Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 641
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(15): 4649-4657, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38572971

RESUMO

Deep-seated bacterial infections (DBIs) are stubborn and deeply penetrate tissues. Eliminating deep-seated bacteria and promoting tissue regeneration remain great challenges. Here, a novel radical-containing hydrogel (SFT-B Gel) cross-linked by a chaotropic effect was designed for the sensing of DBIs and near-infrared photothermal therapy (NIR-II PTT). A silk fibroin solution stained with 4,4',4″-(1,3,5-triazine-2,4,6-triyl)tris(1-methylpyridin-1-ium) (TPT3+) was employed as the backbone, which could be cross-linked by a closo-dodecaborate cluster (B12H122-) through a chaotropic effect to form the SFT-B Gel. More interestingly, the SFT-B Gel exhibited the ability to sense DBIs, which could generate a TPT2+• radical with obvious color changes in the presence of bacteria. The radical-containing SFT-B Gel (SFT-B★ Gel) possessed strong NIR-II absorption and a remarkable photothermal effect, thus demonstrating excellent NIR-II PTT antibacterial activity for the treatment of DBIs. This work provides a new approach for the construction of intelligent hydrogels with unique properties using a chaotropic effect.


Assuntos
Fototerapia , Terapia Fototérmica , Hidrogéis/farmacologia
2.
BMC Biotechnol ; 24(1): 26, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724967

RESUMO

BACKGROUND: Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease, and it leads to irreversible inflammation in intra-articular joints. Current treatment approaches for RA include non-steroidal anti-inflammatory drugs (NSAIDs), disease-modifying anti-rheumatic drugs (DMARDs), corticosteroids, and biological agents. To overcome the drug-associated toxicity of conventional therapy and transdermal tissue barrier, an injectable NSAID-loaded hydrogel system was developed and explored its efficacy. RESULTS: The surface morphology and porosity of the hydrogels indicate that they mimic the natural ECM, which is greatly beneficial for tissue healing. Further, NSAIDs, i.e., diclofenac sodium, were loaded into the hydrogel, and the in vitro drug release pattern was found to be burst release for 24 h and subsequently sustainable release of 50% drug up to 10 days. The DPPH assay revealed that the hydrogels have good radical scavenging activity. The biocompatibility study carried out by MTT assay proved good biocompatibility and anti-inflammatory activity of the hydrogels was carried out by gene expression study in RAW 264.7 cells, which indicate the downregulation of several key inflammatory genes such as COX-2, TNF-α & 18s. CONCLUSION: In summary, the proposed ECM-mimetic, thermo-sensitive in situ hydrogels may be utilized for intra-articular inflammation modulation and can be beneficial by reducing the frequency of medication and providing optimum lubrication at intra-articular joints.


Assuntos
Anti-Inflamatórios não Esteroides , Artrite Reumatoide , Hidrogéis , Hidrogéis/química , Animais , Camundongos , Artrite Reumatoide/tratamento farmacológico , Células RAW 264.7 , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/uso terapêutico , Anti-Inflamatórios não Esteroides/química , Matriz Extracelular/metabolismo , Matriz Extracelular/efeitos dos fármacos , Diclofenaco/farmacologia , Diclofenaco/uso terapêutico , Liberação Controlada de Fármacos
3.
Small ; : e2406036, 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39375977

RESUMO

Glioblastoma (GBM) recurrence leads to high mortality, which remains a major concern in clinical therapy. Herein, an injectable triptolide (TP)-preloaded hydrogel (TP@DNH) accompanied by a postoperative injection strategy is developed to prevent the recurrence of GBM. With a potential inhibitor of the NRF2/SLC7A11/GPX4 axis, it is demonstrated that TP can deactivate glutathione peroxidase 4 (GPX4) from the source of glutathione (GSH) biosynthesis, thereby activating ferroptosis in GBM cells by blocking the neutralization of intracellular lipid peroxide (LPO). Based on acid-sensitive Fe3+/tannic acid (TA) metal-phenolic networks (MPNs), the TP@DNH hydrogel can induce the effective generation of reactive oxygen species (ROS) through Fe3+/TA-mediated Fenton reaction and achieve controllable release of TP in resected GBM cavity. Due to ROS generation and GPX4 deactivation, postoperative injection of TP@DNH can achieve high-level ferroptosis through dual-pathway LPO accumulation, remarkably suppressing the growth of recurrent GBM and prolonging the overall survival in orthotopic GBM relapse mouse model. This work provides an alternative paradigm for regulating ferroptosis in the postoperative treatment of GBM.

4.
Biotechnol Bioeng ; 121(9): 2767-2779, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38837342

RESUMO

Injectable, tissue mimetic, bioactive, and biodegradable hydrogels offer less invasive regeneration and repair of tissues. The monitoring swelling and in vitro degradation capacities of hydrogels are highly important for drug delivery and tissue regeneration processes. Bioactivity of bone tissue engineered constructs in terms of mineralized apatite formation capacity is also pivotal. We have previously reported in situ forming chitosan-based injectable hydrogels integrated with hydroxyapatite and heparin for bone regeneration, promoting angiogenesis. These hydrogels were functionalized by glycerol and pH to improve their mechano-structural properties. In the present study, functionalized hybrid hydrogels were investigated for their swelling, in vitro degradation, and bioactivity performances. Hydrogels have degraded gradually in phosphate-buffered saline (PBS) with and without lysozyme enzyme. The percentage weight loss of hydrogels and their morphological and chemical properties, and pH of media were analyzed. The swelling ratio of hydrogels (55%-68%(wt), 6 h of equilibrium) indicated a high degree of cross-linking, can be suitable for controlled drug release. Hydrogels have gradually degraded reaching to 60%-70% (wt%) in 42 days in the presence and absence of lysozyme, respectively. Simulated body fluid (SBF)-treated hydrogels containing hydroxyapatite-induced needle-like carbonated-apatite mineralization was further enhanced by heparin content significantly.


Assuntos
Regeneração Óssea , Quitosana , Hidrogéis , Quitosana/química , Hidrogéis/química , Hidrogéis/farmacologia , Regeneração Óssea/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Durapatita/química , Durapatita/farmacologia , Muramidase/química , Muramidase/farmacologia , Concentração de Íons de Hidrogênio , Materiais Biocompatíveis/química , Heparina/química , Heparina/farmacologia
5.
J Oral Pathol Med ; 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39327673

RESUMO

BACKGROUND: Oral and maxillofacial tissue defects resulting from factors such as trauma or infection, can significantly impact both facial function and aesthetics. Additionally, the complex anatomical structure of the face often increases the difficulty of treatment. With the advantages of controlled release, targeted delivery, and enhanced mechanical properties, injectable hydrogels have been investigated for the treatment of oral and maxillofacial diseases. In the field of regeneration, injectable hydrogels have a structure similar to the extracellular matrix (ECM) and are biocompatible, which can be used as scaffolds for tissue regeneration. OBJECTIVE: This review aims to summarize the literature on the current status and limitations of injectable hydrogels in the field of oral tissue regeneration. METHODS: We searched Pubmed and Web of Science databases to find and summarize the articles on the application of injectable hydrogels in tissue regeneration. CONCLUSIONS: This review focuses on the current status and limitations of injectable hydrogels in the field of tissue regeneration (periodontal tissue, dentin-pulp complex, bone and cartilage, salivary gland regeneration, and mucosal repair). Although fully studied in animal models, there are still challenges in clinical transformation of injectable hydrogels in promoting tissue regeneration.

6.
J Nanobiotechnology ; 22(1): 188, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632657

RESUMO

Rheumatoid arthritis (RA) is a progressive autoimmune disease accompanied by joint swelling, cartilage erosion and bone damage. Drug therapy for RA has been restricted due to poor therapeutic effect, recurrence and adverse effects. Macrophages and synovial fibroblasts both play important roles in the pathology of RA. Macrophages secrete large amount of pro-inflammatory cytokines, while synovial fibroblasts are tightly correlated with hypoxia synovium microenvironment, cytokine release, recruitment of pro-inflammatory cells, bone and cartilage erosion. Therefore, in this timely research, an injectable and pH-sensitive peptide hydrogel loading methotrexate (MTX) and bismuthene nanosheet/polyethyleneimine (BiNS/PEI) has been developed to reduce the activity of macrophages and eliminate over-proliferated synovial fibroblasts simultaneously. MTX can reduce the cytokine secretion of macrophages/anti-apoptosis property of synovial fibroblasts and BiNS/PEI can eliminate synovial fibroblasts via photodynamic therapy (PDT) and photothermal therapy (PTT) routes. The hydrogel was injected into the acidic inflammatory synovium for precise targeting and served as a drug reservoir for pH responsive and sustained drug release, while improving the bioavailability and reducing the toxicity of MTX. Excellent therapeutic efficacy has been achieved in both in vivo and in vitro studies, and this unique drug delivery system provides a new and robust strategy to eliminate synovial fibroblasts and modulate immune system for RA treatment in clinical.


Assuntos
Artrite Reumatoide , Hidrogéis , Humanos , Hidrogéis/farmacologia , Membrana Sinovial/patologia , Macrófagos , Metotrexato/farmacologia , Citocinas , Fibroblastos
7.
Sci Technol Adv Mater ; 25(1): 2409059, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39372058

RESUMO

A sealant has been developed that improves upon current catheter-based treatments in the following ways: 1) Efficient delivery system, 2) No in situ polymerization, 3) No harmful byproducts, and 4) Cost-effective formulation. During the development process, particular attention was given to materials that were tunable, safe, and effective sealant agents. The thermo-responsive properties of poly(N-isopropylacrylamide) (PNIPAM) provides an ideal foundation to develop an optimized solution. Through a combination of model-based and material testing, a hydrogel was developed that balances conformational factors to achieve a customized transition temperature, radiopacity suitable for visualization, mechanical properties suitable for delivery via 3Fr catheter, sufficient cohesion once applied to resist migration under physiological pressures and an improved safety profile. Two applications, embolization of lymphatic leakage and exclusions of the left atrial appendage (LAA), to eliminate LAA dead space to reduce the risk of thromboembolic events, were considered. The material and benchtop results for this product demonstrate the suitability of this new material not only for these applications but also for other potential healthcare applications.


A sealant has been developed that improves upon current catheter-based treatments in the following ways: 1) Efficient delivery system, 2) No in situ polymerization, 3) No harmful byproducts, and 4) Cost-effective formulation.

8.
Int J Mol Sci ; 25(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38474111

RESUMO

Photoinduced metal-free ATRP has been successfully applied to fabricate thermo-responsive cellulose graft copolymer (PNIPAM-g-Cell) using 2-bromoisobuturyl bromide-modified cellulose as the macroinitiator. The polymerization of N-isopropylacrylamide (NIPAM) from cellulose was efficiently activated and deactivated with UV irradiation in the presence of an organic-based photo-redox catalyst. Both FTIR and 13C NMR analysis confirmed the structural similarity between the obtained PNIPAM-g-Cell and that synthesized via traditional ATRP methods. When the concentration of the PNIPAM-g-Cell is over 5% in water, it forms an injectable thermos-responsive hydrogel composed of micelles at 37 °C. Since organic photocatalysis is a metal-free ATRP, it overcomes the challenge of transition-metal catalysts remaining in polymer products, making this cellulose-based graft copolymer suitable for biomedical applications. In vitro release studies demonstrated that the hydrogel can continuously release DOX for up to 10 days, and its cytotoxicity indicates that it is highly biocompatible. Based on these findings, this cellulose-based injectable, thermo-responsive drug-loaded hydrogel is suitable for intelligent drug delivery systems.


Assuntos
Acrilamidas , Resinas Acrílicas , Celulose , Hidrogéis , Hidrogéis/química , Polimerização , Polímeros/química , Temperatura
9.
Adv Funct Mater ; 33(34)2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-38046826

RESUMO

Efficient encapsulation and sustained release of small hydrophilic molecules from traditional hydrogel systems have been challenging due to the large mesh size of 3D networks and high water content. Furthermore, the encapsulated molecules are prone to early release from the hydrogel prior to use, resulting in a short shelf life of the formulation. Here, we present a hydration-induced void-containing hydrogel (HVH) based on hyperbranched polyglycerol-poly(propylene oxide)-hyperbranched polyglycerol (HPG-PPG-HPG) as a robust and efficient delivery system for small hydrophilic molecules. Specifically, after the HPG-PPG-HPG is incubated overnight at 4 °C in the drug solution, it is hydrated into a hydrogel containing micron-sized voids, which could encapsulate hydrophilic drugs and achieve 100% drug encapsulation efficiency. In addition, the voids are surrounded by a densely packed polymer matrix, which restricts drug transport to achieve sustained drug release. The hydrogel/drug formulation can be stored for several months without changing the drug encapsulation and release properties. HVH hydrogels are injectable due to shear thinning properties. In rats, a single injection of the HPG-PPG-HPG hydrogel containing 8 µg of tetrodotoxin (TTX) produced sciatic nerve block lasting up to 10 hours without any TTX-related systemic toxicity nor local toxicity to nerves and muscles.

10.
Biotechnol Lett ; 45(9): 1209-1222, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37308681

RESUMO

The development of alternative therapeutic treatments based on the use of medicinal and aromatic plants, such as Juniper communis L., has aroused interest in the medical field to find new alternatives to conventional therapeutic treatments, which have shown problems related to bacterial resistance, high costs, or sustainability in their production. The present work describes the use of hydrogels based on sodium alginate and carboxymethyl cellulose, with combinations of juniperus leaves and berry extracts, in order to characterize their chemical characteristics, antibacterial activity, tissue adhesion test, cytotoxicity in the L929 cell line, and their effects on an in vivo model in mice to maximize the use of these materials in the healthcare field. Overall, an adequate antibacterial potential against S. aureus, E. coli and P. vulgaris was obtained with doses above 100 mg.mL-1 of hydrogels. Likewise, low cytotoxicity in hydrogels combined with extracts has been identified according to the IC50 value at 17.32 µg.mL-1, compared to the higher cytotoxic activity expressed by the use of control hydrogels with a value at 11.05 µg.mL-1. Moreover, in general, the observed adhesion was high to different tissues, showing its adequate capacity to be used in different tissue typologies. Furthermore, the invivo results have not shown erythema, edema, or other complications related to the use of the proposed hydrogels. These results suggest the feasibility of using these hydrogels in biomedical applications given the observed safety.


Assuntos
Infecções Bacterianas , Hidrogéis , Camundongos , Animais , Hidrogéis/farmacologia , Hidrogéis/química , Escherichia coli , Staphylococcus aureus , Antibacterianos/farmacologia , Antibacterianos/química
11.
Int Endod J ; 56(4): 447-464, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36546662

RESUMO

AIM: The study aimed to develop a bicomponent bioactive hydrogel formed in situ and enriched with an extract of platelet-rich fibrin (PRFe) and to assess its potential for use in pulp-dentine complex tissue engineering via cell homing. METHODOLOGY: A bicomponent hydrogel based on photo-activated naturally derived polymers, methacrylated chitosan (ChitMA) and methacrylated collagen (ColMA), plus PRFe was fabricated. The optimized formulation of PRFe-loaded bicomponent hydrogel was determined by analysing the mechanical strength, swelling ratio and cell viability simultaneously. The physical, mechanical, rheological and morphological properties of the optimal hydrogel with and without PRFe were determined. Additionally, MTT, phalloidin/DAPI and live/dead assays were carried out to compare the viability, cytoskeletal morphology and migration ability of stem cells from the apical papilla (SCAP) within the developed hydrogels with and without PRFe, respectively. To further investigate the effect of PRFe on the differentiation of encapsulated SCAP, alizarin red S staining, RT-PCR analysis and immunohistochemical detection were performed. Statistical significance was established at p < .05. RESULTS: The optimized formulation of PRFe-loaded bicomponent hydrogel can be rapidly photocrosslinked using available dental light curing units. Compared to bicomponent hydrogels without PRFe, the PRFe-loaded hydrogel exhibited greater viscoelasticity and higher cytocompatibility to SCAP. Moreover, it promoted cell proliferation and migration in vitro. It also supported the odontogenic differentiation of SCAP as evidenced by its promotion of biomineralization and upregulating the gene expression for ALP, COL I, DSPP and DMP1 as well as facilitated angiogenesis by enhancing VEGFA gene expression. CONCLUSIONS: The new PRFe-loaded ChitMA/ColMA hydrogel developed within this study fulfils the criteria of injectability, cytocompatibility, chemoattractivity and bioactivity to promote odontogenic differentiation, which are fundamental requirements for scaffolds used in pulp-dentine complex regeneration via cell-homing approaches.


Assuntos
Quitosana , Fibrina Rica em Plaquetas , Hidrogéis/química , Hidrogéis/farmacologia , Engenharia Tecidual , Polpa Dentária , Diferenciação Celular , Colágeno , Quitosana/farmacologia , Dentina , Regeneração , Alicerces Teciduais/química
12.
J Korean Med Sci ; 38(17): e135, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37128878

RESUMO

BACKGROUND: In this study, we prepared and evaluated an injectable poloxamer (P407) hydrogel formulation for intratympanic (IT) delivery of dexamethasone (DEX). METHODS: DEX-loaded P407 hydrogels were characterized in terms of thermogelation, drug loading capacities, particle size, and drug release. The in vivo toxicity and drug absorption of the DEX-loaded P407 formulation after IT injection were evaluated using an animal model by performing histopathological analysis and drug concentration measurements. RESULTS: The P407 hydrogel effectively solubilized hydrophobic DEX and demonstrated a sustained release compared to the hydrophilic DEX formulation. The in vivo study showed that the hydrogel formulation delivered considerable drug concentrations to the inner ear and displayed a favorable safety profile without apparent cytotoxicity or inflammation. CONCLUSION: P407 hydrogel can be useful as an injectable inner ear delivery formulation for hydrophobic drugs due to their biocompatibility, drug-solubilizing capacity, thermogelation, and controlled release.


Assuntos
Hidrogéis , Poloxâmero , Animais , Poloxâmero/química , Hidrogéis/química , Liberação Controlada de Fármacos , Dexametasona
13.
Clin Oral Investig ; 27(3): 979-994, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36707442

RESUMO

OBJECTIVES: This study aimed to improve the performance and mode of administration of a glass-reinforced hydroxyapatite synthetic bone substitute, Bonelike by Biosckin® (BL®), by association with a dextrin-based hydrogel, DEXGEL, to achieve an injectable and moldable device named DEXGEL Bone. METHODS: Twelve participants requiring pre-molar tooth extraction and implant placement were enrolled in this study. BL® granules (250-500 µm) were administered to 6 randomized participants whereas the other 6 received DEXGEL Bone. After 6 months, a bone biopsy of the grafted area was collected for histological and histomorphometric evaluation, prior to implant placement. The performance of DEXGEL Bone and BL® treatments on alveolar preservation were further analyzed by computed tomography and Hounsfield density analysis. Primary implant stability was analyzed by implant stability coefficient technique. RESULTS: The healing of defects was free of any local or systemic complications. Both treatments showed good osseointegration with no signs of adverse reaction. DEXGEL Bone exhibited increased granule resorption (p = 0.029) accompanied by a tendency for more new bone ingrowth (although not statistically significant) compared to the BL® group. The addition of DEXGEL to BL® granules did not compromise bone volume or density, being even beneficial for implant primary stability (p = 0.017). CONCLUSIONS: The hydrogel-reinforced biomaterial exhibited an easier handling, a better defect filling, and benefits in implant stability. CLINICAL RELEVANCE: This study validates DEXGEL Bone safety and performance as an injectable carrier of granular bone substitutes for alveolar ridge preservation. TRIAL REGISTRATION: European Databank on Medical Devices (EUDAMED) No. CIV-PT-18-01-02,705; Registo Nacional de Estudos Clínicos, RNEC, No. 30122.


Assuntos
Perda do Osso Alveolar , Aumento do Rebordo Alveolar , Substitutos Ósseos , Humanos , Dextrinas , Alvéolo Dental/cirurgia , Hidrogéis , Osseointegração , Extração Dentária/efeitos adversos , Aumento do Rebordo Alveolar/métodos , Perda do Osso Alveolar/etiologia
14.
Molecules ; 28(14)2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37513319

RESUMO

To prevent local tumor recurrence caused by possible residual cancer cells after surgery, avoid toxicity of systemic chemotherapy and protect the fragile immune system of postsurgical patients, an increasing amount of attention has been paid to local anti-cancer drug delivery systems. In this paper, golden buckwheat was first applied to prevent post-operative tumor recurrence, which is a Chinese herb and possesses anti-tumor activity. Golden buckwheat extract-loaded gellan gum injectable hydrogels were fabricated via Ca2+ crosslinking for localized chemotherapy. Blank and/or drug-loaded hydrogels were characterized via FT-IR, TG, SEM, density functional theory, drug release and rheology studies to explore the interaction among gellan gum, Ca2+ and golden buckwheat extract (GBE). Blank hydrogels were non-toxic to NIH3T3 cells. Of significance, GBE and GBE-loaded hydrogel inhibited the proliferation of tumor cells (up to 90% inhibition rate in HepG2 cells). In vitro hemolysis assay showed that blank hydrogel and GBE-loaded hydrogel had good blood compatibility. When GBE-loaded hydrogel was applied to the incompletely resected tumor of mice bearing B16 tumor xenografts, it showed inhibition of tumor growth in vivo and induced the apoptosis of tumor cells. Taken together, gellan gum injectable hydrogel containing GBE is a potential local anticancer drug delivery system for the prevention of postsurgical tumor recurrence.


Assuntos
Antineoplásicos , Fagopyrum , Humanos , Animais , Camundongos , Hidrogéis , Neoplasia Residual , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/prevenção & controle , Células NIH 3T3 , Espectroscopia de Infravermelho com Transformada de Fourier , Linhagem Celular Tumoral , Antineoplásicos/uso terapêutico
15.
Mol Pharm ; 19(3): 853-861, 2022 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-35142223

RESUMO

Malignant pleural mesothelioma (MPM) is one of the intractable cancers that require a more effective therapeutic strategy for clinical practice. Hyaluronic acid (HA) nanogels were prepared by the chelation of cisplatin (CDDP) with different molecular weights of iminodiacetic acid-conjugated hyaluronic acid (HA-IDA). The sizes of the 100, 850, and 2000 kDa HA nanogels were 33, 43, and 44 nm, respectively. MSTO-211H, a human MPM cell line, was more effective in taking up all three HA nanogels compared to AB22, a mouse MPM cell line. In addition, the 850 kDa HA nanogel showed higher anticancer activity against AB22 and MSTO-211H than 100 and 2000 kDa HA nanogels. Furthermore, all the HA nanogels showed a milder cytotoxic effect on normal Met-5A mesothelial cells compared to that exhibited by free CDDP. Finally, the 850 kDa HA nanogel was administrated intrapleurally into both the MSTO-211H xenograft and AB22 allograft mouse models of MPM using an injectable HA-based hydrogel. HA nanogels showed a significant therapeutic effect in both the xenograft and allograft models.


Assuntos
Cisplatino , Mesotelioma Maligno , Animais , Linhagem Celular Tumoral , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Humanos , Ácido Hialurônico , Iminoácidos , Camundongos , Nanogéis
16.
J Nanobiotechnology ; 20(1): 372, 2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-35953828

RESUMO

Although combination chemoimmunotherapy shows promising clinical results for cancer treatment, this approach is largely restricted by variable objective response rate and severe systemic adverse effects of immunotherapeutic antibody and chemotherapeutic drugs. Therefore, an in situ-formed therapeutic silk-chitosan composite scaffold is fabricated in this study to allow local release of the chemotherapeutic drug doxorubicin (DOX) and JQ1 (small molecular inhibitor used for the extraterminal protein BRD4 and bromodomain) with control release kinetics. DOX-JQ1@Gel contains a pH-degradable group that releases therapeutics in a weak acidic tumor microenvironment. The released DOX could directly kill tumor cells or lead to immunogenic cell death, thereby triggering the response of antitumor immunity. Meanwhile, chemotherapy-triggered antigen release and JQ1-mediated PD-L1 checkpoint blockade cumulatively contribute to trigger the response of antitumor immunity. Finally, the DOX-JQ1@Gel is locally injected to evaluate its synergistic cancer therapeutic effect, which is expected to improve objective response rate of immunotherapy and minimize systemic side effects.


Assuntos
Hidrogéis , Microambiente Tumoral , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Concentração de Íons de Hidrogênio , Imunoterapia/métodos , Proteínas Nucleares , Fatores de Transcrição
17.
Drug Dev Ind Pharm ; 48(1): 29-39, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35723593

RESUMO

OBJECTIVE: Diabetic retinopathy (DR) is a common microvascular complication of diabetes mellitus. This study aimed to compare the effect of sunitinib-loaded poly (glycerol sebacate) (PGS)/gelatin nanoparticles doped in an injectable hydrogel with bevacizumab as a standard treatment of DR. METHODS: The shear-sensitive hydrogel was prepared based on tragacanthic acid (TA) cross-linked with sodium acetate. DR was induced in rats by streptozotocin (STZ), and the animals were injected intravitreally a single dose of 20 µL sunitinib solution in three different concentrations (12.5, 25, and 50 µg/mL), sunitinib-loaded nanoparticles in hydrogel (413 µg/mL) and bevacizumab solution (6.25 mg/mL). The efficacy of the treatments was studied by histological and immunohisitological tests, angiogenesis, and optical coherence tomography (OCT). Vascular endothelial growth factor (VEGF) concentration was measured in the retina. RESULTS: The results revealed that 20 µL of sunitinib with the concentration of 25 µg/mL was effective in DR without any disruption in the retina or any other side effects. This dose was considered the therapeutic dose for nanoparticles. Sunitinib loaded PGS/gelatin nanoparticles that were incorporated in the injectable hydrogel were as effective as bevacizumab in controlling DR. Although sunitinib solution reduced VEGF production and neovascularization in the retina compared to the negative control group, it was not as suitable as the nanoparticles. TA-based hydrogel showed no toxicity on the normal retina, and the angiography and histologic studies confirmed the VEGF results.' CONCLUSIONS: Sunitinib nanoparticles doped in TA hydrogel may be an appropriate substitution of bevacizumab in the treatment of DR.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Nanopartículas , Animais , Bevacizumab/uso terapêutico , Retinopatia Diabética/tratamento farmacológico , Retinopatia Diabética/metabolismo , Retinopatia Diabética/patologia , Gelatina , Hidrogéis , Ratos , Sunitinibe/uso terapêutico , Fator A de Crescimento do Endotélio Vascular/metabolismo
18.
Int Wound J ; 19(3): 679-691, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34414663

RESUMO

The development of biologically active multifunctional hydrogel wound dressings can assist effectively to wound regeneration and also has influenced multiple functions on wound injury. Herein, we designed a carbon-based composited injectable silk fibroin hydrogel as multifunctional wound dressing to provide effective anti-bacterial, cell compatibility and in vivo wound closure actions. Importantly, the fabricated injectable hydrogel exhibit sustained drug delivery properties, anti-oxidant and self-healing abilities, which confirm that composition of hydrogel is highly beneficial to tissue adhesions and burn wound regeneration ability. Frequently, designed injectable hydrogel can be injected into deep and irregular burn wound sites and would provide rapid self-healing and protection from infection environment with thoroughly filled wound area. Meanwhile, incorporated carbon nanofillers improve injectable hydrogel strength and also offer high fluid uptake to hydrogel when applied on the wound sites. In vitro MTT cytotoxicity assay on human fibroblast cell lines establish outstanding cytocompatibility of the injectable hydrogel and also have capability to support cell growth and proliferations. In vivo burn wound animal model results demonstrate that the hydrogel dressings predominantly influenced enhanced wound contraction and also promoted greater collagen deposition, granulation tissue thickness and vascularization. This investigation's outcome could open a new pathway to fabricate multifunctional biopolymeric hydrogel for quicker burn wound therapy and effectively prevents microenvironment bacterial infections.


Assuntos
Queimaduras , Fibroínas , Animais , Antibacterianos , Bandagens , Queimaduras/tratamento farmacológico , Fibroínas/farmacologia , Fibroínas/uso terapêutico , Humanos , Hidrogéis/uso terapêutico , Cicatrização
19.
Small ; 17(11): e2007235, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33590681

RESUMO

Thin endometrium is a primary cause of failed embryo transfer, resulting in long-term infertility and negative family outcomes. While hormonal treatments have greatly improved fertility results for some women, these responses remain unsatisfactory due to damage and infection of the complex endometrial microenvironment. In this study, a multifunctional microenvironment-protected exosome-hydrogel is designed for facilitating endometrial regeneration and fertility restoration via in situ microinjection and endometrial regeneration. This exosome hydrogel is formulated via Ag+ -S dynamic coordination and fusion with adipose stem cell-derived exosomes (ADSC-exo), yielding an injectable preparation that is sufficient to mitigate infection risk while also possessing the antigenic contents and paracrine signaling activity of the ADSC source cells, enabling regeneration of the endometrial microenvironment. In vitro, this exosome-hydrogel exerts an outstanding neovascularization-promoting effect, increased human umbilical vein endothelial cell proliferation and tube formation for 1.87 and 2.2 folds. In vivo, microenvironment-protected exosome-hydrogel also reveals to promote neovascularization and tissue regeneration while suppressing local tissue fibrosis. Importantly, regenerated endometrial tissue is more receptive to give embryos and birth to a healthy newborn. This microenvironment-protected exosome-hydrogel system offers a convenient, safe, and noninvasive approach for repairing thin endometrium and fertility restoration.


Assuntos
Exossomos , Hidrogéis , Endométrio , Feminino , Fertilidade , Humanos , Recém-Nascido , Nascido Vivo , Gravidez
20.
Cell Tissue Res ; 383(2): 809-821, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33159581

RESUMO

Stem cell transplantation is a promising therapy for wound healing, but the low retention and survival of transplanted stem cells limit their application. Injectable hydrogels exert beneficial effects in skin tissue engineering. In this study, an injectable hydrogel composed of sodium alginate (SA) and collagen type I (Col) was synthesized as a tissue scaffold to improve the efficacy of stem cells in a full-thickness excision wound model. Our results showed that SA/Col hydrogel was injectable, biodegradable, and exhibited low immunogenicity, which could promote the retention and survival of hUC-MSCs in vivo. SA/Col loaded with hUC-MSCs showed reduced wound size (p < 0.05). Histological and immunofluorescence results confirmed that SA/Col loaded with hUC-MSCs significantly promoted the formation of granulation, enhanced collagen deposition and angiogenesis, increased VEGF and TGF-ß1 expression (p < 0.05), and mitigated inflammation evidenced by lower production of TNF-α and IL-1ß and higher release of IL-4 and IL-10 (p < 0.05). Furthermore, SA/Col loaded with hUC-MSCs significantly lowered the expression of NLRP3 inflammasome-related proteins (p < 0.05). Taken together, our results suggest that SA/Col loaded with hUC-MSCs promotes skin wound healing via partly inhibiting NLRP3 pathway, which has potential to the treatment of skin wounds.


Assuntos
Alginatos/farmacologia , Colágeno/farmacologia , Hidrogéis/farmacologia , Células-Tronco Mesenquimais/citologia , Pele/efeitos dos fármacos , Cordão Umbilical/citologia , Cicatrização , Animais , Materiais Biocompatíveis/farmacologia , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Humanos , Inflamação/patologia , Queratinócitos/citologia , Queratinócitos/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Cicatrização/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA