Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.905
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 187(15): 4030-4042.e13, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38908367

RESUMO

Insufficient telomerase activity, stemming from low telomerase reverse transcriptase (TERT) gene transcription, contributes to telomere dysfunction and aging pathologies. Besides its traditional function in telomere synthesis, TERT acts as a transcriptional co-regulator of genes pivotal in aging and age-associated diseases. Here, we report the identification of a TERT activator compound (TAC) that upregulates TERT transcription via the MEK/ERK/AP-1 cascade. In primary human cells and naturally aged mice, TAC-induced elevation of TERT levels promotes telomere synthesis, blunts tissue aging hallmarks with reduced cellular senescence and inflammatory cytokines, and silences p16INK4a expression via upregulation of DNMT3B-mediated promoter hypermethylation. In the brain, TAC alleviates neuroinflammation, increases neurotrophic factors, stimulates adult neurogenesis, and preserves cognitive function without evident toxicity, including cancer risk. Together, these findings underscore TERT's critical role in aging processes and provide preclinical proof of concept for physiological TERT activation as a strategy to mitigate multiple aging hallmarks and associated pathologies.


Assuntos
Envelhecimento , Metilação de DNA , Telomerase , Telomerase/metabolismo , Telomerase/genética , Humanos , Animais , Camundongos , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA (Citosina-5-)-Metiltransferases/genética , Senescência Celular , Regiões Promotoras Genéticas , DNA Metiltransferase 3B , Encéfalo/metabolismo , Telômero/metabolismo , Camundongos Endogâmicos C57BL , Masculino , Fator de Transcrição AP-1/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/genética , Neurogênese
2.
Cell ; 169(6): 1000-1011, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28575665

RESUMO

Many cellular stresses activate senescence, a persistent hyporeplicative state characterized in part by expression of the p16INK4a cell-cycle inhibitor. Senescent cell production occurs throughout life and plays beneficial roles in a variety of physiological and pathological processes including embryogenesis, wound healing, host immunity, and tumor suppression. Meanwhile, the steady accumulation of senescent cells with age also has adverse consequences. These non-proliferating cells occupy key cellular niches and elaborate pro-inflammatory cytokines, contributing to aging-related diseases and morbidity. This model suggests that the abundance of senescent cells in vivo predicts "molecular," as opposed to chronologic, age and that senescent cell clearance may mitigate aging-associated pathology.


Assuntos
Envelhecimento/patologia , Ciclo Celular , Senescência Celular , Animais , Humanos , Neoplasias/imunologia , Cicatrização
3.
Mol Cell ; 82(17): 3255-3269.e8, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35987199

RESUMO

Cell size is tightly controlled in healthy tissues, but it is unclear how deviations in cell size affect cell physiology. To address this, we measured how the cell's proteome changes with increasing cell size. Size-dependent protein concentration changes are widespread and predicted by subcellular localization, size-dependent mRNA concentrations, and protein turnover. As proliferating cells grow larger, concentration changes typically associated with cellular senescence are increasingly pronounced, suggesting that large size may be a cause rather than just a consequence of cell senescence. Consistent with this hypothesis, larger cells are prone to replicative, DNA-damage-induced, and CDK4/6i-induced senescence. Size-dependent changes to the proteome, including those associated with senescence, are not observed when an increase in cell size is accompanied by an increase in ploidy. Together, our findings show how cell size could impact many aspects of cell physiology by remodeling the proteome and provide a rationale for cell size control and polyploidization.


Assuntos
Senescência Celular , Proteoma , Tamanho Celular , Senescência Celular/fisiologia , Dano ao DNA , Proteoma/genética
4.
Genes Dev ; 34(7-8): 489-494, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32139422

RESUMO

Young mammals possess a limited regenerative capacity in some tissues, which is lost upon maturation. We investigated whether cellular senescence might play a role in such loss during liver regeneration. We found that following partial hepatectomy, the senescence-associated genes p21, p16Ink4a, and p19Arf become dynamically expressed in different cell types when regenerative capacity decreases, but without a full senescent response. However, we show that treatment with a senescence-inhibiting drug improves regeneration, by disrupting aberrantly prolonged p21 expression. This work suggests that senescence may initially develop from heterogeneous cellular responses, and that senotherapeutic drugs might be useful in promoting organ regeneration.


Assuntos
Compostos de Bifenilo/farmacologia , Inibidor de Quinase Dependente de Ciclina p21/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Fígado/fisiologia , Nitrofenóis/farmacologia , Regeneração/efeitos dos fármacos , Sulfonamidas/farmacologia , Animais , Células Cultivadas , Senescência Celular/efeitos dos fármacos , Inibidor p16 de Quinase Dependente de Ciclina/genética , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Piperazinas/farmacologia
5.
Genes Dev ; 34(7-8): 463-464, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32238449

RESUMO

The mammalian liver possesses a unique capacity for regeneration. However, this regenerative potential declines with age due to unknown mechanisms. In this issue of Genes & Development, Ritschka and colleagues (pp. 489-494). compare liver regeneration upon partial hepatectomy in young and adult mice. Partial hepatectomy causes a transient increase in p21 in a subpopulation of hepatocytes that persists in adult mice. Remarkably, treatment with the BCL-2 family inhibitor ABT-737 blunts p21 expression, enhancing liver regeneration.


Assuntos
Hepatectomia , Regeneração Hepática , Animais , Hepatócitos , Fígado , Camundongos
6.
EMBO J ; 42(16): e111133, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37431790

RESUMO

Naked mole-rats (NMRs) have exceptional longevity and are resistant to age-related physiological decline and diseases. Given the role of cellular senescence in aging, we postulated that NMRs possess unidentified species-specific mechanisms to prevent senescent cell accumulation. Here, we show that upon induction of cellular senescence, NMR fibroblasts underwent delayed and progressive cell death that required activation of the INK4a-retinoblastoma protein (RB) pathway (termed "INK4a-RB cell death"), a phenomenon not observed in mouse fibroblasts. Naked mole-rat fibroblasts uniquely accumulated serotonin and were inherently vulnerable to hydrogen peroxide (H2 O2 ). After activation of the INK4a-RB pathway, NMR fibroblasts increased monoamine oxidase levels, leading to serotonin oxidization and H2 O2 production, which resulted in increased intracellular oxidative damage and cell death activation. In the NMR lung, induction of cellular senescence caused delayed, progressive cell death mediated by monoamine oxidase activation, thereby preventing senescent cell accumulation, consistent with in vitro results. The present findings indicate that INK4a-RB cell death likely functions as a natural senolytic mechanism in NMRs, providing an evolutionary rationale for senescent cell removal as a strategy to resist aging.


Assuntos
Senescência Celular , Serotonina , Animais , Camundongos , Serotonina/metabolismo , Senescência Celular/fisiologia , Envelhecimento/metabolismo , Morte Celular , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Ratos-Toupeira/metabolismo
7.
J Biol Chem ; 300(8): 107590, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39032649

RESUMO

The human tumor suppressor p16INK4a is a small monomeric protein that can form amyloid structures. Formation of p16INK4a amyloid fibrils is induced by oxidation which creates an intermolecular disulfide bond. The conversion into amyloid is associated with a change from an all α-helical structure into ß-sheet fibrils. Currently, structural insights into p16INK4a amyloid fibrils are lacking. Here, we investigate the amyloid-forming regions of this tumor suppressor using isotope-labeling limited-digestion mass spectrometry analysis. We discover two key regions that likely form the structured core of the amyloid. Further investigations using thioflavin-T fluorescence assays, electron microscopy, and solution nuclear magnetic resonance spectroscopy of shorter peptide regions confirm the self-assembly of the identified sequences that include methionine and leucine repeat regions. This work describes a simple approach for studying protein motifs involved in the conversion of monomeric species into aggregated fibril structures. It provides insight into the polypeptide sequence underlying the core structure of amyloid p16INK4a formed after a unique oxidation-driven structural transition.

8.
FASEB J ; 38(16): e23862, 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39162681

RESUMO

Anterior cruciate ligament (ACL) injuries pose a significant challenge due to their limited healing potential, often resulting in premature arthritis. The factors and mechanisms contributing to this inadequate healing process remain elusive. During the acute phase of injury, ACL tissues express elevated periostin levels that decline over time. The functional significance of periostin in ligament biology remains understudied. In this study, we investigated the functional and mechanistic implications of periostin deficiency in ACL biology, utilizing ligament fibroblasts derived from patients and a murine model of ACL rupture. Our investigations unveiled that periostin knockdown compromised fibroblast growth characteristics, hindered the egress of progenitor cells from explants, and arrested cell-cycle progression, resulting in the accumulation of cells in the G0/G1 phase and moderate apoptosis. Concurrently, a significant reduction in the expression of cell-cycle and matrix-related genes was observed. Moreover, periostin deficiency triggered apoptosis through STAT3Y705/p38MAPK signaling and induced cellular senescence through increased production of reactive oxygen species (ROS). Mechanistically, inhibition of ROS production mitigated cell senescence in these cells. Notably, in vivo data revealed that ACL in Postn-/- mice exhibited a higher tearing frequency than wild-type mice under equivalent loading conditions. Furthermore, injured ACL with silenced periostin expression, achieved through nanoparticle-siRNA complex delivery, displayed an elevated propensity for apoptosis and senescence compared to intact ACL in C57BL/6 mice. Together, our findings underscore the pivotal role of periostin in ACL health, injury, and potential for healing.


Assuntos
Lesões do Ligamento Cruzado Anterior , Ligamento Cruzado Anterior , Senescência Celular , Fibroblastos , Periostina , Espécies Reativas de Oxigênio , Animais , Feminino , Humanos , Masculino , Camundongos , Ligamento Cruzado Anterior/metabolismo , Lesões do Ligamento Cruzado Anterior/metabolismo , Lesões do Ligamento Cruzado Anterior/patologia , Apoptose , Células Cultivadas , Senescência Celular/fisiologia , Fibroblastos/metabolismo , Camundongos Endogâmicos C57BL , Periostina/genética , Periostina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator de Transcrição STAT3/metabolismo
9.
Proc Natl Acad Sci U S A ; 119(32): e2200058119, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35914170

RESUMO

Melanins (from the Greek µÎ­λας, mélas, black) are bio-pigments ubiquitous in flora and fauna. Eumelanin is an insoluble brown-black type of melanin, found in vertebrates and invertebrates alike, among which Sepia (cuttlefish) is noteworthy. Sepia melanin is a type of bio-sourced eumelanin that can readily be extracted from the ink sac of cuttlefish. Eumelanin features broadband optical absorption, metal-binding affinity and antioxidative and radical-scavenging properties. It is a prototype of benign material for sustainable organic electronics technologies. Here, we report on an electronic conductivity as high as 10-3 S cm-1 in flexographically printed Sepia melanin films; such values for the conductivity are typical for well-established high-performance organic electronic polymers but quite uncommon for bio-sourced organic materials. Our studies show the potential of bio-sourced materials for emerging electronic technologies with low human- and eco-toxicity.


Assuntos
Eletrônica , Melaninas , Sepia , Animais , Eletrônica/instrumentação , Humanos , Tinta , Melaninas/química , Pigmentação , Sepia/química
10.
Small ; : e2403512, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39011973

RESUMO

As sustainable and eco-friendly replacements to conventional paper, rewritable paper is a very attractive alternative for communication, information circulation, and storage. Development is made for rewritable paper using chromogenic materials that change its color in presence of external stimuli. However, the new techniques have faced several major challenges including feasible operational method, eco-friendly approach. Herein, a simple, convenient, and eco-friendly strategy is described for the preparation of rewritable paper substrate, and multi colored ink for efficient use in writing, painting or printing purpose. In addition, writing with "invisible ink" on the rewritable paper can be realized for potential anti-counterfeiting application. The written, painted, or printed information on the paper substrate can be easily erased using an aqueous solution. Thus, the original paper can be retrieved and the paper substrate can be reused multiple times. Besides, the written or printed information can be retained for a prolonged time at ambient conditions. Overall, this approach shows the rewritable paper as a prototype of multicolor writing/painting application, offering a sustainable solution for reducing paper waste and promoting environmental stewardship.

11.
Small ; 20(2): e2303464, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37670207

RESUMO

Silicon nanocrystals (SiNCs) have attracted extensive attention in many advanced applications due to silicon's high natural abundance, low toxicity, and impressive optical properties. However, these applications are mainly focused on fluorescent SiNCs, little attention is paid to SiNCs with room-temperature phosphorescence (RTP) and their relative applications, especially water-dispersed ones. Herein, this work presents water-dispersible RTP SiNCs (UA-SiNCs) and their optical applications. The UA-SiNCs with a uniform particle size of 2.8 nm are prepared by thermal hydrosilylation between hydrogen-terminated SiNCs (H-SiNCs) and 10-undecenoic acid (UA). Interestingly, the resultant UA-SiNCs can exhibit tunable long-lived RTP with an average lifetime of 0.85 s. The RTP feature of the UA-SiNCs is confirmed to the n-π* transitions of their surface C═O groups. Subsequently, new dual-modal emissive UA-SiNCs-based ink is fabricated by blending with sodium alginate (SA) as the binder. The customized anticounterfeiting labels are also prepared on cellulosic substrates by screen-printing technique. As expected, UA-SiNCs/SA ink exhibits excellent practicability in anticounterfeiting applications. These findings will trigger the rapid development of RTP SiNCs, envisioning enormous potential in future advanced applications such as high-level anti-counterfeiting, information encryption, and so forth.

12.
Small ; 20(5): e2306646, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37759391

RESUMO

Resolution control and expansibility have always been challenges to the fabrication of structural color materials. Here, a facile strategy to print cholesteric liquid crystal elastomers (CLCEs) into complex structural color patterns with variable resolution and enhanced expansibility is reported. A volatile solvent is introduced into the synthesized CLC oligomers, modifying its rheological properties and allowing direct-ink-writing (DIW) under mild conditions. The combination of printing shear flow and anisotropic deswelling of ink drives the CLC molecules into an ordered cholesteric arrangement. The authors meticulously investigate the influence of printing parameters to achieve resolution control over a wide range, allowing for the printing of multi-sized 1D or 2D patterns with constant quality. Furthermore, such solvent-cast direct-ink-writing (DIW) strategy is highly expandable and can be integrated easily into the DIW of bionic robots. Multi-responsive bionic butterfly and flower are printed with biomimetic in both locomotion and coloration. Such designs dramatically reduced the processing difficulty of precise full-color printing and expanded the capability of structural color materials to collaborate with other systems.

13.
Small ; 20(23): e2305838, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38258379

RESUMO

Interstitial fluid (ISF) is an attractive alternative to regular blood sampling for health checks and disease diagnosis. Porous microneedles (MNs) are well suited for collecting ISF in a minimally invasive manner. However, traditional methods of molding MNs from microfabricated templates involve prohibitive fabrication costs and fixed designs. To overcome these limitations, this study presents a facile and economical additive manufacturing approach to create porous MNs. Compared to traditional layerwise build sequences, direct ink drawing with nanocomposite inks can define sharp MNs with tailored shapes and achieve vastly improved fabrication efficiency. The key to this fabrication strategy is the yield-stress fluid ink that is easily formulated by dispersing silica nanoparticles into the cellulose acetate polymer solution. As-printed MNs are solidified into interconnected porous microstructure inside a coagulation bath of deionized water. The resulting MNs exhibit high mechanical strength and high porosity. This approach also allows porous MNs to be easily integrated on various substrates. In particular, MNs on filter paper substrates are highly flexible to rapidly collect ISF on non-flat skin sites. The extracted ISF is used for quantitative analysis of biomarkers, including glucose, = calcium ions, and calcium ions. Overall, the developments allow facile fabrication of porous MNs for transdermal diagnosis and therapy.


Assuntos
Líquido Extracelular , Tinta , Nanocompostos , Agulhas , Nanocompostos/química , Porosidade , Líquido Extracelular/química , Animais
14.
Small ; : e2400740, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693082

RESUMO

Integrating self-healing capabilities into printed stretchable electronic devices is important for improving performance and extending device life. However, achieving printed self-healing stretchable electronic devices with excellent device-level healing ability and stretchability while maintaining outstanding electrical performance remains challenging. Herein, a series of printed device-level self-healing stretchable electronic devices is achieved by depositing liquid metal/silver fractal dendrites/polystyrene-block-polyisoprene-block-polystyrene (LM/Ag FDs/SIS) conductive inks onto a self-healing thermoplastic polyurethane (TPU) film via screen printing method. Owing to the fluidic properties of the LM and the interfacial hydrogen bonding and disulfide bonds of TPU, the as-obtained stretchable electronic devices maintain good electronic properties under strain and exhibit device-level self-healing properties without external stimulation. Printed self-healing stretchable electrodes possess high electrical conductivity (1.6 × 105 S m-1), excellent electromechanical properties, and dynamic stability, with only a 2.5-fold increase in resistance at 200% strain, even after a complete cut and re-healing treatment. The printed self-healing capacitive stretchable strain sensor shows good linearity (R2 ≈0.9994) in a wide sensing range (0%-200%) and is successfully applied to bio-signal detection. Furthermore, the printed self-healing electronic smart label is designed and can be used for real-time environmental monitoring, which exhibits promising potential for practical application in food preservation packaging.

15.
Small ; : e2402432, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38850181

RESUMO

This paper presents a scalable and straightforward technique for the immediate patterning of liquid metal/polymer composites via multiphase 3D printing. Capitalizing on the polymer's capacity to confine liquid metal (LM) into diverse patterns. The interplay between distinctive fluidic properties of liquid metal and its self-passivating oxide layer within an oxidative environment ensures a resilient interface with the polymer matrix. This study introduces an inventive approach for achieving versatile patterns in eutectic gallium indium (EGaIn), a gallium alloy. The efficacy of pattern formation hinges on nozzle's design and internal geometry, which govern multiphase interaction. The interplay between EGaIn and polymer within the nozzle channels, regulated by variables such as traverse speed and material flow pressure, leads to periodic patterns. These patterns, when encapsulated within a dielectric polymer polyvinyl alcohol (PVA), exhibit an augmented inherent capacitance in capacitor assemblies. This discovery not only unveils the potential for cost-effective and highly sensitive capacitive pressure sensors but also underscores prospective applications of these novel patterns in precise motion detection, including heart rate monitoring, and comprehensive analysis of gait profiles. The amalgamation of advanced materials and intricate patterning techniques presents a transformative prospect in the domains of wearable sensing and comprehensive human motion analysis.

16.
Small ; 20(6): e2306387, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37771189

RESUMO

4D printing recently emerges as an exciting evolution of conventional 3D printing, where a printed construct can quickly transform in response to a specific stimulus to switch between a temporary variable state and an original state. In this work, a photocrosslinkable polyethylene-glycol polyurethane ink is synthesized for light-assisted 4D printing of smart materials. The molecular weight distribution of the ink monomers is tunable by adjusting the copolymerization reaction time. Digital light processing (DLP) technique is used to program a differential swelling response in the printed constructs after humidity variation. Bioactive microparticles are embedded into the ink and the improvement of biocompatibility of the printed constructs is demonstrated for tissue engineering applications. Cell studies reveal above 90% viability in 1 week and ≈50% biodegradability after 4 weeks. Self-folding capillary scaffolds, dynamic grippers, and film actuators are made and activated in a humid environment. The approach offers a versatile platform for the fabrication of complex constructs. The ink can be used in tissue engineering and actuator applications, making the ink a promising avenue for future research.


Assuntos
Tinta , Alicerces Teciduais , Poliuretanos , Engenharia Tecidual/métodos , Hidrogéis , Impressão Tridimensional
17.
Mol Hum Reprod ; 30(5)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38603629

RESUMO

Polycystic ovary syndrome (PCOS) is one of the most common endocrine disorders in women of reproductive age, but its pathology has not been fully characterized and the optimal treatment strategy remains unclear. Cellular senescence is a permanent state of cell-cycle arrest that can be induced by multiple stresses. Senescent cells contribute to the pathogenesis of various diseases, owing to an alteration in secretory profile, termed 'senescence-associated secretory phenotype' (SASP), including with respect to pro-inflammatory cytokines. Senolytics, a class of drugs that selectively eliminate senescent cells, are now being used clinically, and a combination of dasatinib and quercetin (DQ) has been extensively used as a senolytic. We aimed to investigate whether cellular senescence is involved in the pathology of PCOS and whether DQ treatment has beneficial effects in patients with PCOS. We obtained ovaries from patients with or without PCOS, and established a mouse model of PCOS by injecting dehydroepiandrosterone. The expression of the senescence markers p16INK4a, p21, p53, γH2AX, and senescence-associated ß-galactosidase and the SASP-related factor interleukin-6 was significantly higher in the ovaries of patients with PCOS and PCOS mice than in controls. To evaluate the effects of hyperandrogenism and DQ on cellular senescence in vitro, we stimulated cultured human granulosa cells (GCs) with testosterone and treated them with DQ. The expression of markers of senescence and a SASP-related factor was increased by testosterone, and DQ reduced this increase. DQ reduced the expression of markers of senescence and a SASP-related factor in the ovaries of PCOS mice and improved their morphology. These results indicate that cellular senescence occurs in PCOS. Hyperandrogenism causes cellular senescence in GCs in PCOS, and senolytic treatment reduces the accumulation of senescent GCs and improves ovarian morphology under hyperandrogenism. Thus, DQ might represent a novel therapy for PCOS.


Assuntos
Senescência Celular , Células da Granulosa , Síndrome do Ovário Policístico , Quercetina , Síndrome do Ovário Policístico/metabolismo , Síndrome do Ovário Policístico/patologia , Feminino , Senescência Celular/efeitos dos fármacos , Humanos , Animais , Células da Granulosa/metabolismo , Células da Granulosa/efeitos dos fármacos , Células da Granulosa/patologia , Quercetina/farmacologia , Camundongos , Fenótipo Secretor Associado à Senescência , Adulto , Dasatinibe/farmacologia , Modelos Animais de Doenças , Senoterapia/farmacologia , Hiperandrogenismo/patologia , Hiperandrogenismo/metabolismo , Interleucina-6/metabolismo , Desidroepiandrosterona/farmacologia
18.
Magn Reson Med ; 92(1): 346-360, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38394163

RESUMO

PURPOSE: To introduce alternating current-controlled, conductive ink-printed marker that could be implemented with both custom and commercial interventional devices for device tracking under MRI using gradient echo, balanced SSFP, and turbo spin-echo sequences. METHODS: Tracking markers were designed as solenoid coils and printed on heat shrink tubes using conductive ink. These markers were then placed on three MR-compatible test samples that are typically challenging to visualize during MRI scans. MRI visibility of markers was tested by applying alternating and direct current to the markers, and the effects of applied current parameters (amplitude, frequency) on marker artifacts were tested for three sequences (gradient echo, turbo spin echo, and balanced SSFP) in a gel phantom, using 0.55T and 1.5T MRI scanners. Furthermore, an MR-compatible current supply circuit was designed, and the performance of the current-controlled markers was tested in one postmortem animal experiment using the current supply circuit. RESULTS: Direction and parameters of the applied current were determined to provide the highest conspicuity for all three sequences. Marker artifact size was controlled by adjusting the current amplitude, successfully. Visibility of a custom-designed, 20-gauge nitinol needle was increased in both in vitro and postmortem animal experiments using the current supply circuit. CONCLUSION: Current-controlled conductive ink-printed markers can be placed on custom or commercial MR-compatible interventional tools and can provide an easy and effective solution to device tracking under MRI for three sequences by adjusting the applied current parameters with respect to pulse sequence parameters using the current supply circuit.


Assuntos
Desenho de Equipamento , Imageamento por Ressonância Magnética , Imagens de Fantasmas , Animais , Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/métodos , Artefatos , Imagem por Ressonância Magnética Intervencionista/instrumentação
19.
Appl Environ Microbiol ; 90(7): e0027624, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38953654

RESUMO

Tattooing and use of permanent makeup (PMU) have dramatically increased over the last decade, with a concomitant increase in ink-related infections. Studies have shown evidence that commercial tattoo and PMU inks are frequently contaminated with pathogenic microorganisms. Considering that tattoo inks are placed into the dermal layer of the skin where anaerobic bacteria can thrive and cause infections in low-oxygen environments, the prevalence of anaerobic and aerobic bacteria should be assessed in tattoo and PMU inks. In this study, we tested 75 tattoo and PMU inks using the analytical methods described in the FDA Bacteriological Analytical Manual Chapter 23 for the detection of both aerobic and anaerobic bacterial contamination, followed by 16S rRNA gene sequencing for microbial identification. Of 75 ink samples, we found 26 contaminated samples with 34 bacterial isolates taxonomically classified into 14 genera and 22 species. Among the 34 bacterial isolates, 19 were identified as possibly pathogenic bacterial strains. Two species, namely Cutibacterium acnes (four strains) and Staphylococcus epidermidis (two strains) were isolated under anaerobic conditions. Two possibly pathogenic bacterial strains, Staphylococcus saprophyticus and C. acnes, were isolated together from the same ink samples (n = 2), indicating that tattoo and PMU inks can contain both aerobic (S. saprophyticus) and anaerobic bacteria (C. acnes). No significant association was found between sterility claims on the ink label and the absence of bacterial contamination. The results indicate that tattoo and PMU inks can also contain anaerobic bacteria. IMPORTANCE: The rising popularity of tattooing and permanent makeup (PMU) has led to increased reports of ink-related infections. This study is the first to investigate the presence of both aerobic and anaerobic bacteria in commercial tattoo and PMU inks under aerobic and anaerobic conditions. Our findings reveal that unopened and sealed tattoo inks can harbor anaerobic bacteria, known to thrive in low-oxygen environments, such as the dermal layer of the skin, alongside aerobic bacteria. This suggests that contaminated tattoo inks could be a source of infection from both types of bacteria. The results emphasize the importance of monitoring these products for both aerobic and anaerobic bacteria, including possibly pathogenic microorganisms.


Assuntos
Bactérias Aeróbias , Bactérias Anaeróbias , Tinta , RNA Ribossômico 16S , Tatuagem , Bactérias Anaeróbias/isolamento & purificação , Bactérias Anaeróbias/genética , Bactérias Anaeróbias/classificação , Bactérias Aeróbias/isolamento & purificação , Bactérias Aeróbias/classificação , Bactérias Aeróbias/genética , RNA Ribossômico 16S/genética
20.
Eur J Clin Invest ; 54(8): e14202, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38553975

RESUMO

BACKGROUND: High-altitude pulmonary oedema (HAPE) is a form of noncardiogenic pulmonary oedema. Studies have found that long noncoding RNA (lncRNA) plays an important role in HAPE. ANRIL is significant in pulmonary illnesses, which implies that alterations in ANRIL expression levels may be involved in the beginning and development of HAPE. However, the specific mechanism is indistinct. The present study is meant to explore the effect and mechanism of ANRIL on hypoxic-induced injury of pulmonary microvascular endothelial cells (PMEVCs). METHODS: In the hypoxic model of PMVECs, overexpression of ANRIL or knockdown of miR-181c-5p was performed to assess cell proliferation, apoptosis, and migration. Furthermore, the levels of apoptosis-related proteins, inflammatory factors, and vascular active factors were also measured. RESULTS: The results showed that, after 24 h of hypoxia, PMVECs proliferation and migration were suppressed in comparison to the control group, along with an increase in apoptosis, a decrease in the expression of ANRIL, and an increase in the expression of miR-181c-5p (all p < .05). The damage caused by hypoxia in PMVECs can be lessened by overexpressing ANRIL, which also inhibits the production of TNF-α, iNOS, and VEGF as well as BAX and cleaved caspase-3 (all p < .05). Further experimental results showed that overexpression of ANRIL and knockdown of miR-181c-5p had the same protection against hypoxic injury in PMVECs (all p < .05). CONCLUSIONS: Our study suggests that ANRIL may prevent hypoxia injury to PMVECs in HAPE through the negative regulation of miR-181c-5p.


Assuntos
Apoptose , Movimento Celular , Proliferação de Células , Células Endoteliais , Pulmão , MicroRNAs , RNA Longo não Codificante , RNA Longo não Codificante/metabolismo , RNA Longo não Codificante/genética , Células Endoteliais/metabolismo , Proliferação de Células/genética , MicroRNAs/metabolismo , MicroRNAs/genética , Movimento Celular/genética , Animais , Pulmão/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Hipóxia Celular/fisiologia , Ratos , Técnicas de Silenciamento de Genes , Fator de Necrose Tumoral alfa/metabolismo , Células Cultivadas , Caspase 3/metabolismo , Proteína X Associada a bcl-2/metabolismo , Proteína X Associada a bcl-2/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA