RESUMO
Age-associated neurological diseases represent a profound challenge in biomedical research as we are still struggling to understand the interface between the aging process and the manifestation of disease. Various pathologies in the elderly do not directly result from genetic mutations, toxins, or infectious agents but are primarily driven by the many manifestations of biological aging. Therefore, the generation of appropriate model systems to study human aging in the nervous system demands new concepts that lie beyond transgenic and drug-induced models. Although access to viable human brain specimens is limited and induced pluripotent stem cell models face limitations due to reprogramming-associated cellular rejuvenation, the direct conversion of somatic cells into induced neurons allows for the generation of human neurons that capture many aspects of aging. Here, we review advances in exploring age-associated neurodegenerative diseases using human cell reprogramming models, and we discuss general concepts, promises, and limitations of the field.
Assuntos
Envelhecimento/genética , Células-Tronco Pluripotentes Induzidas/patologia , Doenças Neurodegenerativas/genética , Neurônios/metabolismo , Envelhecimento/patologia , Encéfalo/crescimento & desenvolvimento , Encéfalo/patologia , Reprogramação Celular/genética , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Doenças Neurodegenerativas/patologia , Neurônios/patologiaRESUMO
Point mutations and structural variants that directly disrupt the coding sequence of MEF2C have been associated with a spectrum of neurodevelopmental disorders (NDDs). However, the impact of MEF2C haploinsufficiency on neurodevelopmental pathways and synaptic processes is not well understood, nor are the complex mechanisms that govern its regulation. To explore the functional changes associated with structural variants that alter MEF2C expression and/or regulation, we generated an allelic series of 204 isogenic human induced pluripotent stem cell (hiPSC)-derived neural stem cells and glutamatergic induced neurons. These neuronal models harbored CRISPR-engineered mutations that involved direct deletion of MEF2C or deletion of the boundary points for topologically associating domains (TADs) and chromatin loops encompassing MEF2C. Systematic profiling of mutation-specific alterations, contrasted to unedited controls that were exposed to the same guide RNAs for each edit, revealed that deletion of MEF2C caused differential expression of genes associated with neurodevelopmental pathways and synaptic function. We also discovered significant reduction in synaptic activity measured by multielectrode arrays (MEAs) in neuronal cells. By contrast, we observed robust buffering against MEF2C regulatory disruption following deletion of a distal 5q14.3 TAD and loop boundary, whereas homozygous loss of a proximal loop boundary resulted in down-regulation of MEF2C expression and reduced electrophysiological activity on MEA that was comparable to direct gene disruption. Collectively, these studies highlight the considerable functional impact of MEF2C deletion in neuronal cells and systematically characterize the complex interactions that challenge a priori predictions of regulatory consequences from structural variants that disrupt three-dimensional genome organization.
Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Neurais , Humanos , Genoma , Haploinsuficiência , Fatores de Transcrição MEF2/genética , Neurônios , Transcrição GênicaRESUMO
OBJECTIVES: To establish a methodological system for reprogramming rat embryonic fibroblasts (REF) into chemically induced neurons (ciNCs) via small molecule compounds to provide safe and effective donor cells for treatment of neurodegenerative diseases. METHODS: Based on the method established by PEI Gang's research group to directly reprogram human fibroblasts into neurons, the induction medium and maturation medium was optimized by replacing the coating solution, mitigating oxidative stress injury, adding neurogenic protective factors, adjusting the concentration of trichothecenes, performing small-molecule removal experiments, and carrying out immunofluorescence and Western blotting on cells at different stages of induction to validate the effect of induction. RESULTS: When the original protocol was used for induction, the cell survival rate was (34.24±2.77)%. After replacing the coating solution gelatin with matrigel, the cell survival rate increased to (45.41±4.27)%; after adding melatonin, the cell survival rate increased to (67.95±5.61)% and (23.43±1.42)% were transformed into neural-like cells; after adding the small molecule P7C3-A20, the cell survival rate was further increased to (76.27±1.41)%, and (39.72±4.75)% of the cells were transformed into neural-like cells. When the concentration of trichothecene was increased to 30 µmol/L, the proportion of neural-like cells reached (55.79±1.90)%; after the removal of SP600125, (86.96±2.15)% of the cells survived, and the rate of neural-like cell production increased to (63.43±1.60)%. With the optimized protocol, REF could be successfully induced into ciNC through the neural precursor cell stage, in which the neural precursor cells were able to highly express the neural precursor cell markers SRY-related HMG-box gene 2 (Sox2) and paired box 6 (Pax6) as well as neuron-specific marker tubulin 1 (Tuj1), while the expression of fiber-associated protein vimentin was reduced. After two weeks of induction of neural precursor cells in a maturation medium, most cells displayed neuronal-like cell morphology. The induced ciNCs were able to highly express the mature neuronal surface markers Tuj1 and microtubule-associated protein 2 (MAP2), while the expression of vimentin was reduced. CONCLUSIONS: The small molecule combinations optimized in this study can reprogram REF to ciNCs under normoxic conditions.
Assuntos
Reprogramação Celular , Fibroblastos , Neurônios , Animais , Ratos , Fibroblastos/efeitos dos fármacos , Fibroblastos/citologia , Neurônios/citologia , Neurônios/efeitos dos fármacos , Reprogramação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Diferenciação Celular/efeitos dos fármacosRESUMO
Homozygous mutations in the gene encoding the scavenger mRNA-decapping enzyme, DcpS, have been shown to underlie developmental delay and intellectual disability. Intellectual disability is associated with both abnormal neocortical development and mRNA metabolism. However, the role of DcpS and its scavenger decapping activity in neuronal development is unknown. Here, we show that human neurons derived from patients with a DcpS mutation have compromised differentiation and neurite outgrowth. Moreover, in the developing mouse neocortex, DcpS is required for the radial migration, polarity, neurite outgrowth, and identity of developing glutamatergic neurons. Collectively, these findings demonstrate that the scavenger mRNA decapping activity contributes to multiple pivotal roles in neural development and further corroborate that mRNA metabolism and neocortical pathologies are associated with intellectual disability.
Assuntos
Endorribonucleases , Neurogênese , Animais , Humanos , Camundongos , Crescimento Neuronal , RNA MensageiroRESUMO
BACKGROUND: The pro-neural transcription factor ASCL1 is a master regulator of neurogenesis and a key factor necessary for the reprogramming of permissive cell types to neurons. Endogenously, ASCL1 expression is often associated with neuroblast stem-ness. Moreover, ASCL1-mediated reprogramming of fibroblasts to differentiated neurons is commonly achieved using artificially high levels of ASCL1 protein, where ASCL1 acts as an "on-target" pioneer factor. However, the genome-wide effects of enhancing ASCL1 activity in a permissive neurogenic environment has not been thoroughly investigated. Here, we overexpressed ASCL1 in the neuronally-permissive context of neuroblastoma (NB) cells where modest endogenous ASCL1 supports the neuroblast programme. RESULTS: Increasing ASCL1 in neuroblastoma cells both enhances binding at existing ASCL1 sites and also leads to creation of numerous additional, lower affinity binding sites. These extensive genome-wide changes in ASCL1 binding result in significant reprogramming of the NB transcriptome, redirecting it from a proliferative neuroblastic state towards one favouring neuronal differentiation. Mechanistically, ASCL1-mediated cell cycle exit and differentiation can be increased further by preventing its multi-site phosphorylation, which is associated with additional changes in genome-wide binding and gene activation profiles. CONCLUSIONS: Our findings show that enhancing ASCL1 activity in a neurogenic environment both increases binding at endogenous ASCL1 sites and also results in additional binding to new low affinity sites that favours neuronal differentiation over the proliferating neuroblast programme supported by the endogenous protein. These findings have important implications for controlling processes of neurogenesis in cancer and cellular reprogramming.
Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Células-Tronco Neurais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Reprogramação Celular/genética , Células-Tronco Neurais/metabolismo , Neurogênese/genética , Neurônios/metabolismoRESUMO
Neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease are clinically diagnosed using neuropsychological and cognitive tests, expensive neuroimaging-based approaches (MRI and PET) and invasive and time-consuming lumbar puncture for cerebrospinal fluid (CSF) sample collection to detect biomarkers. Thus, a rapid, simple and cost-effective approach to more easily access fluids and tissues is in great need. Here, we exploit the chemical direct reprogramming of patient skin fibroblasts into neurons (chemically induced neurons, ciNs) as a novel strategy for the rapid detection of different pathological markers of neurodegenerative diseases. We found that FAD fibroblasts have a reduced efficiency of reprogramming, and converted ciNs show a less complex neuronal network. In addition, ciNs from patients show misfolded protein accumulation and mitochondria ultrastructural abnormalities, biomarkers commonly associated with neurodegeneration. Moreover, for the first time, we show that microfluidic technology, in combination with chemical reprogramming, enables on-chip examination of disease pathological processes and may have important applications in diagnosis. In conclusion, ciNs on microfluidic devices represent a small-scale, non-invasive and cost-effective high-throughput tool for protein misfolding disease diagnosis and may be useful for new biomarker discovery, disease mechanism studies and design of personalised therapies.
Assuntos
Biomarcadores/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patologia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Neurônios/metabolismo , Neurônios/patologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/patologia , Feminino , Humanos , Dispositivos Lab-On-A-Chip , Masculino , Microfluídica/métodos , Pessoa de Meia-Idade , Neuroimagem/métodos , Testes Neuropsicológicos , Doença de Parkinson/metabolismo , Doença de Parkinson/patologiaRESUMO
Direct reprogramming technology allows several specific types of cells, including specialized neurons, to be obtained from readily available autologous somatic cells. It presents unique opportunities for the development of personalized medicine, from in vitro models of hereditary and degenerative neurological diseases to novel neuroregenerative technologies. Over the past decade, a plethora of protocols for primary reprogramming has been published, yet reproducible generation of homogeneous populations of neuronally reprogrammed cells still remains a challenge. All existing protocols, however, use transcription factors that are involved in embryonic neurogenesis. This is presumably be the key issue for obtaining highly efficient and reproducible protocols for ex vivo neurogenesis. Analysis of the functional features of transcription factors in embryonic and adult neurogenesis may not only lead to the improvement of reprogramming protocols, but also, via cell marker analysis, can exactly determine the stage of neurogenesis that a particular protocol will reach. The purpose of this review is to characterize the general factors that play key roles in neurogenesis for the embryonic and adult periods, as well as in cellular reprogramming, and to assess correspondence of cell forms obtained as a result of cellular reprogramming to the ontogenetic series of the nervous system, from pluripotent stem cells to specialized neurons.
Assuntos
Reprogramação Celular , Fatores de Transcrição , Reprogramação Celular/genética , Neurônios , Fatores de Transcrição/genéticaRESUMO
Neuropsychiatric disorders have traditionally been difficult to study due to the complexity of the human brain and limited availability of human tissue. Induced pluripotent stem (iPS) cells provide a promising avenue to further our understanding of human disease mechanisms, but traditional 2D cell cultures can only provide a limited view of the neural circuits. To better model complex brain neurocircuitry, compartmentalized culturing systems and 3D organoids have been developed. Early compartmentalized devices demonstrated how neuronal cell bodies can be isolated both physically and chemically from neurites. Soft lithographic approaches have advanced this approach and offer the tools to construct novel model platforms, enabling circuit-level studies of disease, which can accelerate mechanistic studies and drug candidate screening. In this review, we describe some of the common technologies used to develop such systems and discuss how these lithographic techniques have been used to advance our understanding of neuropsychiatric disease. Finally, we address other in vitro model platforms such as 3D culture systems and organoids and compare these models with compartmentalized models. We ask important questions regarding how we can further harness iPS cells in these engineered culture systems for the development of improved in vitro models. Developmental Dynamics 248:65-77, 2019. © 2018 Wiley Periodicals, Inc.
Assuntos
Técnicas de Cultura de Células/métodos , Modelos Biológicos , Organoides/citologia , Animais , Encéfalo/anatomia & histologia , Compartimento Celular , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Neurônios , Organoides/inervação , Impressão TridimensionalRESUMO
This review describes the history, development, and evolution of cell-based replacement therapy for Parkinson's disease (PD), from the first pioneering trials with fetal ventral midbrain progenitors to future trials using stem cells as well as reprogrammed cells. In the spirit of Tom Isaacs, the review takes parallels to the storyline of Star Wars, including the temptations from the dark side and the continuous fight for the light side of the Force. It is subdivided into headings based on the original movies, spanning from A New Hope to the Last Jedi.
Assuntos
Células-Tronco Neurais/transplante , Doença de Parkinson/cirurgia , Células-Tronco Pluripotentes/transplante , Transplante de Células-Tronco , Animais , História do Século XX , História do Século XXI , Humanos , Doença de Parkinson/história , Transplante de Células-Tronco/históriaRESUMO
The direct conversion of accessible cells such as human fibroblasts to inaccessible cells, particularly neurons, opens up many opportunities for using the human model system to study diseases and discover therapies. Previous studies have indicated that the neuronal conversion of adult human skin fibroblasts is much harder than that for human lung fibroblasts, which are used in many experiments. Here we formally report this differential plasticity of human skin versus lung fibroblasts in their transdifferentiation to induced neurons. Using RNAseq of isogenic and non-isogenic pairs of human skin and lung fibroblasts at different days in their conversion to neurons, we found that several master regulators (TWIST1, TWIST2, PRRX1 and PRRX2) in the fibroblast Gene Regulatory Network were significantly downregulated in lung fibroblasts, but not in skin fibroblasts. By knocking down each of these genes and other genes that suppress the neural fate, such as REST, HES1 and HEY2, we found that the combined attenuation of HEY2 and PRRX2 significantly enhanced the transdifferentiation of human skin fibroblasts induced by ASCL1 and p53 shRNA. The new method, which overexpressed ASCL1 and knocked down p53, HEY2 and PRRX2 (ApH2P2), enabled the efficient transdifferentiation of adult human skin fibroblasts to MAP2+ neurons in 14 days. It would be useful for a variety of applications that require the efficient and speedy derivation of patient-specific neurons from skin fibroblasts.
Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fibroblastos/metabolismo , Proteínas de Homeodomínio/genética , Proteínas Repressoras/genética , Pele/metabolismo , Proteína Supressora de Tumor p53/genética , Adulto , Fatores de Transcrição Hélice-Alça-Hélice Básicos/agonistas , Fatores de Transcrição Hélice-Alça-Hélice Básicos/antagonistas & inibidores , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Transdiferenciação Celular , Reprogramação Celular , Fibroblastos/citologia , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Proteínas de Homeodomínio/antagonistas & inibidores , Proteínas de Homeodomínio/metabolismo , Humanos , Pulmão/citologia , Pulmão/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Especificidade de Órgãos , Cultura Primária de Células , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/metabolismo , Transdução de Sinais , Pele/citologia , Fatores de Transcrição HES-1/genética , Fatores de Transcrição HES-1/metabolismo , Proteína Supressora de Tumor p53/antagonistas & inibidores , Proteína Supressora de Tumor p53/metabolismo , Proteína 1 Relacionada a Twist/antagonistas & inibidores , Proteína 1 Relacionada a Twist/genética , Proteína 1 Relacionada a Twist/metabolismoRESUMO
In vivo reprogramming of reactive glial cells to neurons has opened a new horizon in regenerative medicine. Our previous study showed that astrocytes could be converted to neurons by the microRNA-302/367 (miR-302/367) cluster in adult brains. In this study, we investigated the possible contribution of miR-302/367-induced neurons in behavioral improvement and neural repair in an Alzheimer's disease (AD) animal model. The AD model was induced by an intracerebroventricular (i.c.v) injection of streptozotocin (STZ). GFP-only or miR-302/367+GFP expressing lentiviral particles were injected into the dentate gyrus of the hippocampus along with intraperitoneal (i.p) valproate (VPA) injection, 3weeks after the STZ administration. We assessed short-term and spatial memories by the Y-maze and Morris water maze (MWM) tasks, respectively. Electrophysiological activities of induced neuron-like cells were investigated using a whole-cell patch clamp technique, 6months after injection of miR-302/367. Behavioral analysis showed that the STZ injection significantly impaired short-term memory and increased escape latency parameter in the MWM task. Compared to STZ and STZ+VPA groups, miR-302/367 combined with VPA significantly improved the spontaneous alternation and spatial memory. Immunostaining against NeuN, as a mature neuronal marker, and its quantification indicated that co-labeled GFP and NeuN significantly increased in the miR-302/367+VPA group. Induced neurons were detected 6months after the miR-302/367 injection. The patch-clamp recording suggested that induced neurons could fire repetitive action potential like endogenous neurons. In conclusion, our results indicated that in vivo reprogramming of reactive astrocytes to neurons by the miR-302/367 cluster might be considered as a novel strategy to restore learning and memory in AD patients.
Assuntos
Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Modelos Animais de Doenças , MicroRNAs/administração & dosagem , Neurônios/efeitos dos fármacos , Doença de Alzheimer/psicologia , Animais , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/fisiologia , Estreptozocina/toxicidadeRESUMO
With the advancing age of humans and with it, growing numbers of age-related diseases, aging has become a major focus in recent research. The lack of fitting aging models, especially in neurological diseases where access to human brain samples is limited, has highlighted direct conversion into induced neurons (iN) as an important method to overcome this challenge. Contrary to iPSC reprogramming and its corresponding cell rejuvenation, the generation of iNs enables us to retain aging signatures throughout the conversion process and beyond. In this review, we explore different cell reprogramming methods in light of age-associated neurodegenerative diseases and discuss different approaches, advances, and limitations.
RESUMO
The adult brain has a very limited capacity for generation of new neurons, and neurogenesis only takes place in restricted regions. Some evidence for neurogenesis after injury has been reported, but few, if any, neurons are replaced after brain injury or degeneration, and the permanent loss of neurons leads to long-term disability and loss of brain function. For decades, researchers have been developing cell transplantation using exogenous cell sources for brain repair, and this method has now been shown to successfully restore lost function in experimental and clinical trials. Here, we review the development of cell-replacement strategies for brain repair in Parkinson's disease using the example of human foetal brain cells being successfully translated from preclinical findings to clinical trials. These trials demonstrate that cell-replacement therapy is a viable option for patients with Parkinson's disease, but more importantly also show how the limited availability of foetal cells calls for development of novel cell sources and methods for generating new neurons for brain repair. We focus on new stem cell sources that are on the threshold of clinical application for brain repair and discuss emerging cellular reprogramming technologies. Reviewing the current status of direct neural conversion, both in vitro and in vivo, where somatic cells are directly reprogrammed into functional neurons without passing through a stem cell intermediate, we conclude that both methods result in the successful replacement of new neurons that mature and integrate into the host brain. Thus, this new field shows great promise for future brain repair, although much work is still needed in preclinical animal models before it can be seriously considered for clinical applications.
Assuntos
Encéfalo/patologia , Neurônios Dopaminérgicos/transplante , Células-Tronco Fetais/transplante , Doença de Parkinson/patologia , Doença de Parkinson/terapia , Animais , Encéfalo/citologia , Reprogramação Celular , Modelos Animais de Doenças , Neurônios Dopaminérgicos/citologia , Células-Tronco Fetais/citologia , HumanosRESUMO
Pantothenate kinase-associated neurodegeneration is an early onset autosomal recessive movement disorder caused by mutation of the pantothenate kinase-2 gene, which encodes a mitochondrial enzyme involved in coenzyme A synthesis. The disorder is characterised by high iron levels in the brain, although the pathological mechanism leading to this accumulation is unknown. To address this question, we tested primary skin fibroblasts from three patients and three healthy subjects, as well as neurons induced by direct fibroblast reprogramming, for oxidative status, mitochondrial functionality and iron parameters. The patients' fibroblasts showed altered oxidative status, reduced antioxidant defence, and impaired cytosolic and mitochondrial aconitase activities compared to control cells. Mitochondrial iron homeostasis and functionality analysis of patient fibroblasts indicated increased labile iron pool content and reactive oxygen species development, altered mitochondrial shape, decreased membrane potential and reduced ATP levels. Furthermore, analysis of induced neurons, performed at a single cell level, confirmed some of the results obtained in fibroblasts, indicating an altered oxidative status and signs of mitochondrial dysfunction, possibly due to iron mishandling. Thus, for the first time, altered biological processes have been identified in vitro in live diseased neurons. Moreover, the obtained induced neurons can be considered a suitable human neuronal model for the identification of candidate therapeutic compounds for this disease.
Assuntos
Metabolismo Energético/fisiologia , Fibroblastos/ultraestrutura , Ferro/metabolismo , Mitocôndrias/metabolismo , Doenças Neurodegenerativas/patologia , Neurônios/ultraestrutura , Aconitato Hidratase/metabolismo , Trifosfato de Adenosina/metabolismo , Adulto , Análise de Variância , Células Cultivadas , Fibroblastos/patologia , Glutationa/metabolismo , Humanos , Recém-Nascido , Lábio/metabolismo , Potencial da Membrana Mitocondrial/fisiologia , Mitocôndrias/patologia , Mitocôndrias/ultraestrutura , Mutação , Doenças Neurodegenerativas/enzimologia , Doenças Neurodegenerativas/genética , Neurônios/patologia , Oxirredução , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Espécies Reativas de Oxigênio/metabolismoRESUMO
Access to healthy or diseased human neural tissue is a daunting task and represents a barrier for advancing our understanding about the cellular, genetic, and molecular mechanisms underlying neurogenesis and neurodegeneration. Reprogramming of somatic cells to pluripotency by transient expression of transcription factors was achieved a few years ago. Induced pluripotent stem cells (iPSC) from both healthy individuals and patients suffering from debilitating, life-threatening neurological diseases have been differentiated into several specific neuronal subtypes. An alternative emerging approach is the direct conversion of somatic cells (i.e., fibroblasts, blood cells, or glial cells) into neuron-like cells. However, to what extent neuronal direct conversion of diseased somatic cells can be achieved remains an open question. Optimization of current expansion and differentiation approaches is highly demanded to increase the differentiation efficiency of specific phenotypes of functional neurons from iPSCs or through somatic cell direct conversion. The realization of the full potential of iPSCs relies on the ability to precisely modify specific genome sequences. Genome editing technologies including zinc finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeat/CAS9 RNA-guided nucleases have progressed very fast over the last years. The combination of genome-editing strategies and patient-specific iPSC biology will offer a unique platform for in vitro generation of diseased and corrected neural derivatives for personalized therapies, disease modeling and drug screening.
Assuntos
Diferenciação Celular/fisiologia , Reprogramação Celular/fisiologia , Engenharia Genética , Células-Tronco Pluripotentes Induzidas/citologia , Neurônios/citologia , Animais , Diferenciação Celular/genética , Fibroblastos/citologia , Engenharia Genética/métodos , Humanos , Neurônios/metabolismoRESUMO
Glioblastoma Multiforme (GBM) is an aggressive brain tumor with a high mortality rate. Direct reprogramming of glial cells to different cell lineages, such as induced neural stem cells (iNSCs) and induced neurons (iNeurons), provides genetic tools to manipulate a cell's fate as a potential therapy for neurological diseases. NeuroD1 (ND1) is a master transcriptional factor for neurogenesis and it promotes neuronal differentiation. In the present study, we tested the hypothesis that the expression of ND1 in GBM cells can force them to differentiate toward post-mitotic neurons and halt GBM tumor progression. In cultured human GBM cell lines, including LN229, U87, and U373 as temozolomide (TMZ)-sensitive and T98G as TMZ-resistant cells, the neuronal lineage conversion was induced by an adeno-associated virus (AAV) package carrying ND1. Twenty-one days after AAV-ND1 transduction, ND1-expressing cells displayed neuronal markers MAP2, TUJ1, and NeuN. The ND1-induced transdifferentiation was regulated by Wnt signaling and markedly enhanced under a hypoxic condition (2% O2 vs. 21% O2). ND1-expressing GBM cultures had fewer BrdU-positive proliferating cells compared to vector control cultures. Increased cell death was visualized by TUNEL staining, and reduced migrative activity was demonstrated in the wound-healing test after ND1 reprogramming in both TMZ-sensitive and -resistant GBM cells. In a striking contrast to cancer cells, converted cells expressed the anti-tumor gene p53. In an orthotopical GBM mouse model, AAV-ND1-reprogrammed U373 cells were transplanted into the fornix of the cyclosporine-immunocompromised C57BL/6 mouse brain. Compared to control GBM cell-formed tumors, cells from ND1-reprogrammed cultures formed smaller tumors and expressed neuronal markers such as TUJ1 in the brain. Thus, reprogramming using a single-factor ND1 overcame drug resistance, converting malignant cells of heterogeneous GBM cells to normal neuron-like cells in vitro and in vivo. These novel observations warrant further research using patient-derived GBM cells and patient-derived xenograft (PDX) models as a potentially effective treatment for a deadly brain cancer and likely other astrocytoma tumors.
Assuntos
Reprogramação Celular , Glioblastoma , Neurônios , Glioblastoma/patologia , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Animais , Linhagem Celular Tumoral , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Camundongos , Reprogramação Celular/efeitos dos fármacos , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Temozolomida/farmacologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genéticaRESUMO
Primary mitochondrial diseases result from mutations in nuclear DNA (nDNA) or mitochondrial DNA (mtDNA) genes, encoding proteins crucial for mitochondrial structure or function. Given that few disease-specific therapies are available for mitochondrial diseases, novel treatments to reverse mitochondrial dysfunction are necessary. In this work, we explored new therapeutic options in mitochondrial diseases using fibroblasts and induced neurons derived from patients with mutations in the GFM1 gene. This gene encodes the essential mitochondrial translation elongation factor G1 involved in mitochondrial protein synthesis. Due to the severe mitochondrial defect, mutant GFM1 fibroblasts cannot survive in galactose medium, making them an ideal screening model to test the effectiveness of pharmacological compounds. We found that the combination of polydatin and nicotinamide enabled the survival of mutant GFM1 fibroblasts in stress medium. We also demonstrated that polydatin and nicotinamide upregulated the mitochondrial Unfolded Protein Response (mtUPR), especially the SIRT3 pathway. Activation of mtUPR partially restored mitochondrial protein synthesis and expression, as well as improved cellular bioenergetics. Furthermore, we confirmed the positive effect of the treatment in GFM1 mutant induced neurons obtained by direct reprogramming from patient fibroblasts. Overall, we provide compelling evidence that mtUPR activation is a promising therapeutic strategy for GFM1 mutations.
Assuntos
Fibroblastos , Glucosídeos , Mitocôndrias , Doenças Mitocondriais , Niacinamida , Estilbenos , Resposta a Proteínas não Dobradas , Humanos , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Glucosídeos/farmacologia , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/tratamento farmacológico , Doenças Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Mutação , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Niacinamida/farmacologia , Fenótipo , Estilbenos/farmacologia , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Fator G para Elongação de Peptídeos/efeitos dos fármacos , Fator G para Elongação de Peptídeos/genética , Fator G para Elongação de Peptídeos/metabolismoRESUMO
Human somatic cells can be reprogrammed into neuron cell fate through regulation of a single transcription factor or application of small molecule cocktails. Methods: Here, we report that forskolin efficiently induces the conversion of human somatic cells into induced neurons (FiNs). Results: A large population of neuron-like phenotype cells was observed as early as 24-36 h post-induction. There were >90% TUJ1-, >80% MAP2-, and >80% NEUN-positive neurons at 5 days post-induction. Multiple subtypes of neurons were present among TUJ1-positive cells, including >60% cholinergic, >20% glutamatergic, >10% GABAergic, and >5% dopaminergic neurons. FiNs exhibited typical neural electrophysiological activity in vitro and the ability to survive in vitro and in vivo more than 2 months. Mechanistically, forskolin functions in FiN reprogramming by regulating the cAMP-CREB1-JNK signals, which upregulates cAMP-CREB1 expression and downregulates JNK expression. Conclusion: Overall, our studies identify a safer and efficient single-small-molecule-driven reprogramming approach for induced neuron generation and reveal a novel regulatory mechanism of neuronal cell fate acquisition.
Assuntos
Reprogramação Celular , Fatores de Transcrição , Humanos , Colforsina/farmacologia , Diferenciação Celular/fisiologia , Fatores de Transcrição/metabolismo , Neurônios Dopaminérgicos/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP CíclicoRESUMO
Two-dimensional neuronal cultures have a limited ability to recapitulate the in vivo environment of the brain. Here, we introduce a three-dimensional in vitro model for human glia-to-neuron conversion, surpassing the spatial and temporal constrains of two-dimensional cultures. Focused on direct conversion to induced dopamine neurons (iDANs) relevant to Parkinson disease, the model generates functionally mature iDANs in 2 weeks and allows long-term survival. As proof of concept, we use single-nucleus RNA sequencing and molecular lineage tracing during iDAN generation and find that all glial subtypes generate neurons and that conversion relies on the coordinated expression of three neural conversion factors. We also show the formation of mature and functional iDANs over time. The model facilitates molecular investigations of the conversion process to enhance understanding of conversion outcomes and offers a system for in vitro reprogramming studies aimed at advancing alternative therapeutic strategies in the diseased brain.
Assuntos
Neurônios Dopaminérgicos , Neuroglia , Humanos , Neurônios Dopaminérgicos/metabolismo , Neuroglia/metabolismo , Diferenciação Celular , Células CultivadasRESUMO
The differentiation of human pluripotent stem cells into ventral mesencephalic dopaminergic (DA) fate is relevant for the treatment of Parkinson's disease. Shortcuts to obtaining DA cells through direct reprogramming often include forced expression of the transcription factor LMX1A. Although reprogramming with LMX1A can generate tyrosine hydroxylase (TH)-positive cells, their regional identity remains elusive. Using an in vitro model of early human neural tube patterning, we report that forced LMX1A expression induced a ventral-to-dorsal fate shift along the entire neuroaxis with the emergence of roof plate fates despite the presence of ventralizing molecules. The LMX1A-expressing progenitors gave rise to grafts containing roof plate-derived choroid plexus cysts as well as ectopically induced TH-positive neurons of a forebrain identity. Early activation of LMX1A prior to floor plate specification was necessary for the dorsalizing effect. Our work suggests using caution in employing LMX1A for the induction of DA fate, as this factor may generate roof plate rather than midbrain fates.