Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(10): e2313981121, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38412129

RESUMO

Real-time characterization of microresonator dynamics is important for many applications. In particular, it is critical for near-field sensing and understanding light-matter interactions. Here, we report camera-facilitated imaging and analysis of standing wave patterns in optical ring resonators. The standing wave pattern is generated through bidirectional pumping of a microresonator, and the scattered light from the microresonator is collected by a short-wave infrared (SWIR) camera. The recorded scattering patterns are wavelength dependent, and the scattered intensity exhibits a linear relation with the circulating power within the microresonator. By modulating the relative phase between the two pump waves, we can control the generated standing waves' movements and characterize the resonator with the SWIR camera. The visualized standing wave enables subwavelength distance measurements of scattering targets with nanometer-level accuracy. This work opens broad avenues for applications in on-chip near-field (bio)sensing, real-time characterization of photonic integrated circuits, and backscattering control in telecom systems.

2.
Nano Lett ; 24(29): 9042-9049, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39008655

RESUMO

On-chip metasurfaces play a crucial role in bridging the guided mode and free-space light, enabling full control over the wavefront of scattered free-space light in an optimally compact manner. Recently, researchers have introduced various methods and on-chip metasurfaces to engineer the radiation of guided modes, but the total functions that a single metasurface can achieve are still relatively limited. In this work, we propose a novel on-chip metasurface design that can multiplex up to four distinct functions. We can efficiently control the polarization state, phase, angular momentum, and beam profile of the radiated waves by tailoring the geometry of V-shaped nanoantennas integrated on a slab waveguide. We demonstrate several innovative on-chip metasurfaces for switchable focusing/defocusing and for multifunctional generators of orbital angular momentum beams. Our on-chip metasurface design is expected to advance modern integrated photonics, offering applications in optical data storage, optical interconnection, augmented reality, and virtual reality.

3.
Small ; 20(10): e2307458, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38145355

RESUMO

Low-dimensional semiconductor nanostructures, particularly in the form of nanowire configurations with large surface-to-volume-ratio, offer intriguing optoelectronic properties for the advancement of integrated photonic technologies. Here, a bias-controlled, superior dual-functional broadband light detecting/emitting diode enabled by constructing the aluminum-gallium-nitride-based nanowire on the silicon-platform is reported. Strikingly, the diode exhibits a stable and high responsivity (R) of over 200 mAW-1 covering an extremely wide operation band under reverse bias conditions, ranging from deep ultraviolet (DUV: 254 nm) to near-infrared (NIR: 1000 nm) spectrum region. While at zero bias, it still possesses superior DUV light selectivity with a high off-rejection ratio of 106. When it comes to the operation of the light-emitting mode under forward bias, it can achieve large spectral changes from UV to red simply by coating colloid quantum dots on the nanowires. Based on the multifunctional features of the diodes, this study further employs them in various optoelectronic systems, demonstrating outstanding applications in multicolor imaging, filterless color discrimination, and DUV/NIR visualization. Such highly responsive broadband photodetector with a tunable emitter enabled by III-V nanowire on silicon provides a new avenue toward the realization of integrated photonics and holds great promise for future applications in communication, sensing, imaging, and visualization.

4.
Sensors (Basel) ; 24(11)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38894468

RESUMO

We demonstrated, for the first time, micro-ring resonator assisted photothermal spectroscopy measurement of a gas phase sample. The experiment used a telecoms wavelength probe laser that was coupled to a silicon nitride photonic integrated circuit using a fibre array. We excited the photothermal effect in the water vapor above the micro-ring using a 1395 nm diode laser. We measured the 1f and 2f wavelength modulation response versus excitation laser wavelength and verified the power scaling behaviour of the signal.

5.
Nano Lett ; 23(20): 9360-9366, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37782048

RESUMO

Diamond has emerged as a leading host material for solid-state quantum emitters, quantum memories, and quantum sensors. However, the challenges in fabricating photonic devices in diamond have limited its potential for use in quantum technologies. While various hybrid integration approaches have been developed for coupling diamond color centers with photonic devices defined in a heterogeneous material, these methods suffer from either large insertion loss at the material interface or evanescent light-matter coupling. Here, we present a new technique that enables the deterministic assembly of diamond color centers in a silicon nitride photonic circuit. Using this technique, we observe Purcell enhancement of silicon vacancy centers coupled to a silicon nitride ring resonator. Our hybrid integration approach has the potential for achieving the maximum possible light-matter interaction strength while maintaining low insertion loss and paves the way toward scalable manufacturing of large-scale quantum photonic circuits integrated with high-quality quantum emitters and spins.

6.
Nano Lett ; 23(18): 8779-8786, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37695253

RESUMO

Efficient nanophotonic devices are essential for applications in quantum networking, optical information processing, sensing, and nonlinear optics. Extensive research efforts have focused on integrating two-dimensional (2D) materials into photonic structures, but this integration is often limited by size and material quality. Here, we use hexagonal boron nitride (hBN), a benchmark choice for encapsulating atomically thin materials, as a waveguiding layer while simultaneously improving the optical quality of the embedded films. When combined with a photonic inverse design, it becomes a complete nanophotonic platform to interface with optically active 2D materials. Grating couplers and low-loss waveguides provide optical interfacing and routing, tunable cavities provide a large exciton-photon coupling to transition metal dichalcogenide (TMD) monolayers through Purcell enhancement, and metasurfaces enable the efficient detection of TMD dark excitons. This work paves the way for advanced 2D-material nanophotonic structures for classical and quantum nonlinear optics.

7.
Nano Lett ; 23(17): 7852-7858, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37643457

RESUMO

A central goal in many quantum information processing applications is a network of quantum memories that can be entangled with each other while being individually controlled and measured with high fidelity. This goal has motivated the development of programmable photonic integrated circuits (PICs) with integrated spin quantum memories using diamond color center spin-photon interfaces. However, this approach introduces a challenge into the microwave control of individual spins within closely packed registers. Here, we present a quantum memory-integrated photonics platform capable of (i) the integration of multiple diamond color center spins into a cryogenically compatible, high-speed programmable PIC platform, (ii) selective manipulation of individual spin qubits addressed via tunable magnetic field gradients, and (iii) simultaneous control of qubits using numerically optimized microwave pulse shaping. The combination of localized optical control, enabled by the PIC platform, together with selective spin manipulation opens the path to scalable quantum networks on intrachip and interchip platforms.

8.
Nanotechnology ; 34(50)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37595569

RESUMO

There is now a deep interest in actively reconfigurable nanophotonics as they will enable the next generation of optical devices. Of the various alternatives being explored for reconfigurable nanophotonics, Chalcogenide phase change materials (PCMs) are considered highly promising owing to the nonvolatile nature of their phase change. Chalcogenide PCM nanophotonics can be broadly classified into integrated photonics (with guided wave light propagation) and Meta-optics (with free space light propagation). Despite some early comprehensive reviews, the pace of development in the last few years has shown the need for a topical review. Our comprehensive review covers recent progress on nanophotonic architectures, tuning mechanisms, and functionalities in tunable PCM Chalcogenides. In terms of integrated photonics, we identify novel PCM nanoantenna geometries, novel material utilization, the use of nanostructured waveguides, and sophisticated excitation pulsing schemes. On the meta-optics front, the breadth of functionalities has expanded, enabled by exploring design aspects for better performance. The review identifies immediate, and intermediate-term challenges and opportunities in (1) the development of novel chalcogenide PCM, (2) advance in tuning mechanism, and (3) formal inverse design methods, including machine learning augmented inverse design, and provides perspectives on these aspects. The topical review will interest researchers in further advancing this rapidly growing subfield of nanophotonics.

9.
Nano Lett ; 22(2): 688-694, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35025516

RESUMO

On-chip nanoscale optical platforms capable of efficient second harmonic generation (SHG) are highly desired for optical sensing, subwavelength coherent sources, and quantum photonic devices. Here, we develop a remotely excited dual cavity resonance scheme to achieve significantly enhanced SHG in a CdSe nanobelt on Au film hybrid waveguide system. The SHG emission with superior efficiency originates from counter-propagating plasmonic modes interference in a horizontal Fabry-Pérot (FP) cavity enabled by remote excitation of propagating surface plasmons, which is further enhanced through a vertical FP cavity. With this effective cooperation of hybrid plasmon modes and FP cavity modes, 2 orders of magnitude enhancement of the conversion efficiency (3.5 × 10-4 W-1) is achieved compared to the off-resonance case. Our design provides new insight into the development of a multifunctional hybrid plasmonic device toward on-chip nonlinear nanophotonic applications.

10.
Nano Lett ; 22(16): 6816-6824, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-35787028

RESUMO

Hybrid integration of van der Waals materials on a photonic platform enables diverse exploration of novel active functions and significant improvement in device performance for next-generation integrated photonic circuits, but developing waveguide-integrated photodetectors based on conventionally investigated transition metal dichalcogenide materials at the full optical telecommunication bands and mid-infrared range is still a challenge. Here, we integrate PdSe2 with silicon waveguide for on-chip photodetection with a high responsivity from 1260 to 1565 nm, a low noise-equivalent power of 4.0 pW·Hz-0.5, a 3-dB bandwidth of 1.5 GHz, and a measured data rate of 2.5 Gbit·s-1. The achieved PdSe2 photodetectors provide new insights to explore the integration of novel van der Waals materials with integrated photonic platforms and exhibit great potential for diverse applications over a broad infrared range of wavelengths, such as on-chip sensing and spectroscopy.


Assuntos
Telecomunicações , Desenho de Equipamento , Óptica e Fotônica , Fótons , Silício/química
11.
Nano Lett ; 22(14): 5681-5688, 2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35819950

RESUMO

Overcoming the challenges of patterning luminescent materials will unlock additive and more sustainable paths for the manufacturing of next-generation on-chip photonic devices. Electrohydrodynamic (EHD) inkjet printing is a promising method for deterministically placing emitters on these photonic devices. However, the use of this technique to pattern luminescent lead halide perovskite nanocrystals (NCs), notable for their defect tolerance and impressive optical and spin coherence properties, for integration with optoelectronic devices remains unexplored. In this work, we additively deposit nanoscale CsPbBr3 NC features on photonic structures via EHD inkjet printing. We perform transmission electron microscopy of EHD inkjet printed NCs to demonstrate that the NCs' structural integrity is maintained throughout the printing process. Finally, NCs are deposited with sub-micrometer control on an array of parallel silicon nitride nanophotonic cavities and demonstrate cavity-emitter coupling via photoluminescence spectroscopy. These results demonstrate EHD inkjet printing as a scalable, precise method to pattern luminescent nanomaterials for photonic applications.

12.
Angew Chem Int Ed Engl ; 62(2): e202214214, 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36351872

RESUMO

The combination of multiple components or structures into integrated micro/nanostructures for practical application has been pursued for many years. Herein, a series of hierarchical organic microwires with branch, core/shell (C/S), and branch C/S structures are successfully constructed based on organic charge transfer (CT) cocrystals with structural similarity and physicochemical tunability. By regulating the intermolecular CT interaction, single microwires and branch microstructures can be integrated into the C/S and branch C/S structures, respectively. Significantly, the integrated branch C/S microwires, with multicolor waveguide behavior and branch structure multichannel waveguide output characteristics, can function as an optical logic gate with multiple encoding features. This work provides useful insights for creating completely new types of organic microstructures for integrated optoelectronics.

13.
Sensors (Basel) ; 22(23)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36502253

RESUMO

The design of a refractometric sensing system for liquids analysis with a sensor and the scheme for its intensity interrogation combined on a single photonic integrated circuit (PIC) is proposed. A racetrack microring resonator with a channel for the analyzed liquid formed on the top is used as a sensor, and another microring resonator with a lower Q-factor is utilized to detect the change in the resonant wavelength of the sensor. As a measurement result, the optical power at its drop port is detected in comparison with the sum of the powers at the through and drop ports. Simulations showed the possibility of registering a change in the analyte refractive index with a sensitivity of 110 nm per refractive index unit. The proposed scheme was analyzed with a broadband source, as well as a source based on an optoelectronic oscillator using an optical phase modulator. The second case showed the fundamental possibility of implementing an intensity interrogator on a PIC using an external typical single-mode laser as a source. Meanwhile, additional simulations demonstrated an increased system sensitivity compared to the conventional interrogation scheme with a broadband or tunable light source. The proposed approach provides the opportunity to increase the integration level of a sensing device, significantly reducing its cost, power consumption, and dimensions.


Assuntos
Óptica e Fotônica , Refratometria , Desenho de Equipamento , Fótons , Luz
14.
Sensors (Basel) ; 22(21)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36365983

RESUMO

We have determined conditions when a pair of coupled waveguides, a common element for integrated room-temperature photonics, can act as a qubit based on a system with a double-well potential. Moreover, we have used slow-varying amplitude approximation (SVA) for the "classical" wave equation to study the propagation of electromagnetic beams in a couple of dielectric waveguides both analytically and numerically. As a part of an extension of the optical-mechanical analogy, we have considered examples of "quantum operations" on the electromagnetic wave state in a pair of waveguides. Furthermore, we have provided examples of "quantum-mechanical" calculations of nonlinear transfer functions for the implementation of the considered element in optical neural networks.

15.
Sensors (Basel) ; 22(18)2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36146377

RESUMO

For decades, near-infrared (NIR) spectroscopy has been a valuable tool for material analysis in a variety of applications, ranging from industrial process monitoring to quality assessment. Traditional spectrometers are typically bulky, fragile and expensive, which makes them unsuitable for portable and in-field use. Thus, there is a growing interest for miniaturized, robust and low-cost NIR sensors. In this study, we demonstrate a handheld NIR spectral sensor module, based on a fully-integrated multipixel detector array, sensitive in the 850-1700 nm wavelength range. Differently from a spectrometer, the spectral sensor measures a limited number of NIR spectral bands. The capabilities of the spectral sensor module were evaluated alongside a commercially available portable spectrometer for two application cases: to quantify the moisture content in rice grains and to classify plastic types. Both devices achieved the two sensing tasks with comparable performance. Moisture quantification was achieved with a root mean square error (RMSE) prediction of 1.4% and 1.1% by the spectral sensor and spectrometer, respectively. Classification of the plastic type was achieved with a prediction accuracy on unknown samples of 100% and 96.4% by the spectral sensor and spectrometer, respectively. The results from this study are promising and demonstrate the potential for the compact NIR modules to be used in a variety of NIR sensing applications.


Assuntos
Plásticos , Espectroscopia de Luz Próxima ao Infravermelho , Espectroscopia de Luz Próxima ao Infravermelho/métodos
16.
Nano Lett ; 21(14): 6220-6227, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34264683

RESUMO

Plasmonic nanostructures can enable compact multiplexing of the orbital angular momentum (OAM) of light; however, strong dissipation of the highly localized OAM-distinct plasmonic fields in the near-field region hinders on-chip OAM transmission and processing. Superior transmission efficiency is offered by semiconductor nanowires sustaining highly confined optical modes, but only the polarization degree of freedom has been utilized for their selective excitation. Here we demonstrate that incident OAM beams can selectively excite single-crystalline cadmium sulfide (CdS) nanowires through coupling OAM-distinct plasmonic fields into nanowire waveguides for long-distance transportation. This allows us to build an OAM-controlled hybrid nanowire circuit for optical logic operations including AND and OR gates. In addition, this circuit enables the on-chip photoluminescence readout of OAM-encrypted information. Our results open exciting new avenues not only for nanowire photonics to develop OAM-controlled optical switches, logic gates, and modulators but also for OAM photonics to build ultracompact photonic circuits for information processing.

17.
Nano Lett ; 21(2): 914-920, 2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33400545

RESUMO

Materials with a zero refractive index support electromagnetic modes that exhibit stationary phase profiles. While such materials have been realized across the visible and near-infrared spectral range, radiative and dissipative optical losses have hindered their development. We reduce losses in zero-index, on-chip photonic crystals by introducing high-Q resonances via resonance-trapped and symmetry-protected states. Using these approaches, we experimentally obtain quality factors of 2.6 × 103 and 7.8 × 103 at near-infrared wavelengths, corresponding to an order-of-magnitude reduction in propagation loss over previous designs. Our work presents a viable approach to fabricate zero-index on-chip nanophotonic devices with low-loss.

18.
Nano Lett ; 20(6): 4603-4609, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32441528

RESUMO

Integrating solid-state quantum emitters with nanophotonic resonators is essential for efficient spin-photon interfacing and optical networking applications. While diamond color centers have proven to be excellent candidates for emerging quantum technologies, their integration with optical resonators remains challenging. Conventional approaches based on etching resonators into diamond often negatively impact color center performance and offer low device yield. Here, we developed an integrated photonics platform based on templated atomic layer deposition of TiO2 on diamond membranes. Our fabrication method yields high-performance nanophotonic devices while avoiding etching wavelength-scale features into diamond. Moreover, this technique generates highly reproducible optical resonances and can be iterated on individual diamond samples, a unique processing advantage. Our approach is suitable for a broad range of both wavelengths and substrates and can enable high-cooperativity interfacing between cavity photons and coherent defects in diamond or silicon carbide, rare earth ions, or other material systems.

19.
Nano Lett ; 20(12): 8768-8772, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33216555

RESUMO

Photonic crystal (PhC) cavities are promising candidates for Si photonics integrated circuits due to their ultrahigh quality (Q)-factors and small mode volumes. Here, we demonstrate a novel concept of a one-dimensional hybrid III-V/Si PhC cavity which exploits a combination of standard silicon-on-insulator technology and active III-V materials. Using template-assisted selective epitaxy, the central part of a Si PhC lattice is locally replaced with III-V gain material. The III-V material is placed to overlap with the maximum of the cavity mode field profile, while keeping the major part of the PhC in Si. The selective epitaxy process enables growth parallel to the substrate, and hence in-plane integration with Si, and in-situ in-plane homo- and heterojunctions. The fabricated hybrid III-V/Si PhCs show emission over the entire telecommunication band from 1.2 to 1.6 µm at room temperature validating the device concept and its potential towards fully integrated light sources on silicon.

20.
Nano Lett ; 20(9): 6357-6363, 2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32706592

RESUMO

Integrated photonic circuits provide a versatile toolbox of functionalities for advanced quantum optics applications. Here, we demonstrate an essential component of such a system in the form of a Purcell-enhanced single-photon source based on a quantum dot coupled to a robust on-chip integrated resonator. For that, we develop GaAs monolithic ring cavities based on distributed Bragg reflector ridge waveguides. Under resonant excitation conditions, we observe an over 2-fold spontaneous emission rate enhancement using Purcell effect and gain a full coherent optical control of a QD-two-level system via Rabi oscillations. Furthermore, we demonstrate an on-demand single-photon generation with strongly suppressed multiphoton emission probability as low as 1% and two-photon interference with visibility up to 95%. This integrated single-photon source can be readily scaled up, promising a realistic pathway for scalable on-chip linear optical quantum simulation, quantum computation, and quantum networks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA