Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Immunol ; 38: 511-539, 2020 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-32340578

RESUMO

The continuous interactions between host and pathogens during their coevolution have shaped both the immune system and the countermeasures used by pathogens. Natural killer (NK) cells are innate lymphocytes that are considered central players in the antiviral response. Not only do they express a variety of inhibitory and activating receptors to discriminate and eliminate target cells but they can also produce immunoregulatory cytokines to alert the immune system. Reciprocally, several unrelated viruses including cytomegalovirus, human immunodeficiency virus, influenza virus, and dengue virus have evolved a multitude of mechanisms to evade NK cell function, such as the targeting of pathways for NK cell receptors and their ligands, apoptosis, and cytokine-mediated signaling. The studies discussed in this article provide further insights into the antiviral function of NK cells and the pathways involved, their constituent proteins, and ways in which they could be manipulated for host benefit.


Assuntos
Interações Hospedeiro-Patógeno/imunologia , Evasão da Resposta Imune , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Vírus/imunologia , Animais , Biomarcadores , Citocinas/metabolismo , Humanos , Receptores de Células Matadoras Naturais/metabolismo , Transdução de Sinais , Viroses/imunologia , Viroses/metabolismo , Viroses/virologia
2.
Immunity ; 54(1): 116-131.e10, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33271120

RESUMO

Tumors frequently subvert major histocompatibility complex class I (MHC-I) peptide presentation to evade CD8+ T cell immunosurveillance, though how this is accomplished is not always well defined. To identify the global regulatory networks controlling antigen presentation, we employed genome-wide screening in human diffuse large B cell lymphomas (DLBCLs). This approach revealed dozens of genes that positively and negatively modulate MHC-I cell surface expression. Validated genes clustered in multiple pathways including cytokine signaling, mRNA processing, endosomal trafficking, and protein metabolism. Genes can exhibit lymphoma subtype- or tumor-specific MHC-I regulation, and a majority of primary DLBCL tumors displayed genetic alterations in multiple regulators. We established SUGT1 as a major positive regulator of both MHC-I and MHC-II cell surface expression. Further, pharmacological inhibition of two negative regulators of antigen presentation, EZH2 and thymidylate synthase, enhanced DLBCL MHC-I presentation. These and other genes represent potential targets for manipulating MHC-I immunosurveillance in cancers, infectious diseases, and autoimmunity.


Assuntos
Linfócitos B/fisiologia , Biomarcadores Tumorais/genética , Antígenos HLA/genética , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe I/genética , Linfoma Difuso de Grandes Células B/genética , Carcinogênese/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular , Linhagem Celular Tumoral , Linhagem da Célula , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Regulação Neoplásica da Expressão Gênica , Testes Genéticos , Estudo de Associação Genômica Ampla , Antígenos HLA/metabolismo , Humanos , Vigilância Imunológica , Linfoma Difuso de Grandes Células B/metabolismo , Evasão Tumoral/genética
3.
Mol Biol Rep ; 50(11): 9559-9573, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37776412

RESUMO

Cancer stem cells (CSCs) defined as a small fraction of cells within malignancies have been isolated from tumors with different histological origins with stem related characteristics such as self-replicating potential, tumorigenesis, and therapy resistance. The dynamic communication between CSCs and tumor microenvironment particularly immune cells orchestrates their fate and plasticity as well as the patient outcome. According to recent evidence, it has been reported that they harness different immunological pathways to escape immunosurveillance and express aberrantly immunomodulatory agents or decreased levels of factors forming antigen presenting machinery (APM), subsequently followed by impaired antigen presentation and suppressed immune detection. As effective therapies are expected to be able to eradicate CSCs, mechanistic understanding of such interactions can provide insights into causes of therapy failure particularly in immunotherapy. Also, it can contribute to enhance the practical interventions against CSCs and their immunomodulatory features resulting in CSCs eradication and improving patient clinical outcome. The aim of this review is to explain the present knowledge regarding the immunobiology of CSCs and the immunoevasion mechanisms they use.


Assuntos
Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Carcinogênese/metabolismo , Imunomodulação , Imunoterapia , Células-Tronco Neoplásicas/metabolismo , Microambiente Tumoral
4.
Fish Shellfish Immunol ; 124: 254-260, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35395412

RESUMO

The host NF-κB signaling pathway plays critical role in defensing against bacterial infection. However, bacteria also evolve strategies to escape from host clearance. Edwardsiella piscicida is a threatening pathogen in aquaculture, while the molecular mechanism of E. piscicida in inhibiting NF-κB signaling remains largely unknown. Herein, using E. piscicida transposon insertion mutant library combined with a NF-κB luciferase reporter system, we identified forty-six genes of E. piscicida, which were involved in inhibiting the NF-κB signaling activation in vitro. Moreover, we further explored the top 10 significantly changed mutants through zebrafish larvae infection model and validated that six genes were involved in inhibiting NF-κB activation in vivo. Specifically, we identified the adenylosuccinate synthase mutated strain (ΔpurA) infection exhibited a robust activation of NF-κB signaling, along with higher expression of cxcl8a and cxcl8b to mediate the recruitment of neutrophils in vivo. Taken together, these results identified the key factors of E. piscicida in inhibiting NF-κB activation, which will contribute to better understanding the pathogenesis of this important pathogen.


Assuntos
Edwardsiella , Infecções por Enterobacteriaceae , Doenças dos Peixes , Animais , Proteínas de Bactérias/genética , Edwardsiella/genética , Infecções por Enterobacteriaceae/microbiologia , Infecções por Enterobacteriaceae/veterinária , Doenças dos Peixes/microbiologia , NF-kappa B/genética , Transdução de Sinais , Peixe-Zebra/genética
5.
Int J Mol Sci ; 23(6)2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35328789

RESUMO

B-cell lymphoma and lymphoproliferative diseases represent a heterogeneous and complex group of neoplasms that are accompanied by a broad range of immune regulatory disorder phenotypes. Clinical features of autoimmunity, hyperinflammation, immunodeficiency and infection can variously dominate, depending on the immune pathway most involved. Immunological imbalance can play a role in lymphomagenesis, also supporting the progression of the disease, while on the other hand, lymphoma acts on the immune system to weaken immunosurveillance and facilitate immunoevasion. Therefore, the modulation of immunity can have a profound effect on disease progression or resolution, which makes the immune system a critical target for new therapies. In the current therapeutic scenario enriched by chemo-free regimens, it is important to establish the effect of various drugs on the disease, as well as on the restoration of immune functions. In fact, treatment of B-cell lymphoma with passive immunotherapy that targets tumor cells or targets the tumor microenvironment, together with adoptive immunotherapy, is becoming more frequent. The aim of this review is to report relevant data on the evolution of the immune system during and after treatment with targeted therapy of B-cell lymphomas.


Assuntos
Linfoma de Células B , Linfoma , Transtornos Linfoproliferativos , Humanos , Sistema Imunitário/patologia , Imunoterapia Adotiva , Linfoma/tratamento farmacológico , Linfoma de Células B/terapia , Transtornos Linfoproliferativos/patologia , Microambiente Tumoral
6.
Semin Cancer Biol ; 60: 181-190, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31422157

RESUMO

Recent advances in tumor immunology, fostered by dramatic outcomes with cancer immunotherapy, have opened new scenarios in cancer metastasis. The cancer stemness/mesenchymal phenotype and an excess of immune suppressive signals are emerging as Intertwined aspects of human tumors. This review examines recent studies that explored the mechanistic links between cancer cell stemness and immunoevasion, and the evidence points to these key events in cancer metastasis as two sides of the same coin. This review also covers the mechanisms involved in tumor expression of programmed cell death ligand 1 (PD-L1), a major factor exploited by human neoplasias to suppress immune control. We highlight the convergence of mesenchymal traits and PD-L1 expression and examine the functions of this immune inhibitory molecule, which confers cancer cell resistance and aggressiveness.


Assuntos
Transição Epitelial-Mesenquimal , Neoplasias/etiologia , Neoplasias/metabolismo , Células-Tronco Neoplásicas/imunologia , Células-Tronco Neoplásicas/metabolismo , Evasão Tumoral , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Morte Celular/genética , Progressão da Doença , Suscetibilidade a Doenças , Resistencia a Medicamentos Antineoplásicos/genética , Transição Epitelial-Mesenquimal/genética , Transição Epitelial-Mesenquimal/imunologia , Humanos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Células Matadoras Naturais/patologia , Metástase Neoplásica , Neoplasias/patologia , Células-Tronco Neoplásicas/patologia , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia
7.
Semin Cell Dev Biol ; 85: 98-109, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29221973

RESUMO

The surveillance and pathogen fighting functions of the complement system have evolved to protect mammals from life-threatening infections. In turn, pathogens have developed complex molecular mechanisms to subvert, divert and evade the effector functions of the complement. The study of complement immunoevasion by pathogens sheds light on their infection drivers, knowledge that is essential to implement therapies. At the same time, complement evasion also acts as a discovery ground that reveals important aspects of how complement works under physiological conditions. In recent years, complex interrelationships between infection insults and the onset of autoimmune and complement dysregulation diseases have led to propose that encounters with pathogens can act as triggering factors for disease. The correct management of these diseases involves the recognition of their triggering factors and the development and administration of complement-associated molecular therapies. Even more recently, unsuspected proteins from pathogens have been shown to possess moonlighting functions as virulence factors, raising the possibility that behind the first line of virulence factors there be many more pathogen proteins playing secondary, helping and supporting roles for the pathogen to successfully establish infections. In an era where antibiotics have a progressively reduced effect on the management and control of infectious diseases worldwide, knowledge on the mechanisms of pathogenic invasion and evasion look more necessary and pressing than ever.


Assuntos
Proteínas do Sistema Complemento/imunologia , Interações Hospedeiro-Patógeno/imunologia , Doença , Humanos
8.
BMC Neurol ; 21(1): 231, 2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34162346

RESUMO

BACKGROUND: Gliosarcoma (GS) refers to the presence of mesenchymal differentiation (as seen using light microscopy) in the setting of glioblastoma (GB, an astrocytoma, WHO Grade 4). Although the same approach to treatment is typically adopted for GS and GB, there remains some debate as to whether GS should be considered a discrete pathological entity. Differences between these tumors have not been clearly established at the molecular level. METHODS: Patients with GS (n=48) or GB (n=1229) underwent molecular profiling (MP) with a pan-cancer panel of tests as part of their clinical care. The methods employed included next-generation sequencing (NGS) of DNA and RNA, copy number variation (CNV) of DNA and immunohistochemistry (IHC). The MP comprised 1153 tests in total, although results for each test were not available for every tumor profiled. We analyzed this data retrospectively in order to determine if our results were in keeping with what is known about the pathogenesis of GS by contrast with GB. We also sought novel associations between the MP and GS vs. GB which might improve our understanding of pathogenesis of GS. RESULTS: Potentially meaningful associations (p<0.1, Fisher's exact test (FET)) were found for 14 of these tests in GS vs. GB. A novel finding was higher levels of proteins mediating immuno-evasion (PD-1, PD-L1) in GS. All of the differences we observed have been associated with epithelial-to-mesenchymal transition (EMT) in other tumor types. Many of the changes we saw in GS are novel in the setting of glial tumors, including copy number amplification in LYL1 and mutations in PTPN11. CONCLUSIONS: GS shows certain characteristics of EMT, by contrast with GB. Treatments targeting immuno-evasion may be of greater therapeutic value in GS relative to GB.


Assuntos
Glioblastoma/patologia , Gliossarcoma/patologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Criança , Pré-Escolar , Variações do Número de Cópias de DNA , Transição Epitelial-Mesenquimal , Feminino , Glioblastoma/genética , Glioblastoma/metabolismo , Gliossarcoma/genética , Gliossarcoma/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Estudos Retrospectivos , Adulto Jovem
9.
Int J Mol Sci ; 21(15)2020 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-32727102

RESUMO

Mounting preclinical and clinical evidence indicates that rewiring the host immune system in favor of an antitumor microenvironment achieves remarkable clinical efficacy in the treatment of many hematological and solid cancer patients. Nevertheless, despite the promising development of many new and interesting therapeutic strategies, many of these still fail from a clinical point of view, probably due to the lack of prognostic and predictive biomarkers. In that respect, several data shed new light on the role of the tumor suppressor phosphatase and tensin homolog on chromosome 10 (PTEN) in affecting the composition and function of the tumor microenvironment (TME) as well as resistance/sensitivity to immunotherapy. In this review, we summarize current knowledge on PTEN functions in different TME compartments (immune and stromal cells) and how they can modulate sensitivity/resistance to different immunological manipulations and ultimately influence clinical response to cancer immunotherapy.


Assuntos
Imunoterapia , Neoplasias/imunologia , Neoplasias/terapia , PTEN Fosfo-Hidrolase/imunologia , Microambiente Tumoral/imunologia , Humanos , Neoplasias/patologia
10.
Future Oncol ; 14(7): 603-609, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29130342

RESUMO

Head and neck cancer is an immunosuppressive disease, with a high proportion expressing PD-L1. Until recently, options were lacking in second line. Prognosis is poor especially for patients who progress during chemotherapy with survival often inferior to 6 months. Nivolumab is the only anti-PD-1 agent to prolong survival in the second-line setting and is now the standard option since the CheckMate-141 trial. Treatment is generally well tolerated, patients seem to have a better quality of life when compared with chemotherapy. Markers of efficacy are lacking even if some data are emerging. Different combinations of immunotherapy are ongoing. Hyperprogression is a phenomenon associated with poor outcome and might be the consequence of anti-PD-1 treatment but this is yet to be proven.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Antígeno B7-H1/antagonistas & inibidores , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Recidiva Local de Neoplasia/tratamento farmacológico , Anticorpos Monoclonais/imunologia , Antígeno B7-H1/genética , Antígeno B7-H1/imunologia , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Imunoterapia/métodos , Metástase Neoplásica , Recidiva Local de Neoplasia/imunologia , Recidiva Local de Neoplasia/patologia , Nivolumabe , Prognóstico , Qualidade de Vida
11.
Cell Immunol ; 312: 67-70, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27825564

RESUMO

Human cytomegalovirus (CMV), a ubiquitous herpesvirus, has been implicated in the etiology of breast cancer. It is clear that not all people exposed to CMV are equally likely to develop this malignancy, implying the presence of host genetic factors that might modulate the cancer-spurring properties of the virus. CMV has evolved sophisticated strategies for evading host immunosurveillance. One strategy involves encoding decoy Fcγ receptors (FcγR) that thwart the Fcγ-mediated effector functions, such as antibody-dependent cellular cytotoxicity. In this investigation, using an enzyme-linked immunosorbent assay (ELISA), we aimed to determine whether the decoy FcγR encoded by the CMV gene RL13 binds differentially to anti-CMV antibodies expressing different immunoglobulin GM (γ marker) allotypes, genetic markers of immunoglobulin G (IgG). Results of our ELISA binding studies showed that the absorbance values for the binding of the viral FcγR to the GM 17-expressing IgG antibodies were significantly higher than for the GM 3-expressing antibodies (0.60 vs. 0.36; p=0.0019). These findings provide mechanistic insights into the modulating role played by the genetic variants of IgG in the generation of immunity to CMV in patients with breast cancer.


Assuntos
Neoplasias da Mama/imunologia , Infecções por Citomegalovirus/imunologia , Citomegalovirus/imunologia , Receptores de IgG/metabolismo , Proteínas Virais/metabolismo , Adulto , Negro ou Afro-Americano , Idoso , Anticorpos Antivirais/metabolismo , Afinidade de Anticorpos , Feminino , Predisposição Genética para Doença , Genótipo , Humanos , Evasão da Resposta Imune , Imunoglobulina G/metabolismo , Alótipos Gm de Imunoglobulina/metabolismo , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Ligação Proteica , Receptores de IgG/genética , Proteínas Virais/genética
12.
J Theor Biol ; 416: 99-112, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28017801

RESUMO

Describing tumor growth is a key issue in oncology for correctly understanding the underlying mechanisms leading to deleterious cancers. In order to take into account the micro-environment in tumor growth, we used a model describing - at the tissue level - the interactions between host (non malignant), effector immune and tumor cells to simulate the evolution of cancer. The spatial growth is described by a Laplacian operator for the diffusion of tumor cells. We investigated how the evolution of the tumor diameter is related to the dynamics (periodic or chaotic oscillations, stable singular points) underlying the interactions between the different populations of cells in proliferation sites. The sensitivity of this evolution to the key parameter responsible for the immuno-evasion, namely the growth rate of effector immune cells and their inhibition rate by tumor cells, is also investigated.


Assuntos
Modelos Biológicos , Neoplasias/patologia , Análise Espacial , Comunicação Celular/imunologia , Humanos , Sistema Imunitário/citologia , Neoplasias/imunologia
13.
Math Biosci ; 376: 109287, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39218211

RESUMO

BACKGROUND: The increased application of immune checkpoint inhibitors (ICIs) targeting PD-1/PD-L1 in lung cancer treatment generates clinical need to reliably predict individual patients' treatment outcomes. METHODS: To bridge the prediction gap, we examine four different mathematical models in the form of ordinary differential equations, including a novel delayed response model. We rigorously evaluate their individual and combined predictive capabilities with regard to the patients' progressive disease (PD) status through equal weighting of model-derived outcome probabilities. RESULTS: Fitting the complete treatment course, the novel delayed response model (R2=0.938) outperformed the simplest model (R2=0.865). The model combination was able to reliably predict patient PD outcome with an overall accuracy of 77% (sensitivity = 70%, specificity = 81%), solely through calibration with primary tumor longest diameter measurements. It autonomously identified a subset of 51% of patients where predictions with an overall accuracy of 81% (sensitivity = 81%, specificity = 81%) can be achieved. All models significantly outperformed a fully data-driven machine learning-based approach. IMPLICATIONS: These modeling approaches provide a dynamic baseline framework to support clinicians in treatment decisions by identifying different treatment outcome trajectories with already clinically available measurement data. LIMITATIONS AND FUTURE DIRECTIONS: Conjoint application of the presented approach with other predictive tools and biomarkers, as well as further disease information (e.g. metastatic stage), could further enhance treatment outcome prediction. We believe the simple model formulations allow widespread adoption of the developed models to other cancer types. Similar models can easily be formulated for other treatment modalities.


Assuntos
Inibidores de Checkpoint Imunológico , Neoplasias Pulmonares , Modelos Teóricos , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Resultado do Tratamento , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos
14.
Front Immunol ; 15: 1432226, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39139562

RESUMO

Introduction: The early transcription unit 3 (E3) of human adenoviruses (HAdVs) encodes several immunoevasins, including the E3/49K protein, which is unique for species D of HAdVs. It is expressed as surface transmembrane protein and shed. E3/49K of HAdV-D64 binds to the protein tyrosine phosphatase surface receptor CD45, thereby modulating activation of T and NK cells. Methods: Considering that E3/49K represents the most polymorphic viral protein among species D HAdVs, we demonstrate here that all tested E3/49K orthologs bind to the immunologically important regulator CD45. Thus, this feature is conserved regardless of the pathological associations of the respective HAdV types. Results: It appeared that modulation of CD45 is a unique property restricted to HAdVs of species D. Moreover, E3/49K treatment inhibited B cell receptor (BCR) signaling and impaired BCR signal phenotypes. The latter were highly comparable to B cells having defects in the expression of CD45, suggesting E3/49K as a potential tool to investigate CD45 specific functions. Conclusion: We identified B cells as new direct target of E3/49K-mediated immune modulation, representing a novel viral immunosubversive mechanism.


Assuntos
Proteínas E3 de Adenovirus , Adenovírus Humanos , Linfócitos B , Antígenos Comuns de Leucócito , Receptores de Antígenos de Linfócitos B , Transdução de Sinais , Humanos , Receptores de Antígenos de Linfócitos B/metabolismo , Receptores de Antígenos de Linfócitos B/imunologia , Transdução de Sinais/imunologia , Antígenos Comuns de Leucócito/metabolismo , Antígenos Comuns de Leucócito/imunologia , Adenovírus Humanos/imunologia , Proteínas E3 de Adenovirus/imunologia , Proteínas E3 de Adenovirus/metabolismo , Proteínas E3 de Adenovirus/genética , Linfócitos B/imunologia , Linfócitos B/metabolismo , Infecções por Adenovirus Humanos/imunologia , Infecções por Adenovirus Humanos/virologia , Infecções por Adenovirus Humanos/metabolismo , Células HEK293
15.
Mol Ther Oncol ; 32(1): 200786, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38596288

RESUMO

Oncogenic drivers such as KRAS extensively modulate the tumor inflammatory microenvironment (TIME) of colorectal cancer (CRC). The influence of KRAS on modulating immune cell composition remains unclear. The objective of this study was to identify signatures of infiltrative immune cells and distinctive patterns that differ between RAS wild-type (WT) and oncogenic mutant (MT) CRC that explain immune evasion in MT tumors. A total of 7,801 CRC specimens were analyzed using next-generation DNA sequencing, whole-exome sequencing, and/or whole transcriptome sequencing. Deficiency of mismatch repair (dMMR)/microsatellite instability (MSI) and tumor mutation burden (TMB) were also assessed. KRAS mutations were present in 48% of CRC, similarly distributed in patients younger than vs. 50 years and older. In microsatellite stable (MSS) KRAS MT tumors, composition of the TIME included higher neutrophil infiltration and lower infiltration of B cells. MSI-H/dMMR was significantly more prevalent in RAS WT (9.1%) than in KRAS MT (2.9%) CRC. In MSS CRC, TMB-high cases were significantly higher in RAS MT (3.1%) than in RAS WT (2.1%) tumors. KRAS and NRAS mutations are associated with increased neutrophil infiltration, with codon-specific differences. These results demonstrate significant differences in the TIME of RAS mutant CRC that match previous reports of immunoevasive characteristics of such tumors.

16.
Trends Cancer ; 9(11): 871-873, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37658022

RESUMO

Type I interferon (IFN) is central to cancer surveillance as it mediates both direct and immune-mediated oncosuppressive effects. A recent study by Perelli et al. suggests that the ability of renal cancer cells to tolerate complex karyotypic alterations elicited by chromosomal instability (CIN), and ultimately acquire full metastatic potential, is also negatively regulated by IFN signaling.


Assuntos
Carcinoma de Células Renais , Interferon Tipo I , Neoplasias Renais , Humanos , Carcinoma de Células Renais/genética , Nucleotidiltransferases/metabolismo , Interferon Tipo I/metabolismo , Transdução de Sinais , Neoplasias Renais/genética
17.
Front Immunol ; 14: 1228811, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37559723

RESUMO

Cellular metabolism plays a central role in the regulation of both innate and adaptive immunity. Immune cells utilize metabolic pathways to modulate the cellular differentiation or death. The intricate interplay between metabolism and immune response is critical for maintaining homeostasis and effective antiviral activities. In recent years, immunometabolism induced by viral infections has been extensively investigated, and accumulating evidence has indicated that cellular metabolism can be hijacked to facilitate viral replication. Generally, virus-induced changes in cellular metabolism lead to the reprogramming of metabolites and metabolic enzymes in different pathways (glucose, lipid, and amino acid metabolism). Metabolic reprogramming affects the function of immune cells, regulates the expression of immune molecules and determines cell fate. Therefore, it is important to explore the effector molecules with immunomodulatory properties, including metabolites, metabolic enzymes, and other immunometabolism-related molecules as the antivirals. This review summarizes the relevant advances in the field of metabolic reprogramming induced by viral infections, providing novel insights for the development of antivirals.


Assuntos
Viroses , Vírus , Humanos , Antivirais/farmacologia , Redes e Vias Metabólicas , Imunidade
18.
Carbohydr Polym ; 318: 121094, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37479429

RESUMO

Lipopolysaccharides (LPS) are major players in bacterial infection through the recognition by Toll-like receptor 4 (TLR4). The LPS chemical structure, including the oligosaccharide core and the lipid A moiety, can be strongly influenced by adaptation and modulated to assure bacteria protection, evade immune surveillance, or reduce host immune responses. Deep structural understanding of TLRs signaling is essential for the modulation of the innate immune system in sepsis control and inflammation, during bacterial infection. To advance this knowledge, we have employed computational techniques to characterize the TLR4 molecular recognition of atypical LPSs from different opportunistic members of α2-Proteobacteria, including Brucella melitensis, Ochrobactrum anthropi, and Ochrobactrum intermedium, with diverse immunostimulatory activities. We contribute to unraveling the role of uncommon lipid A chemical features such as bearing very long-chain fatty acid chains, whose presence has been rarely reported, on modulating the proper heterodimerization of the TLR4 receptor complex. Moreover, we further evaluated the influence of the different oligosaccharide cores, including sugar composition and net charge, on TLR4 activation. Our studies contribute to elucidating, from the molecular and biological perspectives, the impact of the α2-Proteobacteria LPS cores and the chemical structure of the atypical lipid A for immune system evasion in opportunistic bacteria.


Assuntos
Infecções Bacterianas , Lipopolissacarídeos , Humanos , Lipopolissacarídeos/química , Receptor 4 Toll-Like , Lipídeo A/química , Proteobactérias , Evasão da Resposta Imune , Bactérias , Oligossacarídeos
19.
Adv Sci (Weinh) ; 10(27): e2301975, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37526345

RESUMO

The Warburg effect-related metabolic dysfunction of the tricarboxylic acid (TCA) cycle has emerged as a hallmark of various solid tumors, particularly renal cell carcinoma (RCC). RCC is characterized by high immune infiltration and thus recommended for immunotherapeutic interventions at an advanced stage in clinical guidelines. Nevertheless, limited benefits of immunotherapy have prompted investigations into underlying mechanisms, leading to the proposal of metabolic dysregulation-induced immunoevasion as a crucial contributor. In this study, a significant decrease is found in the abundance of alpha-ketoglutarate (αKG), a crucial intermediate metabolite in the TCA cycle, which is correlated with higher grades and a worse prognosis in clinical RCC samples. Elevated levels of αKG promote major histocompatibility complex-I (MHC-I) antigen processing and presentation, as well as the expression of ß2-microglobulin (B2M). While αKG modulates broad-spectrum demethylation activities of histone, the transcriptional upregulation of B2M is dependent on the demethylation of H3K4me1 in its promoter region. Furthermore, the combination of αKG supplementation and PD-1 blockade leads to improved therapeutic efficacy and prolongs survival in murine models when compared to monotherapy. Overall, the findings elucidate the mechanisms of immune evasion in anti-tumor immunotherapies and suggest a potential combinatorial treatment strategy in RCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Animais , Camundongos , Carcinoma de Células Renais/terapia , Carcinoma de Células Renais/patologia , Receptor de Morte Celular Programada 1 , Ácidos Cetoglutáricos , Neoplasias Renais/terapia , Imunoterapia
20.
Front Immunol ; 14: 1219669, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37638024

RESUMO

Epithelial-mesenchymal transition (EMT) and immune resistance mediated by Programmed Death-Ligand 1 (PD-L1) upregulation are established drivers of tumor progression. Their bi-directional crosstalk has been proposed to facilitate tumor immunoevasion, yet the impact of immunosuppression and spatial heterogeneity on the interplay between these processes remains to be characterized. Here we study the role of these factors using mathematical and spatial models. We first designed models incorporating immunosuppressive effects on T cells mediated via PD-L1 and the EMT-inducing cytokine Transforming Growth Factor beta (TGFß). Our models predict that PD-L1-mediated immunosuppression merely reduces the difference in PD-L1 levels between EMT states, while TGFß-mediated suppression also causes PD-L1 expression to correlate negatively with TGFß within each EMT phenotype. We subsequently embedded the models in multi-scale spatial simulations to explicitly describe heterogeneity in cytokine levels and intratumoral heterogeneity. Our multi-scale models show that Interferon gamma (IFNγ)-induced partial EMT of a tumor cell subpopulation can provide some, albeit limited protection to bystander tumor cells. Moreover, our simulations show that the true relationship between EMT status and PD-L1 expression may be hidden at the population level, highlighting the importance of studying EMT and PD-L1 status at the single-cell level. Our findings deepen the understanding of the interactions between EMT and the immune response, which is crucial for developing novel diagnostics and therapeutics for cancer patients.


Assuntos
Antígeno B7-H1 , Neoplasias , Humanos , Citocinas , Transição Epitelial-Mesenquimal , Terapia de Imunossupressão , Fator de Crescimento Transformador beta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA