Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 149
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(3): e2315341121, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38190519

RESUMO

Wing dimorphism of insect vectors is a determining factor for viral long-distance dispersal and large-area epidemics. Although plant viruses affect the wing plasticity of insect vectors, the potential underlying molecular mechanisms have seldom been investigated. Here, we found that a planthopper-vectored rice virus, rice stripe virus (RSV), specifically induces a long-winged morph in male insects. The analysis of field populations demonstrated that the long-winged ratios of male insects are closely associated with RSV infection regardless of viral titers. A planthopper-specific and testis-highly expressed gene, Encounter, was fortuitously found to play a key role in the RSV-induced long-winged morph. Encounter resembles malate dehydrogenase in the sequence, but it does not have corresponding enzymatic activity. Encounter is upregulated to affect male wing dimorphism at early larval stages. Encounter is closely connected with the insulin/insulin-like growth factor signaling pathway as a downstream factor of Akt, of which the transcriptional level is activated in response to RSV infection, resulting in the elevated expression of Encounter. In addition, an RSV-derived small interfering RNA directly targets Encounter to enhance its expression. Our study reveals an unreported mechanism underlying the direct regulation by a plant virus of wing dimorphism in its insect vectors, providing the potential way for interrupting viral dispersal.


Assuntos
Epidemias , Vírus de Plantas , Infecções por Vírus Respiratório Sincicial , Tenuivirus , Masculino , Animais , Vírus de Plantas/genética , Tenuivirus/genética , Insetos Vetores , Peptídeos Semelhantes à Insulina
2.
Proc Natl Acad Sci U S A ; 119(41): e2122099119, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36191206

RESUMO

Viruses pose a great threat to animal and plant health worldwide, with many being dependent on insect vectors for transmission between hosts. While the virus-host arms race has been well established, how viruses and insect vectors adapt to each other remains poorly understood. Begomoviruses comprise the largest genus of plant-infecting DNA viruses and are exclusively transmitted by the whitefly Bemisia tabaci. Here, we show that the vector Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway plays an important role in mediating the adaptation between the begomovirus tomato yellow leaf curl virus (TYLCV) and whiteflies. We found that the JAK/STAT pathway in B. tabaci functions as an antiviral mechanism against TYLCV infection in whiteflies as evidenced by the increase in viral DNA and coat protein (CP) levels after inhibiting JAK/STAT signaling. Two STAT-activated effector genes, BtCD109-2 and BtCD109-3, mediate this anti-TYLCV activity. To counteract this vector immunity, TYLCV has evolved strategies that impair the whitefly JAK/STAT pathway. Infection of TYLCV is associated with a reduction of JAK/STAT pathway activity in whiteflies. Moreover, TYLCV CP binds to STAT and blocks its nuclear translocation, thus, abrogating the STAT-dependent transactivation of target genes. We further show that inhibition of the whitefly JAK/STAT pathway facilitates TYLCV transmission but reduces whitefly survival and fecundity, indicating that this JAK/STAT-dependent TYLCV-whitefly interaction plays an important role in keeping a balance between whitefly fitness and TYLCV transmission. This study reveals a mechanism of plant virus-insect vector coadaptation in relation to vector survival and virus transmission.


Assuntos
Begomovirus , Hemípteros , Vírus de Plantas , Solanum lycopersicum , Animais , Antivirais , Begomovirus/genética , DNA Viral , Hemípteros/fisiologia , Janus Quinases/genética , Solanum lycopersicum/genética , Doenças das Plantas , Vírus de Plantas/genética , Fatores de Transcrição STAT/genética , Transdução de Sinais
3.
Proc Natl Acad Sci U S A ; 119(36): e2207848119, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36037368

RESUMO

Exosomes play a key role in virus exocytosis and transmission. The exportin family is usually responsible for cargo nucleocytoplasmic trafficking, and they are frequently found in exosomes. However, the function of exportins sorted in exosomes remains unknown. Here, we successfully isolated "cup holder"-like exosomes from the saliva of ∼30,000 small brown planthoppers, which are vectors of rice stripe virus (RSV). RSV virions were packed in comparatively large exosomes. Four viral genomic RNAs at a certain ratio were identified in the saliva exosomes. The virions contained in the saliva exosomes were capable of replicating and causing disease in rice plants. Interference with each phase of the insect exosome system affected the transmission of RSV from the insect vectors to rice plants. Fragmented exportin 6 was coimmunoprecipitated with viral nucleocapsid protein in saliva and sorted to exosomes via interactions with the cargo sorting protein VPS37a. When the expression of exportin 6 was knocked down, the amounts of RSV secreted in saliva and rice plants were reduced by 60% and 74%, respectively. These results showed that exportin 6 acted as a vehicle for transporting RSV into exosomes to overcome the barrier of insect salivary glands for horizontal transmission. Exportin 6 would represent an ideal target that could be manipulated to control the outbreak of insect-borne viruses in the future.


Assuntos
Exossomos , Hemípteros , Carioferinas , Oryza , Tenuivirus , Animais , Exossomos/virologia , Hemípteros/virologia , Insetos Vetores/virologia , Carioferinas/metabolismo , Oryza/virologia , Doenças das Plantas/virologia , Tenuivirus/patogenicidade
4.
Insect Mol Biol ; 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38676396

RESUMO

The western flower thrips, Frankliniella occidentalis, poses a significant challenge in global agriculture as a notorious pest and a vector of economically significant orthotospoviruses. However, the limited availability of genetic tools for F. occidentalis hampers the advancement of functional genomics and the development of innovative pest control strategies. In this study, we present a robust methodology for generating heritable mutations in F. occidentalis using the CRISPR/Cas9 genome editing system. Two eye-colour genes, white (Fo-w) and cinnabar (Fo-cn), frequently used to assess Cas9 function in insects were identified in the F. occidentalis genome and targeted for knockout through embryonic microinjection of Cas9 complexed with Fo-w or Fo-cn specific guide RNAs. Homozygous Fo-w and Fo-cn knockout lines were established by crossing mutant females and males. The Fo-w knockout line revealed an age-dependent modification of eye-colour phenotype. Specifically, while young larvae exhibit orange-coloured eyes, the colour transitions to bright red as they age. Unexpectedly, loss of Fo-w function also altered body colour, with Fo-w mutants having a lighter coloured body than wild type, suggesting a dual role for Fo-w in thrips. In contrast, individuals from the Fo-cn knockout line consistently displayed bright red eyes throughout all life stages. Molecular analyses validated precise editing of both target genes. This study offers a powerful tool to investigate thrips gene function and paves the way for the development of genetic technologies for population suppression and/or population replacement as a means of mitigating virus transmission by this vector.

5.
J Virol ; 96(7): e0214021, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35254088

RESUMO

Most plant viruses require insect vectors for transmission. One of the key steps for the transmission of persistent-circulative plant viruses is overcoming the gut barrier to enter epithelial cells. To date, little has been known about viral cofactors in gut epithelial cells of insect vectors. Here, we identified flotillin 2 as a plasma membrane protein that facilitates the infection of rice stripe virus (RSV) in its vector, the small brown planthopper. Flotillin 2 displayed a prominent plasma membrane location in midgut epithelial cells. The nucleocapsid protein of RSV and flotillin 2 colocalized on gut microvilli, and a nanomolar affinity existed between the two proteins. Knockout of flotillin 2 impeded the entry of virions into epithelial cells, resulting in a 57% reduction of RSV levels in planthoppers. The knockout of flotillin 2 decreased disease incidence in rice plants fed by viruliferous planthoppers from 40% to 11.7%. Furthermore, flotillin 2 mediated the infection of southern rice black-streaked dwarf virus in its vector, the white-backed planthopper. This work implies the potential of flotillin 2 as a target for controlling the transmission of rice stripe disease. IMPORTANCE Plant viral diseases are a major threat to world agriculture. The transmission of 80% of plant viruses requires vector insects, and 54% of vector-borne plant viruses are persistent-circulative viruses, which must overcome the barriers of gut cells with the help of proteins on the cell surface. Here, we identified flotillin 2 as a membrane protein that mediates the cell entry of rice stripe virus in its vector insect, small brown planthopper. Flotillin 2 displays a prominent cellular membrane location in midgut cells and can specifically bind to virions. The loss of flotillin 2 impedes the entry of virions into the midgut cells of vector insects and substantially suppresses viral transmission to rice. Therefore, flotillin 2 may be a promising target gene for manipulation in vector insects to control the transmission of rice stripe disease and perhaps that of other rice virus diseases in the future.


Assuntos
Proteínas de Insetos , Proteínas de Membrana , Oryza , Vírus de Plantas , Tenuivirus , Animais , Hemípteros/virologia , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Insetos Vetores/virologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Oryza/virologia , Doenças das Plantas/virologia , Vírus de Plantas/fisiologia , Tenuivirus/genética , Tenuivirus/metabolismo
6.
J Virol ; 96(2): e0171521, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-34757837

RESUMO

Alternative splicing (AS) is a frequent posttranscriptional regulatory event occurring in response to various endogenous and exogenous stimuli in most eukaryotic organisms. However, little is known about the effects of insect-transmitted viruses on AS events in insect vectors. The present study used third-generation sequencing technology and RNA sequencing (RNA-Seq) to evaluate the AS response in the small brown planthopper Laodelphax striatellus to rice stripe virus (RSV). The full-length transcriptome of L. striatellus was obtained using single-molecule real-time sequencing technology (SMRT). Posttranscriptional regulatory events, including AS, alternative polyadenylation, and fusion transcripts, were analyzed. A total of 28,175 nonredundant transcript isoforms included 24,950 transcripts assigned to 8,500 annotated genes of L. striatellus, and 5,000 of these genes (58.8%) had AS events. RNA-Seq of the gut samples of insects infected by RSV for 8 d identified 3,458 differentially expressed transcripts (DETs); 2,185 of these DETs were transcribed from 1,568 genes that had AS events, indicating that 31.4% of alternatively spliced genes responded to RSV infection of the gut. One of the c-Jun N-terminal kinase (JNK) genes, JNK2, experienced exon skipping, resulting in three transcript isoforms. These three isoforms differentially responded to RSV infection during development and in various organs. Injection of double-stranded RNAs targeting all or two isoforms indicated that three or at least two JNK2 isoforms facilitated RSV accumulation in planthoppers. These results implied that AS events could participate in the regulation of complex relationships between viruses and insect vectors. IMPORTANCE Alternative splicing (AS) is a regulatory mechanism that occurs after gene transcription. AS events can enrich protein diversity to promote the reactions of the organisms to various endogenous and exogenous stimulations. It is not known how insect vectors exploit AS events to cope with transmitted viruses. The present study used third-generation sequencing technology to obtain the profile of AS events in the small brown planthopper Laodelphax striatellus, which is an efficient vector for rice stripe virus (RSV). The results indicated that 31.4% of alternatively spliced genes responded to RSV infection in the gut of planthoppers. One of the c-Jun N-terminal kinase (JNK) genes, JNK2, produced three transcript isoforms by AS. These three isoforms showed different responses to RSV infection, and at least two isoforms facilitated viral accumulation in planthoppers. These results implied that AS events could participate in the regulation of complex relationships between viruses and insect vectors.


Assuntos
Processamento Alternativo , Hemípteros/virologia , Insetos Vetores/virologia , Tenuivirus/fisiologia , Animais , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/virologia , Fusão Gênica , Hemípteros/genética , Proteínas de Insetos/genética , Insetos Vetores/genética , Proteína Quinase 9 Ativada por Mitógeno/genética , Oryza/virologia , Doenças das Plantas/virologia , Poliadenilação , Isoformas de Proteínas , Transcriptoma/genética
7.
Parasitology ; 150(9): 781-785, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37554107

RESUMO

The assumed definitive host of the heartworm Acanthocheilonema spirocauda (Onchocerdidae; Filarioidea) is the harbour seal (Phoca vitulina). This filaroid nematode parasitizing in cardiac ventricles and blood vessel lumina of harbour seals (P. vitulina) has a low prevalence and seldom causes severe health impacts. The seal louse (Echinophthirius horridus) is the assumed intermediate host for transmission of A. spirocauda filariae between seals, comprising a unique parasite assembly conveyed from the terrestrial ancestors of pinnipeds. Although grey seals (Halichoerus grypus) are infected by seal lice, heartworm infection was not verified. Analysing a longterm dataset compiled over decades (1996­2021) of health monitoring seals along the German coasts comprising post mortem investigations and archived parasites, 2 cases of A. spirocauda infected male grey seals were detected. Tentative morphological identification was confirmed with molecular tools by sequencing a section of mtDNA COI and comparing nucleotide data with available heartworm sequence. This is the first record of heartworm individuals collected from the heart of grey seals at necropsy. It remains puzzling why heartworm infection occur much less frequently in grey than in harbour seals, although both species use the same habitat, share mixed haul-outs and consume similar prey species. If transmission occurs directly via seal louse vectors on haul-outs, increasing seal populations in the North- and Baltic Sea could have density dependent effects on prevalence of heartworm and seal louse infections. It remains to be shown how species-specificity of filarial nematodes as well as immune system traits of grey seals influence infection patterns of A. spirocauda.


Assuntos
Acanthocheilonema , Dirofilaria immitis , Filarioidea , Nematoides , Phoca , Animais , Masculino , Phoca/parasitologia , Mar do Norte
8.
Arch Insect Biochem Physiol ; 113(4): e22023, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37221967

RESUMO

The review discusses current RNA interference (RNAi) biotechnological innovations for crop protection. Special attention is given to the management of insect pests in the order Hemiptera. This insect order has the most members of insects which transmit pathogens on economically important crops. It first briefly summarizes the characteristics of the insects in this order and the type of transmission mechanisms for viral and bacterial plant pathogens. RNAi products developed for other insects are also analyzed. Emphasis was made on the need for innovative management approaches to offset the threat of resistance by both the insect vector to insecticides and the pathogens to microbicides. Subsequently, the RNAi technology is described, which is particularly an ingenious method currently utilized in itself or in combination with other modern biotechnological innovations for managing important vector insects that could provide an additional powerful tool for use in integrated pest control programs. The requirements and recent advances for performing RNAi assays are detailed and an overview is given on how to produce cheaper double-stranded RNA as the main component of RNAi-based biopesticide. Examples of agricultural companies that use RNAi biotechnology in their product development were also discussed.


Assuntos
Hemípteros , Insetos , Animais , Interferência de RNA , Insetos/genética , Hemípteros/genética , Controle de Pragas , RNA de Cadeia Dupla/genética , Biotecnologia , Controle de Insetos/métodos
9.
Phytopathology ; 113(9): 1647-1660, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36945728

RESUMO

Spatial-temporal dynamics of spittlebug populations, together with transmission biology, are of major importance to outline the disease epidemiology of Xylella fastidiosa subsp. pauca in Apulian olive groves. The spread rate of X. fastidiosa is mainly influenced by (i) the pathogen colonization of the host plant; (ii) the acquisition of the pathogen by the vector from an infected plant, and its inoculation to healthy plants; (iii) the vector population dynamics and abundance at different spatial scales; and (iv) the dispersal of the vector. In this contribution we summarize the recent advances in research on insect vectors' traits-points ii, iii, and iv-focusing on those most relevant to X. fastidiosa epidemic in Apulia. Among the vectors' bioecological traits influencing the X. fastidiosa epidemic in olive trees, we emphasize the following: natural infectivity and transmission efficiency, phenological timing of both nymphal and adult stage, the role of seminatural vegetation as a vector reservoir in the agroecosystem and landscape, and preferential and directional dispersal capabilities. Despite the research on X. fastidiosa vectors carried out in Europe in the last decade, key uncertainties on insect vectors remain, hampering a thorough understanding of pathogen epidemiology and the development of effective and targeted management strategies. Our goal is to provide a structured and contextualized review of knowledge on X. fastidiosa vectors' key traits in the Apulian epidemic, highlighting information gaps and stimulating novel research pathways on X. fastidiosa pathosystems in Europe. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Hemípteros , Olea , Xylella , Animais , Doenças das Plantas/prevenção & controle , Itália , Europa (Continente)
10.
Proc Natl Acad Sci U S A ; 117(29): 16928-16937, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32636269

RESUMO

Whereas most of the arthropod-borne animal viruses replicate in their vectors, this is less common for plant viruses. So far, only some plant RNA viruses have been demonstrated to replicate in insect vectors and plant hosts. How plant viruses evolved to replicate in the animal kingdom remains largely unknown. Geminiviruses comprise a large family of plant-infecting, single-stranded DNA viruses that cause serious crop losses worldwide. Here, we report evidence and insight into the replication of the geminivirus tomato yellow leaf curl virus (TYLCV) in the whitefly (Bemisia tabaci) vector and that replication is mainly in the salivary glands. We found that TYLCV induces DNA synthesis machinery, proliferating cell nuclear antigen (PCNA) and DNA polymerase δ (Polδ), to establish a replication-competent environment in whiteflies. TYLCV replication-associated protein (Rep) interacts with whitefly PCNA, which recruits DNA Polδ for virus replication. In contrast, another geminivirus, papaya leaf curl China virus (PaLCuCNV), does not replicate in the whitefly vector. PaLCuCNV does not induce DNA-synthesis machinery, and the Rep does not interact with whitefly PCNA. Our findings reveal important mechanisms by which a plant DNA virus replicates across the kingdom barrier in an insect and may help to explain the global spread of this devastating pathogen.


Assuntos
Begomovirus/fisiologia , DNA Polimerase III/metabolismo , Hemípteros/virologia , Proteínas de Insetos/metabolismo , Insetos Vetores/virologia , Replicação Viral , Animais , Begomovirus/genética , DNA Polimerase III/genética , Gossypium/parasitologia , Gossypium/virologia , Hemípteros/patogenicidade , Interações Hospedeiro-Patógeno , Proteínas de Insetos/genética , Insetos Vetores/patogenicidade , Glândulas Salivares/metabolismo , Glândulas Salivares/virologia
11.
J Insect Sci ; 23(6)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38109489

RESUMO

Leaf scald is a destructive sugarcane disease caused by the bacterium Xanthomonas albilineans (Ashby) Dowson. This pathogen presents the gene cluster SPI-1 T3SS, a conserved feature in pathogens vectored by animals. In this study, the competence of Mahanarva fimbriolata (Stål), a spittlebug commonly found in sugarcane fields in Brazil, was evaluated for the transmission of X. albilineans. Artificial probing assays were conducted to investigate the ability of M. fimbriolata adults to acquire X. albilineans from artificial diets containing the pathogen with subsequent inoculation of X. albilineans into pathogen-free diets. Plant probing assays with M. fimbriolata adults were conducted to evaluate the acquisition of X. albilineans from diseased source plants and subsequent inoculation of healthy recipient sugarcane plants. The presence of X. albilineans DNA in saliva/diet mixtures of the artificial probing assays and both insects and plants of the plant probing assays were checked using TaqMan assays. The artificial probing assays showed that M. fimbriolata adults were able to acquire and inoculate X. albilineans in diets. Plant probing assays confirmed the competence of M. fimbriolata to transmit X. albilineans to sugarcane. Over the entire experiment, 42% of the insects had acquired the pathogen and successful inoculation of the pathogen occurred in 18% of the recipient-susceptible sugarcane plants at 72 or 96 h of inoculation access period. Assays evidenced the vector competence of M. fimbriolata for transmission of X. albilineans, opening new pathways for investigating the biology and the economic impacts of the interaction between X. albilineans and M. fimbriolata.


Assuntos
Hemípteros , Saccharum , Xanthomonas , Animais , Saccharum/microbiologia , Xanthomonas/genética , Brasil , Folhas de Planta , Insetos Vetores
12.
Int J Mol Sci ; 24(5)2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36901925

RESUMO

Phytoplasmas are uncultivable, phloem-limited, phytopathogenic bacteria that represent a major threat to agriculture worldwide. Phytoplasma membrane proteins are in direct contact with hosts and presumably play a crucial role in phytoplasma spread within the plant as well as by the insect vector. Three highly abundant types of immunodominant membrane proteins (IDP) have been identified within the phytoplasmas: immunodominant membrane protein (Imp), immunodominant membrane protein A (IdpA), and antigenic membrane protein (Amp). Although recent results indicate that Amp is involved in host specificity by interacting with host proteins such as actin, little is known about the pathogenicity of IDP in plants. In this study, we identified an antigenic membrane protein (Amp) of rice orange leaf phytoplasma (ROLP), which interacts with the actin of its vector. In addition, we generated Amp-transgenic lines of rice and expressed Amp in tobacco leaves by the potato virus X (PVX) expression system. Our results showed that the Amp of ROLP can induce the accumulation of ROLP and PVX in rice and tobacco plants, respectively. Although several studies have reported interactions between major phytoplasma antigenic membrane protein (Amp) and insect vector proteins, this example demonstrates that Amp protein can not only interact with the actin protein of its insect vector but can also directly inhibit host defense responses to promote the infection. The function of ROLP Amp provides new insights into the phytoplasma-host interaction.


Assuntos
Oryza , Phytoplasma , Actinas/metabolismo , Phytoplasma/metabolismo , Oryza/metabolismo , Proteínas de Membrana/metabolismo , Virulência , Plantas/metabolismo , Nicotiana/metabolismo , Folhas de Planta/metabolismo , Doenças das Plantas/microbiologia
13.
Arch Insect Biochem Physiol ; 110(1): e21857, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34859483

RESUMO

Tomato yellow leaf curl virus (TYLCV), a plant DNA virus of the genus Begomovirus, is transmitted by whiteflies of the Bemisia tabaci species complex in a persistent manner. Our previous study indicated that activation of the apoptosis pathway in whiteflies could facilitate TYLCV accumulation and transmission. Considering that temperature change can influence the spread of insect-borne plant viruses, we focused on plant virus induced-apoptosis to investigate the underlying mechanism of temperature regulation on plant virus transmission via an insect vector. We found that heat stress (40°C) on whiteflies could facilitate TYLCV accumulation and increase transmission to tomato plants. Despite upregulation of caspase-1 and caspase-3 gene expression, heat stress failed to induce an increase in the activation of cleaved caspase-3 and DNA fragmentation in TYLCV-infected whiteflies. However, our data failed to determine the role of heat stress in apoptosis modulation of insect-plant virus interplay while still providing clues to understand insect vectors and their transmitted plant viruses.


Assuntos
Begomovirus , Hemípteros , Animais , Apoptose , Begomovirus/fisiologia , Caspase 3 , Resposta ao Choque Térmico , Hemípteros/genética
14.
Plant Dis ; 106(5): 1330-1333, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34854758

RESUMO

Maize striate mosaic virus (MSMV; genus Mastrevirus) was recently reported in maize plants in Brazil and also detected by metagenomic analyses in the corn leafhopper, Dalbulus maidis (DeLong & Wolcott). Although these findings suggested that D. maidis is a potential vector, no transmission studies have been performed. Here, we tested the transmission of MSMV by D. maidis from field-collected infected plants and plants infected with MSMV via leafhopper-mediated transmission in the laboratory; all plants were confirmed positive for MSMV by PCR. In each one of three transmission replicates, aviruliferous D. maidis nymphs and adults were confined together on a source plant during a 4-day acquisition access period (AAP) and subsequently transferred to healthy maize seedlings (10 individuals per test plant) in a series of 4-day inoculation access periods (IAPs). We also tested transmission by the corn aphid, Rhopalosiphum maidis (Fitch) and by mechanical inoculation of healthy maize seedlings. Only D. maidis transmitted MSMV, with overall transmission rates of 29.4 and 39.5% on field-collected infected plants and 18.5% on infected plants in laboratory. D. maidis transmitted MSMV until the third (8 to 12 days after the AAP) or fourth successive IAP (12 to 16 days), with gradual loss in transmission efficiency and rate of viruliferous insects over time, suggesting a persistent but nonpropagative mode of transmission. Infected test plants showed mottling symptoms with mild chlorotic streaks and height reduction. This is the first report of transmission of a mastrevirus by D. maidis, facilitating the completion of Koch's postulate for MSMV.


Assuntos
Afídeos , Geminiviridae , Animais , Brasil , Metagenômica , Zea mays
15.
Annu Rev Entomol ; 66: 389-405, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-32931313

RESUMO

Of the approximately 1,200 plant virus species that have been described to date, nearly one-third are single-stranded DNA (ssDNA) viruses, and all are transmitted by insect vectors. However, most studies of vector transmission of plant viruses have focused on RNA viruses. All known plant ssDNA viruses belong to two economically important families, Geminiviridae and Nanoviridae, and in recent years, there have been increased efforts to understand whether they have evolved similar relationships with their respective insect vectors. This review describes the current understanding of ssDNA virus-vector interactions, including how these viruses cross insect vector cellular barriers, the responses of vectors to virus circulation, the possible existence of viral replication within insect vectors, and the three-way virus-vector-plant interactions. Despite recent breakthroughs in our understanding of these viruses, many aspects of plant ssDNA virus transmission remain elusive. More effort is needed to identify insect proteins that mediate the transmission of plant ssDNA viruses and to understand the complex virus-insect-plant three-way interactions in the field during natural infection.


Assuntos
DNA de Cadeia Simples , Geminiviridae , Insetos Vetores , Insetos , Nanoviridae , Animais , Plantas/virologia
16.
J Virol ; 94(9)2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32102876

RESUMO

Vector transmission plays a primary role in the life cycle of viruses, and insects are the most common vectors. An important mode of vector transmission, reported only for plant viruses, is circulative nonpropagative transmission whereby the virus cycles within the body of its insect vector, from gut to salivary glands and saliva, without replicating. This mode of transmission has been extensively studied in the viral families Luteoviridae and Geminiviridae and is also reported for Nanoviridae The biology of viruses within these three families is different, and whether the viruses have evolved similar molecular/cellular virus-vector interactions is unclear. In particular, nanoviruses have a multipartite genome organization, and how the distinct genome segments encapsidated individually transit through the insect body is unknown. Here, using a combination of fluorescent in situ hybridization and immunofluorescence, we monitor distinct proteins and genome segments of the nanovirus Faba bean necrotic stunt virus (FBNSV) during transcytosis through the gut and salivary gland cells of its aphid vector Acyrthosiphon pisum FBNSV specifically transits through cells of the anterior midgut and principal salivary gland cells, a route similar to that of geminiviruses but distinct from that of luteoviruses. Our results further demonstrate that a large number of virus particles enter every single susceptible cell so that distinct genome segments always remain together. Finally, we confirm that the success of nanovirus-vector interaction depends on a nonstructural helper component, the viral protein nuclear shuttle protein (NSP), which is shown to be mandatory for viral accumulation within gut cells.IMPORTANCE An intriguing mode of vector transmission described only for plant viruses is circulative nonpropagative transmission, whereby the virus passes through the gut and salivary glands of the insect vector without replicating. Three plant virus families are transmitted this way, but details of the molecular/cellular mechanisms of the virus-vector interaction are missing. This is striking for nanoviruses that are believed to interact with aphid vectors in ways similar to those of luteoviruses or geminiviruses but for which empirical evidence is scarce. We here confirm that nanoviruses follow a within-vector route similar to that of geminiviruses but distinct from that of luteoviruses. We show that they produce a nonstructural protein mandatory for viral entry into gut cells, a unique phenomenon for this mode of transmission. Finally, noting that nanoviruses are multipartite viruses, we demonstrate that a large number of viral particles penetrate susceptible cells of the vector, allowing distinct genome segments to remain together.


Assuntos
Afídeos/virologia , Nanovirus/metabolismo , Animais , Vírus de DNA/genética , Geminiviridae/genética , Hibridização in Situ Fluorescente/métodos , Insetos Vetores/metabolismo , Insetos Vetores/virologia , Luteoviridae/genética , Nanovirus/patogenicidade , Doenças das Plantas/virologia , Vírus de Plantas/genética , Proteínas Virais/genética , Vírion/genética
17.
New Phytol ; 230(4): 1305-1320, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33555072

RESUMO

Attacks on plants by both viruses and their vectors is common in nature. Yet the dynamics of the plant-virus-vector tripartite system, in particular the effects of viral infection on plant-insect interactions, have only begun to emerge in the last decade. Viruses can modulate the interactions between insect vectors and plants via the jasmonate, salicylic acid and ethylene phytohormone pathways, resulting in changes in fitness and viral transmission capacity of their insect vectors. Virus infection of plants may also modulate other phytohormones, such as auxin, gibberellins, cytokinins, brassinosteroids and abscisic acid, with yet undefined consequences on plant-insect interactions. Moreover, virus infection in plants may incur changes to other plant traits, such as nutrition and secondary metabolites, that potentially contribute to virus-associated, phytohormone-mediated manipulation of plant-insect interactions. In this article, we review the research progress, discuss issues related to the complexity and variability of the viral modulation of plant interactions with insect vectors, and suggest future directions of research in this field.


Assuntos
Reguladores de Crescimento de Plantas , Vírus de Plantas , Animais , Citocininas , Insetos , Doenças das Plantas
18.
Oecologia ; 196(4): 1005-1015, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34264386

RESUMO

Herbivores assess predation risk in their environment by identifying visual, chemical, and tactile predator cues. Detection of predator cues can induce risk-avoidance behaviors in herbivores that affect feeding, dispersal, and host selection in ways that minimize mortality and reproductive costs. For herbivores that transmit plant pathogens, including many aphids, changes in herbivore behavior in response to predator cues may also affect pathogen spread. However, few studies have assessed how aphid behavioral responses to different types of predator cues affect pathogen transmission. Here, we conducted greenhouse experiments to assess whether responses of pea aphids (Acyrthosiphon pisum) to predation risk and alarm pheromone (E-ß-Farnesene), an aphid alarm signal released in response to predation risk, affected transmission of Pea enation mosaic virus (PEMV). We exposed A. pisum individuals to risk cues, and quantified viral titer in aphids and pea (Pisum sativum) host plants across several time periods. We also assessed how A. pisum responses to risk cues affected aphid nutrition, reproduction, and host selection. We show that exposure to predator cues and alarm pheromone significantly reduced PEMV acquisition and inoculation. Although vectors avoided hosts with predator cues, predator cues did not alter vector reproduction or reduce nutrient acquisition. Overall, these results suggest that non-consumptive effects of predators may indirectly decrease the spread of plant pathogens by altering vector behavior in ways that reduce vector competence and pathogen transmission efficiency.


Assuntos
Afídeos , Vírus de Plantas , Animais , Sinais (Psicologia) , Humanos , Feromônios , Comportamento Predatório
19.
BMC Vet Res ; 17(1): 152, 2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33836768

RESUMO

BACKGROUND: Mosquitoes are important insect vectors, but whether they can carry and transmit African swine fever virus (ASFV) in large-scale pig farms in China is unknown. RESULTS: In this study, probe-based qPCR analysis was performed on mosquitoes from five pig farms with ASF virus (ASFV). Analysis of ASFV in 463 mosquitoes yielded negative cycle threshold (CT) value), and detection remained negative after mixing samples from all five pig farms. CONCLUSIONS: Therefore, mosquitoes appear unlikely to transmit ASFV, and pose little threat to large-scale pig farms. Thus, farms should continue to follow normal mosquito control procedures when formulating strategies for the prevention and control of ASF.


Assuntos
Vírus da Febre Suína Africana/fisiologia , Febre Suína Africana/transmissão , Culex/microbiologia , Mosquitos Vetores/virologia , Febre Suína Africana/virologia , Animais , Suínos
20.
J Insect Sci ; 21(5)2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34718644

RESUMO

Plant viruses can change the phenotypes and defense pathways of the host plants and the performance of their vectors to facilitate their transmission. Cucurbit chlorotic yellows virus (CCYV) (Crinivirus), a newly reported virus occurring on cucurbit plants and many other plant species, is transmitted specifically by Bemisia tabaci MEAM1 (B biotype) and MED (Q biotype) cryptic species in a semipersistent manner. This study evaluated the impacts of CCYV on B. tabaci to better understand the plant-virus-vector interactions. By using CCYV-B. tabaci MED-cucumber as the model, we investigated whether or how a semipersistent plant virus impacts the biology of its whitefly vector. CCYV mRNAs were detectable in nymphs from first to fourth instars and adults of B. tabaci with different titers. Nymph instar durations and adult longevity of female whiteflies greatly extended on CCYV-infected plants, but nymph instar durations and adult longevity of male whiteflies were not significantly influenced. In addition, the body length and oviposition increased in adults feeding on CCYV-infected plants, but the hatching rates of eggs and survival rates of different stages were not affected. Most interestingly, the sex ratio (male:female) significantly reduced to 0.5:1 in whitefly populations on CCYV-infected plants, while the ratio remained about 1:1 on healthy plants. These results indicated that CCYV can significantly impact the biological characteristics of its vector B. tabaci. It is speculated that CCYV and B. tabaci have established a typical mutualist relationship mediated by host plants.


Assuntos
Crinivirus/patogenicidade , Hemípteros , Insetos Vetores , Animais , Tamanho Corporal , Cucumis/virologia , Fertilidade , Hemípteros/fisiologia , Hemípteros/virologia , Interações entre Hospedeiro e Microrganismos , Insetos Vetores/fisiologia , Insetos Vetores/virologia , Longevidade , Doenças das Plantas/virologia , Vírus de Plantas/patogenicidade , Razão de Masculinidade , Viroses/transmissão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA