Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.391
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Immunol ; 42(1): 585-613, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38424470

RESUMO

Alzheimer disease (AD) is the most common neurodegenerative disease, and with no efficient curative treatment available, its medical, social, and economic burdens are expected to dramatically increase. AD is historically characterized by amyloid ß (Aß) plaques and tau neurofibrillary tangles, but over the last 25 years chronic immune activation has been identified as an important factor contributing to AD pathogenesis. In this article, we review recent and important advances in our understanding of the significance of immune activation in the development of AD. We describe how brain-resident macrophages, the microglia, are able to detect Aß species and be activated, as well as the consequences of activated microglia in AD pathogenesis. We discuss transcriptional changes of microglia in AD, their unique heterogeneity in humans, and emerging strategies to study human microglia. Finally, we expose, beyond Aß and microglia, the role of peripheral signals and different cell types in immune activation.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Microglia , Doença de Alzheimer/imunologia , Doença de Alzheimer/etiologia , Doença de Alzheimer/metabolismo , Humanos , Animais , Microglia/imunologia , Microglia/metabolismo , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/imunologia , Encéfalo/imunologia , Encéfalo/metabolismo , Encéfalo/patologia , Macrófagos/imunologia , Macrófagos/metabolismo
2.
Annu Rev Immunol ; 42(1): 615-645, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38941608

RESUMO

The COVID-19 pandemic was caused by the recently emerged ß-coronavirus SARS-CoV-2. SARS-CoV-2 has had a catastrophic impact, resulting in nearly 7 million fatalities worldwide to date. The innate immune system is the first line of defense against infections, including the detection and response to SARS-CoV-2. Here, we discuss the innate immune mechanisms that sense coronaviruses, with a focus on SARS-CoV-2 infection and how these protective responses can become detrimental in severe cases of COVID-19, contributing to cytokine storm, inflammation, long-COVID, and other complications. We also highlight the complex cross talk among cytokines and the cellular components of the innate immune system, which can aid in viral clearance but also contribute to inflammatory cell death, cytokine storm, and organ damage in severe COVID-19 pathogenesis. Furthermore, we discuss how SARS-CoV-2 evades key protective innate immune mechanisms to enhance its virulence and pathogenicity, as well as how innate immunity can be therapeutically targeted as part of the vaccination and treatment strategy. Overall, we highlight how a comprehensive understanding of innate immune mechanisms has been crucial in the fight against SARS-CoV-2 infections and the development of novel host-directed immunotherapeutic strategies for various diseases.


Assuntos
COVID-19 , Imunidade Inata , SARS-CoV-2 , Humanos , COVID-19/imunologia , SARS-CoV-2/imunologia , SARS-CoV-2/fisiologia , Síndrome da Liberação de Citocina/imunologia , Citocinas/metabolismo , Animais , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Infecções por Coronavirus/prevenção & controle , Evasão da Resposta Imune
3.
Annu Rev Immunol ; 40: 469-498, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35138947

RESUMO

Intracellular pathogens pose a significant threat to animals. In defense, innate immune sensors attempt to detect these pathogens using pattern recognition receptors that either directly detect microbial molecules or indirectly detect their pathogenic activity. These sensors trigger different forms of regulated cell death, including pyroptosis, apoptosis, and necroptosis, which eliminate the infected host cell niche while simultaneously promoting beneficial immune responses. These defenses force intracellular pathogens to evolve strategies to minimize or completely evade the sensors. In this review, we discuss recent advances in our understanding of the cytosolic pattern recognition receptors that drive cell death, including NLRP1, NLRP3, NLRP6, NLRP9, NLRC4, AIM2, IFI16, and ZBP1.


Assuntos
Inflamassomos , Piroptose , Animais , Apoptose , Morte Celular , Humanos , Inflamassomos/metabolismo , Necroptose
4.
Annu Rev Immunol ; 40: 249-269, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35080918

RESUMO

Inflammasomes are inflammatory signaling complexes that provide molecular platforms to activate the protease function of inflammatory caspases. Caspases-1, -4, -5, and -11 are inflammatory caspases activated by inflammasomes to drive lytic cell death and inflammatory mediator production, thereby activating host-protective and pathological immune responses. Here, we comprehensively review the mechanisms that govern the activity of inflammatory caspases. We discuss inflammatory caspase activation and deactivation mechanisms, alongside the physiological importance of caspase activity kinetics. We also examine mechanisms of caspase substrate selection and how inflammasome and cell identities influence caspase activity and resultant inflammatory and pyroptotic cellular programs. Understanding how inflammatory caspases are regulated may offer new strategies for treating infection and inflammasome-driven disease.


Assuntos
Caspases , Inflamassomos , Animais , Caspase 1/metabolismo , Caspases/metabolismo , Morte Celular , Humanos , Inflamassomos/metabolismo , Piroptose
5.
Annu Rev Immunol ; 38: 567-595, 2020 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-32017655

RESUMO

Caspases are a family of conserved cysteine proteases that play key roles in programmed cell death and inflammation. In multicellular organisms, caspases are activated via macromolecular signaling complexes that bring inactive procaspases together and promote their proximity-induced autoactivation and proteolytic processing. Activation of caspases ultimately results in programmed execution of cell death, and the nature of this cell death is determined by the specific caspases involved. Pioneering new research has unraveled distinct roles and cross talk of caspases in the regulation of programmed cell death, inflammation, and innate immune responses. In-depth understanding of these mechanisms is essential to foster the development of precise therapeutic targets to treat autoinflammatory disorders, infectious diseases, and cancer. This review focuses on mechanisms governing caspase activation and programmed cell death with special emphasis on the recent progress in caspase cross talk and caspase-driven gasdermin D-induced pyroptosis.


Assuntos
Caspases/metabolismo , Morte Celular , Inflamação/etiologia , Inflamação/metabolismo , Proteínas de Neoplasias/genética , Piroptose/genética , Animais , Apoptose , Biomarcadores , Caspases/genética , Morte Celular/genética , Suscetibilidade a Doenças , Ativação Enzimática , Humanos , Inflamação/patologia , Proteínas de Neoplasias/metabolismo , Transdução de Sinais
6.
Annu Rev Immunol ; 37: 325-347, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-30676821

RESUMO

ATP, NAD+, and nucleic acids are abundant purines that, in addition to having critical intracellular functions, have evolved extracellular roles as danger signals released in response to cell lysis, apoptosis, degranulation, or membrane pore formation. In general ATP and NAD+ have excitatory and adenosine has anti-inflammatory effects on immune cells. This review focuses on recent advances in our understanding of purine release mechanisms, ectoenzymes that metabolize purines (CD38, CD39, CD73, ENPP1, and ENPP2/autotaxin), and signaling by key P2 purinergic receptors (P2X7, P2Y2, and P2Y12). In addition to metabolizing ATP or NAD+, some purinergic ectoenzymes metabolize other inflammatory modulators, notably lysophosphatidic acid and cyclic GMP-AMP (cGAMP). Also discussed are extracellular signaling effects of NAD+ mediated by ADP-ribosylation, and epigenetic effects of intracellular adenosine mediated by modification of S-adenosylmethionine-dependent DNA methylation.


Assuntos
Inflamação/imunologia , Purinas/metabolismo , Receptores Purinérgicos/metabolismo , ADP-Ribosilação , Trifosfato de Adenosina/metabolismo , Animais , Metilação de DNA , Humanos , Inflamação/genética , Inflamação/metabolismo , Lisofosfolipídeos/metabolismo , Transdução de Sinais
7.
Cell ; 187(5): 1223-1237.e16, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38428396

RESUMO

While CD4+ T cell depletion is key to disease progression in people living with HIV and SIV-infected macaques, the mechanisms underlying this depletion remain incompletely understood, with most cell death involving uninfected cells. In contrast, SIV infection of "natural" hosts such as sooty mangabeys does not cause CD4+ depletion and AIDS despite high-level viremia. Here, we report that the CARD8 inflammasome is activated immediately after HIV entry by the viral protease encapsulated in incoming virions. Sensing of HIV protease activity by CARD8 leads to rapid pyroptosis of quiescent cells without productive infection, while T cell activation abolishes CARD8 function and increases permissiveness to infection. In humanized mice reconstituted with CARD8-deficient cells, CD4+ depletion is delayed despite high viremia. Finally, we discovered loss-of-function mutations in CARD8 from "natural hosts," which may explain the peculiarly non-pathogenic nature of these infections. Our study suggests that CARD8 drives CD4+ T cell depletion during pathogenic HIV/SIV infections.


Assuntos
Infecções por HIV , Inflamassomos , Síndrome de Imunodeficiência Adquirida dos Símios , Animais , Humanos , Camundongos , Proteínas Adaptadoras de Sinalização CARD/genética , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Progressão da Doença , Infecções por HIV/patologia , Inflamassomos/metabolismo , Proteínas de Neoplasias/metabolismo , Síndrome de Imunodeficiência Adquirida dos Símios/patologia , Vírus da Imunodeficiência Símia/fisiologia , Viremia , HIV/fisiologia
8.
Cell ; 187(9): 2095-2116, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38670067

RESUMO

Plant diseases cause famines, drive human migration, and present challenges to agricultural sustainability as pathogen ranges shift under climate change. Plant breeders discovered Mendelian genetic loci conferring disease resistance to specific pathogen isolates over 100 years ago. Subsequent breeding for disease resistance underpins modern agriculture and, along with the emergence and focus on model plants for genetics and genomics research, has provided rich resources for molecular biological exploration over the last 50 years. These studies led to the identification of extracellular and intracellular receptors that convert recognition of extracellular microbe-encoded molecular patterns or intracellular pathogen-delivered virulence effectors into defense activation. These receptor systems, and downstream responses, define plant immune systems that have evolved since the migration of plants to land ∼500 million years ago. Our current understanding of plant immune systems provides the platform for development of rational resistance enhancement to control the many diseases that continue to plague crop production.


Assuntos
Resistência à Doença , Doenças das Plantas , Imunidade Vegetal , Plantas , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Imunidade Vegetal/genética , Plantas/imunologia , Plantas/genética , Resistência à Doença/genética , Humanos
9.
Cell ; 187(9): 2224-2235.e16, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38614101

RESUMO

The membrane protein NINJ1 mediates plasma membrane rupture in pyroptosis and other lytic cell death pathways. Here, we report the cryo-EM structure of a NINJ1 oligomer segmented from NINJ1 rings. Each NINJ1 subunit comprises amphipathic (⍺1, ⍺2) and transmembrane (TM) helices (⍺3, ⍺4) and forms a chain of subunits, mainly by the TM helices and ⍺1. ⍺3 and ⍺4 are kinked, and the Gly residues are important for function. The NINJ1 oligomer possesses a concave hydrophobic side that should face the membrane and a convex hydrophilic side formed by ⍺1 and ⍺2, presumably upon activation. This structural observation suggests that NINJ1 can form membrane disks, consistent with membrane fragmentation by recombinant NINJ1. Live-cell and super-resolution imaging uncover ring-like structures on the plasma membrane that are released into the culture supernatant. Released NINJ1 encircles a membrane inside, as shown by lipid staining. Therefore, NINJ1-mediated membrane disk formation is different from gasdermin-mediated pore formation, resulting in membrane loss and plasma membrane rupture.


Assuntos
Moléculas de Adesão Celular Neuronais , Membrana Celular , Microscopia Crioeletrônica , Membrana Celular/metabolismo , Humanos , Moléculas de Adesão Celular Neuronais/metabolismo , Moléculas de Adesão Celular Neuronais/química , Animais , Camundongos , Células HEK293 , Piroptose , Modelos Moleculares , Proteínas de Membrana/metabolismo , Proteínas de Membrana/química , Proteínas de Ligação a Fosfato/metabolismo
10.
Cell ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38878777

RESUMO

NLRs constitute a large, highly conserved family of cytosolic pattern recognition receptors that are central to health and disease, making them key therapeutic targets. NLRC5 is an enigmatic NLR with mutations associated with inflammatory and infectious diseases, but little is known about its function as an innate immune sensor and cell death regulator. Therefore, we screened for NLRC5's role in response to infections, PAMPs, DAMPs, and cytokines. We identified that NLRC5 acts as an innate immune sensor to drive inflammatory cell death, PANoptosis, in response to specific ligands, including PAMP/heme and heme/cytokine combinations. NLRC5 interacted with NLRP12 and PANoptosome components to form a cell death complex, suggesting an NLR network forms similar to those in plants. Mechanistically, TLR signaling and NAD+ levels regulated NLRC5 expression and ROS production to control cell death. Furthermore, NLRC5-deficient mice were protected in hemolytic and inflammatory models, suggesting that NLRC5 could be a potential therapeutic target.

11.
Cell ; 186(11): 2410-2424.e18, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37160116

RESUMO

Bacteria use a wide range of immune pathways to counter phage infection. A subset of these genes shares homology with components of eukaryotic immune systems, suggesting that eukaryotes horizontally acquired certain innate immune genes from bacteria. Here, we show that proteins containing a NACHT module, the central feature of the animal nucleotide-binding domain and leucine-rich repeat containing gene family (NLRs), are found in bacteria and defend against phages. NACHT proteins are widespread in bacteria, provide immunity against both DNA and RNA phages, and display the characteristic C-terminal sensor, central NACHT, and N-terminal effector modules. Some bacterial NACHT proteins have domain architectures similar to the human NLRs that are critical components of inflammasomes. Human disease-associated NLR mutations that cause stimulus-independent activation of the inflammasome also activate bacterial NACHT proteins, supporting a shared signaling mechanism. This work establishes that NACHT module-containing proteins are ancient mediators of innate immunity across the tree of life.


Assuntos
Bactérias , Bacteriófagos , Proteínas NLR , Animais , Humanos , Bactérias/genética , Bactérias/metabolismo , Bactérias/virologia , Bacteriófagos/genética , Bacteriófagos/metabolismo , Imunidade Inata , Inflamassomos/metabolismo , Proteínas NLR/genética , Proteínas de Bactérias
12.
Cell ; 186(10): 2144-2159.e22, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37172565

RESUMO

Bats are special in their ability to live long and host many emerging viruses. Our previous studies showed that bats have altered inflammasomes, which are central players in aging and infection. However, the role of inflammasome signaling in combating inflammatory diseases remains poorly understood. Here, we report bat ASC2 as a potent negative regulator of inflammasomes. Bat ASC2 is highly expressed at both the mRNA and protein levels and is highly potent in inhibiting human and mouse inflammasomes. Transgenic expression of bat ASC2 in mice reduced the severity of peritonitis induced by gout crystals and ASC particles. Bat ASC2 also dampened inflammation induced by multiple viruses and reduced mortality of influenza A virus infection. Importantly, it also suppressed SARS-CoV-2-immune-complex-induced inflammasome activation. Four key residues were identified for the gain of function of bat ASC2. Our results demonstrate that bat ASC2 is an important negative regulator of inflammasomes with therapeutic potential in inflammatory diseases.


Assuntos
Proteínas Reguladoras de Apoptose , Quirópteros , Inflamassomos , Ribonucleoproteínas , Viroses , Animais , Humanos , Camundongos , Proteínas Reguladoras de Apoptose/metabolismo , Quirópteros/imunologia , COVID-19 , Inflamassomos/imunologia , Ribonucleoproteínas/metabolismo , SARS-CoV-2 , Viroses/imunologia , Fenômenos Fisiológicos Virais
13.
Cell ; 186(13): 2783-2801.e20, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37267949

RESUMO

Cytosolic innate immune sensors are critical for host defense and form complexes, such as inflammasomes and PANoptosomes, that induce inflammatory cell death. The sensor NLRP12 is associated with infectious and inflammatory diseases, but its activating triggers and roles in cell death and inflammation remain unclear. Here, we discovered that NLRP12 drives inflammasome and PANoptosome activation, cell death, and inflammation in response to heme plus PAMPs or TNF. TLR2/4-mediated signaling through IRF1 induced Nlrp12 expression, which led to inflammasome formation to induce maturation of IL-1ß and IL-18. The inflammasome also served as an integral component of a larger NLRP12-PANoptosome that drove inflammatory cell death through caspase-8/RIPK3. Deletion of Nlrp12 protected mice from acute kidney injury and lethality in a hemolytic model. Overall, we identified NLRP12 as an essential cytosolic sensor for heme plus PAMPs-mediated PANoptosis, inflammation, and pathology, suggesting that NLRP12 and molecules in this pathway are potential drug targets for hemolytic and inflammatory diseases.


Assuntos
Inflamassomos , Moléculas com Motivos Associados a Patógenos , Animais , Camundongos , Inflamassomos/metabolismo , Heme , Inflamação , Piroptose , Peptídeos e Proteínas de Sinalização Intracelular
14.
Cell ; 186(11): 2288-2312, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37236155

RESUMO

Inflammasomes are critical sentinels of the innate immune system that respond to threats to the host through recognition of distinct molecules, known as pathogen- or damage-associated molecular patterns (PAMPs/DAMPs), or disruptions of cellular homeostasis, referred to as homeostasis-altering molecular processes (HAMPs) or effector-triggered immunity (ETI). Several distinct proteins nucleate inflammasomes, including NLRP1, CARD8, NLRP3, NLRP6, NLRC4/NAIP, AIM2, pyrin, and caspases-4/-5/-11. This diverse array of sensors strengthens the inflammasome response through redundancy and plasticity. Here, we present an overview of these pathways, outlining the mechanisms of inflammasome formation, subcellular regulation, and pyroptosis, and discuss the wide-reaching effects of inflammasomes in human disease.


Assuntos
Inflamassomos , Humanos , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Caspases/metabolismo , Morte Celular , Inflamassomos/metabolismo , Proteínas de Neoplasias/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piroptose
15.
Annu Rev Immunol ; 33: 49-77, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25493334

RESUMO

Induction, production, and release of proinflammatory cytokines are essential steps to establish an effective host defense. Cytokines of the interleukin-1 (IL-1) family induce inflammation and regulate T lymphocyte responses while also displaying homeostatic and metabolic activities. With the exception of the IL-1 receptor antagonist, all IL-1 family cytokines lack a signal peptide and require proteolytic processing into an active molecule. One such unique protease is caspase-1, which is activated by protein platforms called the inflammasomes. However, increasing evidence suggests that inflammasomes and caspase-1 are not the only mechanism for processing IL-1 cytokines. IL-1 cytokines are often released as precursors and require extracellular processing for activity. Here we review the inflammasome-independent enzymatic processes that are able to activate IL-1 cytokines, paying special attention to neutrophil-derived serine proteases, which subsequently induce inflammation and modulate host defense. The inflammasome-independent processing of IL-1 cytokines has important consequences for understanding inflammatory diseases, and it impacts the design of IL-1-based modulatory therapies.


Assuntos
Citocinas/metabolismo , Inflamassomos/metabolismo , Interleucina-1/metabolismo , Animais , Suscetibilidade a Doenças , Humanos , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo
16.
Annu Rev Immunol ; 33: 393-416, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25622194

RESUMO

Innate immune responses depend on timely recognition of pathogenic or danger signals by multiple cell surface or cytoplasmic receptors and transmission of signals for proper counteractions through adaptor and effector molecules. At the forefront of innate immunity are four major signaling pathways, including those elicited by Toll-like receptors, RIG-I-like receptors, inflammasomes, or cGAS, each with its own cellular localization, ligand specificity, and signal relay mechanism. They collectively engage a number of overlapping signaling outcomes, such as NF-κB activation, interferon response, cytokine maturation, and cell death. Several proteins often assemble into a supramolecular complex to enable signal transduction and amplification. In this article, we review the recent progress in mechanistic delineation of proteins in these pathways, their structural features, modes of ligand recognition, conformational changes, and homo- and hetero-oligomeric interactions within the supramolecular complexes. Regardless of seemingly distinct interactions and mechanisms, the recurring themes appear to consist of autoinhibited resting-state receptors, ligand-induced conformational changes, and higher-order assemblies of activated receptors, adaptors, and signaling enzymes through conserved protein-protein interactions.


Assuntos
Imunidade Inata/fisiologia , Animais , Humanos , Inflamassomos/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Ligação Proteica , Receptores de Reconhecimento de Padrão/química , Receptores de Reconhecimento de Padrão/metabolismo , Transdução de Sinais , Relação Estrutura-Atividade
17.
Cell ; 185(17): 3214-3231.e23, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35907404

RESUMO

Although mutations in mitochondrial-associated genes are linked to inflammation and susceptibility to infection, their mechanistic contributions to immune outcomes remain ill-defined. We discovered that the disease-associated gain-of-function allele Lrrk2G2019S (leucine-rich repeat kinase 2) perturbs mitochondrial homeostasis and reprograms cell death pathways in macrophages. When the inflammasome is activated in Lrrk2G2019S macrophages, elevated mitochondrial ROS (mtROS) directs association of the pore-forming protein gasdermin D (GSDMD) to mitochondrial membranes. Mitochondrial GSDMD pore formation then releases mtROS, promoting a switch to RIPK1/RIPK3/MLKL-dependent necroptosis. Consistent with enhanced necroptosis, infection of Lrrk2G2019S mice with Mycobacterium tuberculosis elicits hyperinflammation and severe immunopathology. Our findings suggest a pivotal role for GSDMD as an executer of multiple cell death pathways and demonstrate that mitochondrial dysfunction can direct immune outcomes via cell death modality switching. This work provides insights into how LRRK2 mutations manifest or exacerbate human diseases and identifies GSDMD-dependent necroptosis as a potential target to limit Lrrk2G2019S-mediated immunopathology.


Assuntos
Mitocôndrias , Necroptose , Proteínas de Ligação a Fosfato/metabolismo , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Animais , Humanos , Inflamassomos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Macrófagos , Camundongos , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo
18.
Cell ; 184(23): 5759-5774.e20, 2021 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-34678144

RESUMO

NLRP6 is important in host defense by inducing functional outcomes including inflammasome activation and interferon production. Here, we show that NLRP6 undergoes liquid-liquid phase separation (LLPS) upon interaction with double-stranded RNA (dsRNA) in vitro and in cells, and an intrinsically disordered poly-lysine sequence (K350-354) of NLRP6 is important for multivalent interactions, phase separation, and inflammasome activation. Nlrp6-deficient or Nlrp6K350-354A mutant mice show reduced inflammasome activation upon mouse hepatitis virus or rotavirus infection, and in steady state stimulated by intestinal microbiota, implicating NLRP6 LLPS in anti-microbial immunity. Recruitment of ASC via helical assembly solidifies NLRP6 condensates, and ASC further recruits and activates caspase-1. Lipoteichoic acid, a known NLRP6 ligand, also promotes NLRP6 LLPS, and DHX15, a helicase in NLRP6-induced interferon signaling, co-forms condensates with NLRP6 and dsRNA. Thus, LLPS of NLRP6 is a common response to ligand stimulation, which serves to direct NLRP6 to distinct functional outcomes depending on the cellular context.


Assuntos
Inflamassomos/metabolismo , Vírus de RNA/fisiologia , Receptores de Superfície Celular/metabolismo , Sequência de Aminoácidos , Animais , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Hepatócitos/virologia , Intestinos/virologia , Proteínas Intrinsicamente Desordenadas/química , Lipopolissacarídeos/metabolismo , Fígado/virologia , Camundongos , Polilisina/metabolismo , Ligação Proteica , RNA de Cadeia Dupla/metabolismo , Receptores de Superfície Celular/química , Transdução de Sinais , Ácidos Teicoicos/metabolismo
19.
Cell ; 184(26): 6299-6312.e22, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34861190

RESUMO

The NACHT-, leucine-rich-repeat- (LRR), and pyrin domain-containing protein 3 (NLRP3) is emerging to be a critical intracellular inflammasome sensor of membrane integrity and a highly important clinical target against chronic inflammation. Here, we report that an endogenous, stimulus-responsive form of full-length mouse NLRP3 is a 12- to 16-mer double-ring cage held together by LRR-LRR interactions with the pyrin domains shielded within the assembly to avoid premature activation. Surprisingly, this NLRP3 form is predominantly membrane localized, which is consistent with previously noted localization of NLRP3 at various membrane organelles. Structure-guided mutagenesis reveals that trans-Golgi network dispersion into vesicles, an early event observed for many NLRP3-activating stimuli, requires the double-ring cages of NLRP3. Double-ring-defective NLRP3 mutants abolish inflammasome punctum formation, caspase-1 processing, and cell death. Thus, our data uncover a physiological NLRP3 oligomer on the membrane that is poised to sense diverse signals to induce inflammasome activation.


Assuntos
Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/química , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Sequência de Aminoácidos , Animais , Membrana Celular/metabolismo , Microscopia Crioeletrônica , Células HEK293 , Humanos , Camundongos , Modelos Biológicos , Modelos Moleculares , Mutação/genética , Quinases Relacionadas a NIMA/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/isolamento & purificação , Proteína 3 que Contém Domínio de Pirina da Família NLR/ultraestrutura , Nigericina/farmacologia , Ligação Proteica , Domínios Proteicos , Multimerização Proteica , Rede trans-Golgi/metabolismo
20.
Cell ; 184(12): 3178-3191.e18, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34022140

RESUMO

Gasdermin B (GSDMB) belongs to a large family of pore-forming cytolysins that execute inflammatory cell death programs. While genetic studies have linked GSDMB polymorphisms to human disease, its function in the immunological response to pathogens remains poorly understood. Here, we report a dynamic host-pathogen conflict between GSDMB and the IpaH7.8 effector protein secreted by enteroinvasive Shigella flexneri. We show that IpaH7.8 ubiquitinates and targets GSDMB for 26S proteasome destruction. This virulence strategy protects Shigella from the bacteriocidic activity of natural killer cells by suppressing granzyme-A-mediated activation of GSDMB. In contrast to the canonical function of most gasdermin family members, GSDMB does not inhibit Shigella by lysing host cells. Rather, it exhibits direct microbiocidal activity through recognition of phospholipids found on Gram-negative bacterial membranes. These findings place GSDMB as a central executioner of intracellular bacterial killing and reveal a mechanism employed by pathogens to counteract this host defense system.


Assuntos
Biomarcadores Tumorais/metabolismo , Interações Hospedeiro-Patógeno , Células Matadoras Naturais/imunologia , Proteínas de Neoplasias/metabolismo , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Shigella flexneri/fisiologia , Ubiquitinação , Animais , Proteínas de Bactérias/metabolismo , Cardiolipinas/metabolismo , Linhagem Celular , Membrana Celular/metabolismo , Feminino , Granzimas/metabolismo , Humanos , Lipídeo A/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Viabilidade Microbiana , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Proteólise , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA