducted. In this review, we focus on the treatment strategies entailed in these studies, as well as the means and timing of iPET assessment, with the aim of exploring the efficacy and existing issues regarding iPET-adapted treatment. It is expected that the improved use of PET-CT examination can facilitate treatment decision-making to identify precise treatment options.

5.
Res Sq ; 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36711774

RESUMO

Chromatin phase transition serves as a regulatory mechanism for eukaryotic transcription. Understanding this process requires the characterization of the nucleosome array structure in response to external stimuli prior to phase separation. However, the intrinsic flexibility and heterogeneity hinders the arrays' structure determination. Here we exploit advances in cryogenic electron tomography (cryo-ET) to determine the three-dimensional (3D) structure of each individual particle of mono-, di-, tri-, and tetranucleosome arrays. Statistical analysis reveals the ionic strength changes the angle between the DNA linker and nucleosome core particle (NCP), which regulate the overall morphology of nucleosome arrays. The finding that one-third of the arrays in the presence of H1 contain an NCP invaded by foreign DNA suggests an alternative function of H1 in constructing nucleosomal networks. The new insights into the nucleosome conformational changes prior to the intermolecular interaction stage extends our understanding of chromatin phase separation regulation.

6.
J Korean Med Sci ; 27(9): 1019-26, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22969247

RESUMO

Although the prognosis of patients with differentiated thyroid carcinoma (DTC) is generally encouraging, a diagnostic dilemma is posed when an increasing level of serum thyroglobulin (Tg) is noted, without detection of a recurrent tumor using conventional imaging tools such as the iodine-131 whole-body scanning (the [(131)I] scan) or neck ultrasonography (US). The objective of the present study was to evaluate the diagnostic value of [(124)I]-PET/CT and [(18)F]-FDG-PET/CT in terms of accurate detection of both iodine- and non-iodine-avid recurrence, compared with that of conventional imaging such as the [(131)I] scan or neck ultrasonography (US). Between July 2009 and June 2010, we prospectively studied 19 DTC patients with elevated thyroglobulin levels but who do not show pathological lesions when conventional imaging modalities are used. All involved patients had undergone total thyroidectomy and radioiodine (RI) treatment, and who had been followed-up for a mean of 13 months (range, 6-21 months) after the last RI session. Combined [(18)F]-FDG-PET/CT and [(124)I]-PET/CT data were evaluated for detecting recurrent DTC lesions in study patients and compared with those of other radiological and/or cytological investigations. Nine of 19 patients (47.4%) showed pathological [(18)F]-FDG (5/19, 26.3%) or [(124)I]-PET (4/19, 21.1%) uptake, and were classed as true-positives. Among such patients, disease management was modified in six (66.7%) and disease was restaged in seven (77.8%). In particular, the use of the described imaging combination optimized planning of surgical resection to deal with locoregional recurrence in 21.1% (4/19) of patients, who were shown to be disease-free during follow-up after surgery. Our results indicate that combination of [(18)F]-FDG-PET/CT and [(124)I]-PET/CT affords a valuable diagnostic method that can be used to make therapeutic decisions in patients with DTC who are tumor-free on conventional imaging studies but who have high Tg levels.


Assuntos
Carcinoma/diagnóstico por imagem , Compostos Radiofarmacêuticos , Neoplasias da Glândula Tireoide/diagnóstico por imagem , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma/metabolismo , Carcinoma/cirurgia , Feminino , Fluordesoxiglucose F18/química , Seguimentos , Humanos , Radioisótopos do Iodo/química , Masculino , Pessoa de Meia-Idade , Imagem Multimodal , Pescoço/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Estudos Prospectivos , Compostos Radiofarmacêuticos/química , Recidiva , Tireoglobulina/sangue , Neoplasias da Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/cirurgia , Tireoidectomia , Tomografia Computadorizada por Raios X , Ultrassonografia , Imagem Corporal Total
7.
PET Clin ; 17(2): 213-222, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35256298

RESUMO

Head and neck squamous cell carcinoma (HNSCC) imaging is nearly synonymous with positron emission tomography (PET) scans. Many of the nearly 60,000 newly diagnosed patients with HNSCC in the US-and 900,000 worldwide-will undergo a PET scan, if not multiple, throughout the course of their care. In this review, we describe the clinical utility of PET scans in HNSCC, emphasizing whereby their input is most impactful in improving patient outcomes as well as scenarios whereby PET/CT scans should be avoided. We also describe important considerations for capturing and processing PET scans with a special focus on the important role of tumor volume segmentation, scan timing relative to therapy, and concurrent conditions (eg, COVID-19). In addition, we will illustrate the latest innovations in the management of HNSCC. This article also will delve to exhibit novel potential biomarkers in the management of HNSCC. Finally, we describe future directions for PET imaging, including the advent of novel PET radiotracers as an alternative to 18F-fluorodeoxyglucose (18F-FDG).


Assuntos
COVID-19 , Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , COVID-19/diagnóstico por imagem , Carcinoma de Células Escamosas/diagnóstico por imagem , Fluordesoxiglucose F18 , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos , Carcinoma de Células Escamosas de Cabeça e Pescoço/diagnóstico por imagem
8.
EJNMMI Phys ; 8(1): 50, 2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-34250566

RESUMO

BACKGROUND: The goal of this work was to determine the quantitative accuracy and optimal reconstruction parameters for 124I-PET imaging in the presence of therapeutic levels of 131I. In this effort, images were acquired on a GE D710 PET/CT scanner using a NEMA IEC phantom with spheres containing 124I and increasing amounts of 131I activity in the background. At each activity level, two scans were acquired, one with the phantom centered in the field of view (FOV) and one 11.2 cm off-center. Reconstructions used an ordered subset expectation maximization algorithm with up to 100 iterations of 16 subsets, with and without time-of-flight (TOF) information. Results were evaluated visually and by comparing the 124I activity relative to the scan performed in the absence of 131I. RESULTS: 131I within the FOV added to the randoms rate, to dead time, and to pile-up within the detectors. Using our standard clinical reconstruction parameters, the image quality and quantitative accuracy suffered at 131I activities above 1.4 GBq. Convergence rates slowed progressively in the presence of increasing amounts of 131I for both TOF and nonTOF reconstructions. TOF reconstructions converged more quickly than nonTOF but often towards erroneous concentrations. Iterating nonTOF reconstructions to convergence produced quantitatively accurate images except for the off-center phantom at the very highest level of background 131I tested. CONCLUSIONS: This study shows that quantitative PET is feasible in the presence of large amounts of 131I. The high randoms fractions resulted in slow reconstruction convergence and negatively impacted TOF corrections and/or the accuracy of TOF information. Therefore, increased iterations and nonTOF reconstructions are recommended.

9.
Cell Rep ; 37(8): 110055, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34818533

RESUMO

Renal cell carcinoma (RCC) encompasses a heterogenous group of tumors, but representative preclinical models are lacking. We previously showed that patient-derived tumorgraft (TG) models recapitulate the biology and treatment responsiveness. Through systematic orthotopic implantation of tumor samples from 926 ethnically diverse individuals into non-obese diabetic (NOD)/severe combined immunodeficiency (SCID) mice, we generate a resource comprising 172 independently derived, stably engrafted TG lines from 148 individuals. TG lines are characterized histologically and genomically (whole-exome [n = 97] and RNA [n = 102] sequencing). The platform features a variety of histological and oncogenotypes, including TCGA clades further corroborated through orthogonal metabolomic analyses. We illustrate how it enables a deeper understanding of RCC biology; enables the development of tissue- and imaging-based molecular probes; and supports advances in drug development.


Assuntos
Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Animais , Carcinoma de Células Renais/fisiopatologia , Linhagem Celular Tumoral , Humanos , Neoplasias Renais/genética , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Medicina de Precisão/métodos
10.
Asian Pac J Cancer Prev ; 21(8): 2343-2348, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32856864

RESUMO

BACKGROUND: To determine progression free survival (PFS) and predictor of recurrence in patients with diffuse large B-cell lymphoma (DLBCL) with negative interim 18FDG PET/CT (iPET) using standardized imaging and reporting protocols. MATERIALS AND METHODS: This prospective study was conducted at PET/CT Section of a JCIA accredited healthcare facility from December 2015 till February 2020. Patients with DLBCL having complete metabolic response (CMR; Deauville score: 1-3) on iPET were selected and followed for a median period of 11 months (4-144 months).  End point response on follow-up PET/CT (either end of treatment or surveillance) was categorized as sustained CMR (sCMR) and disease recurrence. Kaplan Meier survival curve was used to measure PFS and receiver operating characteristics (ROC) was plotted for age, largest lesion size, highest standardized uptake value (SUVmax), disease stage and body mass index (BMI) on baseline scan to find their impact on recurrence. RESULTS: Total 185 patients with DLBCL who had achieved CMR on iPET with a median age 55 years (19 - 88 yr.) with male predominance (63% male) were selected. On follow-up, 123 (66%) had sCMR while recurrence was found in 34% (p <0.05). No significant difference in demographics was found between two groups. Median PFS time was 34 months (22.8 - 45.1 months). On ROC analysis, only baseline highest SUVmax was found as a significant independent predictor of disease recurrence at a cut off >22.6 (highest area under curve: 0.595; SE 0.046; p <0.05). CONCLUSION: We conclude that recurrence is found in 34% of DLBCL patients with a negative interim 18FDG PET/CT using standardized imaging and reporting protocols. Despite of early response, these patients need continued intensive follow-up especially those with a baseline SUVmax > 22.6.


Assuntos
Documentação/normas , Interpretação de Imagem Assistida por Computador/normas , Linfoma Difuso de Grandes Células B/mortalidade , Recidiva Local de Neoplasia/diagnóstico , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/normas , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Fluordesoxiglucose F18/metabolismo , Seguimentos , Humanos , Linfoma Difuso de Grandes Células B/diagnóstico por imagem , Linfoma Difuso de Grandes Células B/patologia , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/diagnóstico por imagem , Recidiva Local de Neoplasia/epidemiologia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Valor Preditivo dos Testes , Intervalo Livre de Progressão , Estudos Prospectivos , Curva ROC , Compostos Radiofarmacêuticos/metabolismo , Taxa de Sobrevida , Adulto Jovem
11.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1864(3): 260-270, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30557627

RESUMO

Intermediate-density lipoproteins (IDLs), the remnants of very-low-density lipoproteins via lipolysis, are rich in cholesteryl ester and are associated with cardiovascular disease. Despite pharmacological interest in IDLs, their three-dimensional (3D) structure is still undetermined due to their variation in size, composition, and dynamic structure. To explore the 3D structure of IDLs, we reconstructed 3D density maps from individual IDL particles using cryo-electron microscopy (cryo-EM) and individual-particle electron tomography (IPET, without averaging from different molecules). 3D reconstructions of IDLs revealed an unexpected polyhedral structure that deviates from the generally assumed spherical shape model (Frias et al., 2007; Olson, 1998; Shen et al., 1977). The polyhedral-shaped IDL contains a high-density shell formed by flat surfaces that are similar to those of very-low-density lipoproteins but have sharper dihedral angles between nearby surfaces. These flat surfaces would be less hydrophobic than the curved surface of mature spherical high-density lipoprotein (HDL), leading to a lower binding affinity of IDL to hydrophobic proteins (such as cholesteryl ester transfer protein) than HDL. This is the first visualization of the IDL 3D structure, which could provide fundamental clues for delineating the role of IDL in lipid metabolism and cardiovascular disease.


Assuntos
Lipoproteínas IDL/química , Lipoproteínas IDL/fisiologia , Imagem Individual de Molécula/métodos , Apolipoproteína A-I/metabolismo , Apolipoproteínas B/metabolismo , Proteínas de Transferência de Ésteres de Colesterol/metabolismo , Ésteres do Colesterol/metabolismo , Microscopia Crioeletrônica/métodos , Tomografia com Microscopia Eletrônica/métodos , Voluntários Saudáveis , Humanos , Imageamento Tridimensional/métodos , Lipólise/fisiologia , Lipoproteínas/metabolismo , Lipoproteínas HDL/metabolismo , Lipoproteínas IDL/metabolismo , Lipoproteínas LDL/metabolismo , Lipoproteínas VLDL/metabolismo , Plasma/diagnóstico por imagem
12.
Antibodies (Basel) ; 7(2)2018 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-31544870

RESUMO

Antibodies are vital for human health because of their ability to function as nature's drugs by protecting the body from infection. In recent decades, antibodies have been used as pharmaceutics for targeted therapy in patients with cancer, autoimmune diseases, and cardiovascular diseases. Capturing the dynamic structure of antibodies and characterizing antibody fluctuation is critical for gaining a deeper understanding of their structural characteristics and for improving drug development. Current techniques for studying three-dimensional (3D) structural heterogeneity and variability of proteins have limitations in ascertaining the dynamic structural behavior of antibodies and antibody-antigen complexes. Here, we review current techniques used to study antibody structures with a focus on the recently developed individual-particle electron tomography (IPET) technique. IPET, as a particle-by-particle methodology for 3D structural characterization, has shown advantages in studying structural variety and conformational changes of antibodies, providing direct imaging data for biomolecular engineering to improve development and clinical application of synthetic antibodies.

13.
J Nucl Med ; 54(5): 776-84, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23487015

RESUMO

UNLABELLED: Nanobodies are the smallest fully functional antigen-binding antibody fragments possessing ideal properties as probes for molecular imaging. In this study we labeled the anti-human epidermal growth factor receptor type 2 (HER2) Nanobody with (68)Ga via a 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA) derivative and assessed its use for HER2 iPET imaging. METHODS: The 2Rs15dHis6 Nanobody and the lead optimized current-good-manufacturing-practice grade analog 2Rs15d were conjugated with S-2-(4-isothiocyanatobenzyl)-1,4,7-triazacyclononane-1,4,7-triacetic acid (p-SCN-Bn-NOTA) to enable fast and efficient (68)Ga labeling. Biodistribution and PET/CT studies were performed on HER2-positive and -negative tumor xenografts. The effect of injected mass on biodistribution was evaluated. The biodistribution data were extrapolated to calculate radiation dose estimates for the adult female using OLINDA software. A single-dose extended-toxicity study for NOTA-2Rs15d was performed on healthy mice up to a dose of 10 mg/kg. RESULTS: Radiolabeling was quantitative (>97%) after 5 min of incubation at room temperature; specific activity was 55-200 MBq/nmol. Biodistribution studies showed fast and specific uptake (percentage injected activity [%IA]) in HER2-positive tumors (3.13 ± 0.06 and 4.34 ± 0.90 %IA/g for (68)Ga-NOTA-2Rs15dHis6 and (68)Ga-NOTA-2Rs15d, respectively, at 1 h after injection) and high tumor-to-blood and tumor-to-muscle ratios at 1 h after injection, resulting in high-contrast PET/CT images with high specific tumor uptake. A remarkable finding of the biodistribution studies was that kidney uptake was reduced by 60% for the Nanobody lacking the C-terminal His6 tag. The injected mass showed an effect on the general biodistribution: a 100-fold increase in NOTA-2Rs15d mass decreased liver uptake from 7.43 ± 1.89 to 2.90 ± 0.26 %IA/g whereas tumor uptake increased from 2.49 ± 0.68 to 4.23 ± 0.99 %IA/g. The calculated effective dose, based on extrapolation of mouse data, was 0.0218 mSv/MBq, which would yield a radiation dose of 4 mSv to a patient after injection of 185 MBq of (68)Ga-NOTA-2Rs15d. In the toxicity study, no adverse effects were observed after injection of a 10 mg/kg dose of NOTA-2Rs15d. CONCLUSION: A new anti-HER2 PET tracer, (68)Ga-NOTA-2Rs15d, was synthesized via a rapid procedure under mild conditions. Preclinical validation showed high-specific-contrast imaging of HER2-positive tumors with no observed toxicity. (68)Ga-NOTA-2Rs15d is ready for first-in-human clinical trials.


Assuntos
Regulação Neoplásica da Expressão Gênica , Compostos Heterocíclicos/química , Imagem Multimodal/métodos , Neoplasias/patologia , Tomografia por Emissão de Pósitrons , Receptor ErbB-2/imunologia , Receptor ErbB-2/metabolismo , Anticorpos de Domínio Único , Tomografia Computadorizada por Raios X , Adulto , Animais , Linhagem Celular Tumoral , Técnicas de Química Sintética , Estabilidade de Medicamentos , Feminino , Radioisótopos de Gálio , Compostos Heterocíclicos com 1 Anel , Humanos , Camundongos , Neoplasias/diagnóstico por imagem , Radiometria , Ratos , Reprodutibilidade dos Testes , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/imunologia , Anticorpos de Domínio Único/toxicidade
14.
Artigo em Inglês | MEDLINE | ID: mdl-37772199

RESUMO

The protein is naturally dynamic and heterogeneous in solution. Protein dynamics involves both equilibrium fluctuations that regulate biological function and other non-equilibrium effects of biological motors, which convert chemical energy to mechanical energy. However, a single, unique structure of protein determined from X-ray crystal and conventional single-particle electron microscopy is insufficient to encompass the dynamic nature of proteins in solution. Structure determination of dynamic and heterogeneous protein is essentially required the determination of each individual particle of protein. Recently, Drs. Gang Ren and Lei Zhan published the first single molecule three-dimensional (3D) EM images of individual proteins ever obtained with enough clarity to determine their structure, an IgG antibody (14 Å resolution) and a 17nm HDL (36 Å resolution). These results depended upon four innovations: i) improved cryo-electron microscopy (cryoEM) sample preparation and Electron microscopy (EM) operation conditions resulted in the successful imaging of a 17 nm HDL particle (120-200kDa) by cryo-electron tomography (cryoET); ii) developed an optimized NS (OpNS) protocol that eliminates the rouleau artifact that has plagued EM research for three decades. This OpNS protocol provides high-contrast single lipoprotein images with similar size (<5%) and shape (<5%) to that seen by cryoEM; iii) developed a high-resolution and high contrast sample preparation protocol, cryo-positive-staining (cryoPS) that allows direct visualization of the secondary structure of a small protein, such as the ß-strands in CETP and the helical double belt of apoA-I in spherical HDL; iv) developed a robust tomography reconstruction method, Individual Particle Electron Tomography (IPET) that is a high-resolution, high throughput reconstruction method that, to the best of our knowledge, is the only method for determining an individual protein structure. Remarkably, IPET went against the conventional wisdom that a single protein can NOT be reconstructed by EM and this opens a door for the study of protein dynamics via a particle-by-particle structural comparison.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA