Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
J Appl Toxicol ; 37(9): 1108-1116, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28425113

RESUMO

Perfluoroalkyl acids (PFAAs) are highly stable compounds that have been associated with immunotoxicity in epidemiologic studies and experimental rodent models. Lengthy half-lives and resistance to environmental degradation result in bioaccumulation of PFAAs in humans and wildlife. Perfluorooctane sulfonate (PFOS), the most prevalent PFAA detected within the environment, is found at high levels in occupationally exposed humans. We have monitored the environmental exposure of dolphins in the Charleston, SC region for over 10 years and levels of PFAAs, and PFOS in particular, were significantly elevated. As dolphins may serve as large mammal sentinels to identify the impact of environmental chemical exposure on human disease, we sought to assess the effect of environmental PFAAs on the cellular immune system in highly exposed dolphins. Herein, we utilized a novel flow cytometry-based assay to examine T cell-specific responses to environmental PFAA exposure ex vivo and to exogenous PFOS exposure in vitro. Baseline PFOS concentrations were associated with significantly increased CD4+ and CD8+ T cell proliferation from a heterogeneous resident dolphin population. Further analysis demonstrated that in vitro exposure to environmentally relevant levels of PFOS promoted proinflammatory cytokine production and proliferation in a dose-dependent manner. Collectively, these findings indicate that PFOS is capable of inducing proinflammatory interferon-gamma, but not immunoregulatory interleukin-4 production in T cells, which may establish a state of chronic immune activation known to be associated with susceptibility to disease. These findings suggest that PFOS directly dysregulates the dolphin cellular immune system and has implications for health hazards. Copyright © 2017 John Wiley & Sons, Ltd.


Assuntos
Ácidos Alcanossulfônicos/toxicidade , Golfinho Nariz-de-Garrafa/imunologia , Exposição Ambiental/efeitos adversos , Fluorocarbonos/toxicidade , Ativação Linfocitária/efeitos dos fármacos , Linfócitos T/efeitos dos fármacos , Animais , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Citocinas/imunologia , Linfócitos T/citologia , Poluentes Químicos da Água/toxicidade
2.
Neurobiol Dis ; 59: 194-205, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23899663

RESUMO

Axon injury is a central determinant of irreversible neurological deficit and disease progression in patients with multiple sclerosis (MS). CD8(+) lymphocytes (CTLs) within inflammatory demyelinated MS lesions correlate with acute axon injury and neurological deficits. The mechanisms of these correlations are unknown. We interrogated CTL-mediated axon injury using the transgenic OT-I antigen-specific CTL model system in conjunction with a chambered cortical neuron culture platform that permitted the isolated manipulation of axons independent of neuron cell bodies and glia. Interferon gamma upregulated, through a dose dependent mechanism, the axonal expression of functional major histocompatibility complex class I (MHC I) molecules competent to present immunologically-relevant antigens derived from endogenously expressed proteins. Antigen-specific CTLs formed cytotoxic immune synapses with and directly injured axons expressing antigen-loaded MHC I molecules. CTL-mediated axon injury was mechanistically dependent upon axonal MHC I antigen presentation, T cell receptor specificity and axoplasmic granzyme B activity. Despite extensive distal CTL-mediated axon injury, acute neuron cell body apoptosis was not observed. These findings present a novel model of immune-mediated axon injury and offer anti-axonal CTLs and granzyme B as targets for the therapeutic protection of axons and prevention of neurological deficits in MS patients.


Assuntos
Axônios/metabolismo , Antígenos CD8/metabolismo , Granzimas/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Ativação Linfocitária/imunologia , Linfócitos T Citotóxicos/metabolismo , Animais , Axônios/patologia , Axônios/ultraestrutura , Córtex Cerebral/citologia , Embrião de Mamíferos , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/imunologia , Granzimas/genética , Antígenos de Histocompatibilidade Classe I/genética , Interferon gama/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas do Tecido Nervoso/metabolismo , Neuroglia/citologia , Neuroglia/ultraestrutura , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ovalbumina/genética , Ovalbumina/metabolismo , Ovalbumina/farmacologia , Fragmentos de Peptídeos/farmacologia , Linfócitos T Citotóxicos/efeitos dos fármacos , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/ultraestrutura
3.
Front Immunol ; 14: 1232764, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37744331

RESUMO

The observation of reduced COVID-19 incidence and severity in populations receiving neonatal intradermal BCG vaccination vaccine raised the question of whether BCG can induce non-specific protection against the SARS-CoV-2 (SCV2) virus. Subsequent epidemiologic studies and clinical trials have largely failed to support this hypothesis. Furthermore, in small animal model studies all investigators have failed to observe resistance to viral challenge in response to BCG immunization by the conventional and clinically acceptable intradermal or subcutaneous routes. Nevertheless, BCG administered by the intravenous (IV) route has been shown to strongly protect both hamsters and mice against SCV2 infection and disease. In this Perspective, we review the current data on the effects of BCG vaccination on resistance to COVID-19 as well as summarize recent work in rodent models on the mechanisms by which IV administered BCG promotes resistance to the virus and discuss the translational implications of these findings.


Assuntos
COVID-19 , Cricetinae , Animais , Camundongos , COVID-19/prevenção & controle , SARS-CoV-2 , Vacina BCG , Tórax , Pulmão
4.
Front Cell Dev Biol ; 11: 1205590, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37293126

RESUMO

Type 1 diabetes is an autoimmune disease with onset from early childhood. The insulin-producing pancreatic beta cells are destroyed by CD8+ cytotoxic T cells. The disease is challenging to study mechanistically in humans because it is not possible to biopsy the pancreatic islets and the disease is most active prior to the time of clinical diagnosis. The NOD mouse model, with many similarities to, but also some significant differences from human diabetes, provides an opportunity, in a single in-bred genotype, to explore pathogenic mechanisms in molecular detail. The pleiotropic cytokine IFN-γ is believed to contribute to pathogenesis of type 1 diabetes. Evidence of IFN-γ signaling in the islets, including activation of the JAK-STAT pathway and upregulation of MHC class I, are hallmarks of the disease. IFN-γ has a proinflammatory role that is important for homing of autoreactive T cells into islets and direct recognition of beta cells by CD8+ T cells. We recently showed that IFN-γ also controls proliferation of autoreactive T cells. Therefore, inhibition of IFN-γ does not prevent type 1 diabetes and is unlikely to be a good therapeutic target. In this manuscript we review the contrasting roles of IFN-γ in driving inflammation and regulating the number of antigen specific CD8+ T cells in type 1 diabetes. We also discuss the potential to use JAK inhibitors as therapy for type 1 diabetes, to inhibit both cytokine-mediated inflammation and proliferation of T cells.

5.
Front Immunol ; 14: 1183665, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37359519

RESUMO

Acute immuno-depression syndrome (AIDs) had been observed in many life-threatening conditions leading to the Intensive Care Unit. and is associated with recurrent secondary infections. We report one COVID-19 patient with a severe ARDS, demonstrating acute immunodepression syndrome lasting for several weeks. The occurrence of secondary infections despite long treatment by antibiotics led to combined interferon γ (IFNγ) as reported previously. The response to IFNγ was evaluated by the flowcytometry HLA-DR expression on circulating monocytes, which was repeated from time to time. The severe COVID-19 patients responded well to IFNγ without adverse events.


Assuntos
COVID-19 , Coinfecção , Humanos , Interferon gama/farmacologia , Coinfecção/tratamento farmacológico , Antígenos HLA-DR/metabolismo , Tolerância Imunológica
6.
Front Immunol ; 13: 842912, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35309363

RESUMO

Clinical trials and real-world evidence on COVID-19 vaccines have shown their effectiveness against severe disease and death but the durability of protection remains unknown. We analysed the humoral and T-cell immune responses in 110 healthcare workers (HCWs) vaccinated according to the manufacturer's recommended schedule of dose 2 three weeks after dose 1 from a prospective on-going cohort in early 2021, 3 and 6 months after full vaccination with the BNT162b2 mRNA vaccine. Anti-RBD IgG titres were lower in HCWs over 60 years old 3 months after the second dose (p=0.03) and declined in all the subjects between 3 and 6 months with a median percentage change of -58.5%, irrespective of age and baseline comorbidities. Specific T-cell response measured by IGRA declined over time by at least 42% (median) in 91 HCWs and increased by 33% (median) in 17 others. Six HCWs had a negative T-cell response at 6 months. Ongoing follow-up should provide correlates of long-term protection according to the different immune response profiles observed. COVIDIM study was registered under the number NCT04896788 on clinicaltrials.gov.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Antivirais , Vacina BNT162 , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Pessoal de Saúde , Hospitais , Humanos , Imunidade Celular , Pessoa de Meia-Idade , Vacinação , Vacinas Sintéticas , Vacinas de mRNA
7.
Life Sci ; 297: 120449, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35245518

RESUMO

AIMS: Allergic rhinitis (AR), a major chronic inflammatory disease of the respiratory system, is a public health issue because of its substantial negative impact on quality of life and work efficiency alongside its high prevalence and costs. Dapsone is a sulfone chemical with reported anti-inflammatory and antibacterial properties. Accordingly, we investigated the anti-inflammatory impact of dapsone on ovalbumin-induced allergic rhinitis in balb/c mice. MAIN METHODS: Intraperitoneal ovalbumin and hydroxide aluminum injection followed by intranasal ovalbumin administration sensitized female Balb/c mice. Mice received intraperitoneal dapsone either acute (5, 10, 20 mg/kg) 30 min before the last ovalbumin challenge, or chronic (20 mg/kg) on days 21 to 35. KEY FINDINGS: Both acute and chronic intraperitoneal usage of dapsone showed a considerable decrease in the nasal scratching behavior, the number of sneezing, serum IL-4 and IgE levels of ovalbumin-induced AR in balb/c mice, but there was a significant increase in serum IFNγ level. Histopathological analysis demonstrated a significant reduction of eosinophil numbers, following dapsone injection. Goblet cell hyperplasia and respiratory epithelial-thickness decreased significantly in the acute and chronic 20 mg/kg dapsone groups compared to the ovalbumin-induced controls. SIGNIFICANCE: This study shows that there is an association between acute and chronic dapsone treatment and some anti-allergic effects through an inflammation cascade.


Assuntos
Dapsona , Rinite Alérgica , Animais , Citocinas/farmacologia , Dapsona/efeitos adversos , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Mucosa Nasal/patologia , Ovalbumina/efeitos adversos , Qualidade de Vida
8.
Front Oncol ; 12: 819580, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35223500

RESUMO

Cutaneous squamous cell carcinoma (cSCC) is a common form of skin cancer with an estimated 750,000 cases diagnosed annually in the United States. Most cases are successfully treated with a simple excision procedure, but ~5% of cases metastasize and have a 5-year survival rate of 25-45%. Thus, identification of biomarkers correlated to cSCC progression may be useful in the early identification of high-risk cSCC and in the development of new therapeutic strategies. This work investigates the role of complement factor H (CFH) in the development of cSCC. CFH is a regulatory component of the complement cascade which affects cell mediated immune responses and increases in complement proteins are associated with poor outcomes in multiple cancer types. We provide evidence that sun exposure may increase levels of CFH, suggesting an immunomodulatory role for CFH early in the development of cSCC. We then document increased levels of CFH in cSCC samples, compared to adjacent normal tissue (ANT) routinely excised in a dermatology clinic which, in paired samples, received the same level of sun exposure. We also provide evidence that levels of CFH are even greater in more advanced cases of cSCC. To provide a potential link between CFH and immune modulation, we assessed immune system function by measuring interferon gamma (IFN-γ) and FOXP3 in patient samples. IFN-γ levels were unchanged in cSCC relative to ANT which is consistent with an ineffective cell-mediated immune response. FOXP3 was used to assess prevalence of regulatory T cells within the tissues, indicating either a derailed or inhibitory immune response. Our data suggest that FOXP3 levels are higher in cSCC than in ANT. Our current working model is that increased CFH downstream of sun exposure is an early event in the development of cSCC as it interferes with proper immune surveillance and decreases the effectiveness of the immune response, and creates a more immunosuppressive environment, thus promoting cSCC progression.

9.
Front Cell Infect Microbiol ; 12: 832057, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35663470

RESUMO

RNA virus infection triggers interferon (IFN) receptor signaling, leading to the activation of hundreds of interferon-stimulated genes (ISGs). Guanylate-binding proteins (GBPs) belong to one such IFN inducible subfamily of guanosine triphosphatases (GTPases) that have been reported to exert broad anti-microbial activity and regulate host defenses against several intracellular pathogens. Here, we investigated the role of human GBP1 (hGBP1) in Japanese encephalitis virus (JEV) infection of HeLa cells in both an IFNγ unprimed and primed environment. We observed enhanced expression of GBP1 both at transcript and protein levels upon JEV infection, and GBP1 association with the virus replication membranes. Depletion of hGBP1 through siRNA had no effect on JEV replication or virus induced cell death in the IFNγ unprimed environment. IFNγ stimulation provided robust protection against JEV infection. Knockdown of GBP1 in the primed environment upregulated expression and phosphorylation of signal transducer and activator of transcription 1 (STAT1) and significantly reduced JEV replication. Depletion of GBP1 in an IFNγ primed environment also inhibited virus replication in human neuroblastoma SH-SH5Y cells. Our data suggests that in the presence of IFNγ, GBP1 displays a proviral role by inhibiting innate immune responses to JEV infection.


Assuntos
Vírus da Encefalite Japonesa (Espécie) , Encefalite Japonesa , Células HeLa , Humanos , Interferon gama/metabolismo , Interferons , Replicação Viral
10.
Front Genet ; 13: 706468, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35309122

RESUMO

Immune checkpoint blockade (ICB), therapies that target the PD-1 pathway, CTLA-4 pathway, and other checkpoint pathways, lead to durable responses in many cancer types. Since only a minority of patients respond to ICB, it may be useful to identify the future responders early in the course of treatment. In this study we evaluated a small (15 genes) biologically motivated panel, consisting of genes involved in immune activation and checkpoint pathways, for early identification of future responders to ICB. The panel passed consistency check, pathological and in-silico validations, and was an excellent predictor (area under ROC curve >0.95) of eventual response to ICB, both CTLA-4 and PD-1 blockade, when applied to metastatic melanoma patients undergoing ICB (i.e., "on-treatment") in a publicly available dataset. These results suggest that this small biologically motivated panel may be useful for early identification of future responders to ICB.

11.
Front Immunol ; 13: 848168, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35860254

RESUMO

In juvenile idiopathic arthritis (JIA) inflammatory T cells and their produced cytokines are drug targets and play a role in disease pathogenesis. Despite their clinical importance, the sources and types of inflammatory T cells involved remain unclear. T cells respond to polarizing factors to initiate types of immunity to fight infections, which include immunity types 1 (T1), 2 (T2), and 3 (T17). Polarizing factors drive CD4+ T cells towards T helper (Th) cell subtypes and CD8+ T cells towards cytotoxic T cell (Tc) subtypes. T1 and T17 polarization are associated with autoimmunity and production of the cytokines IFNγ and IL-17 respectively. We show that JIA and child healthy control (HC) peripheral blood mononuclear cells are remarkably similar, with the same frequencies of CD4+ and CD8+ naïve and memory T cell subsets, T cell proliferation, and CD4+ and CD8+ T cell subsets upon T1, T2, and T17 polarization. Yet, under T1 polarizing conditions JIA cells produced increased IFNγ and inappropriately produced IL-17. Under T17 polarizing conditions JIA T cells produced increased IL-17. Gene expression of IFNγ, IL-17, Tbet, and RORγT by quantitative PCR and RNA sequencing revealed activation of immune responses and inappropriate activation of IL-17 signaling pathways in JIA polarized T1 cells. The polarized JIA T1 cells were comprised of Th and Tc cells, with Th cells producing IFNγ (Th1), IL-17 (Th17), and both IFNγ-IL-17 (Th1.17) and Tc cells producing IFNγ (Tc1). The JIA polarized CD4+ T1 cells expressed both Tbet and RORγT, with higher expression of the transcription factors associated with higher frequency of IL-17 producing cells. T1 polarized naïve CD4+ cells from JIA also produced more IFNγ and more IL-17 than HC. We show that in JIA T1 polarization inappropriately generates Th1, Th17, and Th1.17 cells. Our data provides a tool for studying the development of heterogeneous inflammatory T cells in JIA under T1 polarizing conditions and for identifying pathogenic immune cells that are important as drug targets and diagnostic markers.


Assuntos
Artrite Juvenil , Interleucina-17 , Linfócitos T CD8-Positivos/metabolismo , Criança , Citocinas , Humanos , Interleucina-17/metabolismo , Leucócitos Mononucleares , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares , Células Th1
12.
Front Immunol ; 13: 901372, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35651616

RESUMO

T cell-mediated immunity plays a central role in the control and clearance of intracellular Coxiella burnetii infection, which can cause Q fever. Therefore, we aimed to develop a novel T cell-targeted vaccine that induces pathogen-specific cell-mediated immunity to protect against Q fever in humans while avoiding the reactogenicity of the current inactivated whole cell vaccine. Human HLA class II T cell epitopes from C. burnetii were previously identified and selected by immunoinformatic predictions of HLA binding, conservation in multiple C. burnetii isolates, and low potential for cross-reactivity with the human proteome or microbiome. Epitopes were selected for vaccine inclusion based on long-lived human T cell recall responses to corresponding peptides in individuals that had been naturally exposed to the bacterium during a 2007-2010 Q fever outbreak in the Netherlands. Multiple viral vector-based candidate vaccines were generated that express concatemers of selected epitope sequences arranged to minimize potential junctional neo-epitopes. The vaccine candidates caused no antigen-specific reactogenicity in a sensitized guinea pig model. A subset of the vaccine epitope peptides elicited antigenic recall responses in splenocytes from C57BL/6 mice previously infected with C. burnetii. However, immunogenicity of the vaccine candidates in C57BL/6 mice was dominated by a single epitope and this was insufficient to confer protection against an infection challenge, highlighting the limitations of assessing human-targeted vaccine candidates in murine models. The viral vector-based vaccine candidates induced antigen-specific T cell responses to a broader array of epitopes in cynomolgus macaques, establishing a foundation for future vaccine efficacy studies in this large animal model of C. burnetii infection.


Assuntos
Coxiella burnetii , Febre Q , Animais , Anticorpos Antibacterianos , Vacinas Bacterianas , Modelos Animais de Doenças , Epitopos de Linfócito T , Cobaias , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Peptídeos , Febre Q/prevenção & controle , Linfócitos T
13.
Front Microbiol ; 12: 785662, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35003017

RESUMO

Merkel cell carcinoma (MCC) is a rare and highly aggressive cancer, which is mainly caused by genomic integration of the Merkel cell polyomavirus and subsequent expression of a truncated form of its large T antigen. The resulting primary tumor is known to be immunogenic and under constant pressure to escape immune surveillance. Because interferon gamma (IFNγ), a key player of immune response, is secreted by many immune effector cells and has been shown to exert both anti-tumoral and pro-tumoral effects, we studied the transcriptomic response of MCC cells to IFNγ. In particular, immune modulatory effects that may help the tumor evade immune surveillance were of high interest to our investigation. The effect of IFNγ treatment on the transcriptomic program of three MCC cell lines (WaGa, MKL-1, and MKL-2) was analyzed using single-molecule sequencing via the Oxford Nanopore platform. A significant differential expression of several genes was detected across all three cell lines. Subsequent pathway analysis and manual annotation showed a clear upregulation of genes involved in the immune escape of tumor due to IFNγ treatment. The analysis of selected genes on protein level underlined our sequencing results. These findings contribute to a better understanding of immune escape of MCC and may help in clinical treatment of MCC patients. Furthermore, we demonstrate that single-molecule sequencing can be used to assess characteristics of large eukaryotic transcriptomes and thus contribute to a broader access to sequencing data in the community due to its low cost of entry.

14.
Iran J Microbiol ; 12(3): 249-255, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32685122

RESUMO

BACKGROUND AND OBJECTIVES: The outcome of Leishmania infection mainly depends upon the Leishmania species which causes the disease and the generation of the type of host immune response, the healing process and protection in leishmaniasis depends upon induction of Th1 response. In this study, the Th1/Th2 cytokine profile in cutaneous leishmaniasis (CL) is evaluated. MATERIALS AND METHODS: This study was carried out in leishmaniasis clinic of CRTSDL, TUMS, during March 2018 to March 2019. Peripheral blood mononuclear cells (PBMC) of volunteers with active healing and non-healing lesion (s) of cutaneous leishmaniasis (CL), volunteers with and without history of CL were cultured and stimulated with Soluble Leishmania antigen (SLA). The supernatants were collected and the levels of IFN-γ, IL-5 and IL-10 were titrated using ELISA method. RESULTS: The results showed a significantly higher levels of IFN-γ in volunteers with active CL healing form (p<0.005), history of CL (p<0.005) than healthy volunteers. A significantly (p<0.005) higher level of IFN-γ was seen in volunteers with active healing form of lesion than non-healing form. There was a significantly (p<0.005) higher level of IL-10 in volunteers with a history of non-healing form and active non-healing form of CL. There was no significant difference in IL-5 production in PBMC of different groups. CONCLUSION: IFN-γ production starts at early stage of cutaneous leishmaniasis and enhance during course of lesion healing, IFN-γ level is significantly higher in all patients compared to healthy volunteers, IFN-γ is significantly higher in patients with healing form than non-healing form of lesion.

15.
Microorganisms ; 7(12)2019 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-31757008

RESUMO

Natural killer (NK) cells are key players in the innate immune response. They kill virus-infected cells and are crucial for the induction of adaptive immune responses. Marek's disease virus (MDV) is a highly contagious alphaherpesvirus that causes deadly T cell lymphomas in chickens. Host resistance to MDV is associated with differences in NK cell responses; however, the exact role of NK cells in the control of MDV remains unknown. In this study, we assessed if MDV can infect NK cells and alter their activation. Surprisingly, we could demonstrate that primary chicken NK cells are very efficiently infected with very virulent RB-1B MDV and the live-attenuated CVI988 vaccine. Flow cytometry analysis revealed that both RB-1B and CVI988 enhance NK cell degranulation and increase interferon gamma (IFNγ) production in vitro. In addition, we could show that the MDV Eco Q-encoded oncogene (meq) contributes to the induction of NK cell activation using meq knockout viruses. Taken together, our data revealed for the first time that NK cells are efficiently infectable with MDV and that this oncogenic alphaherpesvirus enhances NK cell degranulation and increased IFNγ production in vitro.

16.
J Interferon Cytokine Res ; 38(7): 273-282, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30016182

RESUMO

Virus-specific T cells are critical in mediating the pathogenesis of hepatitis B virus (HBV) infection. Interferon gamma (IFNγ)-producing T cells are associated with resolution; in contrast, interleukin-17 (IL-17)-producing T cells are linked to exacerbation of liver inflammation and injury. Checkpoint receptors stringently regulate T cell functions, with their expression profiles varying on different T cell subsets. Blockade of checkpoint receptors may be an effective therapeutic strategy for chronic hepatitis B (CHB); however, blockade may also inadvertently exacerbate proinflammatory responses. In this study, we sought to determine the balance of inflammatory and antiviral T cells and determine their inhibitory receptor profile. The frequency of total and HBV antigen-specific Th17 and Tc17 cells was higher in CHB patients compared with healthy controls (HCs). Th17 and Tc17 cells in CHB patients had significantly lower expression of T cell immunoglobulin and mucin domain protein-3 (TIM-3) compared with HCs, with no difference in programmed death-1 (PD-1) or CD244 expression. Conversely, Th1 and Tc1 cells in CHB patients hyperexpressed PD-1 and CD244, while TIM-3 expression was comparable in both cohorts. During CHB, antiviral IFNγ T cells hyperexpress multiple immune inhibitory receptors driving their functional impairment. In contrast, inflammatory Th17/Tc17 cells hypoexpress TIM-3, but not PD-1 or CD244. Checkpoint inhibitors for CHB should target PD-1 or CD244 to allow restoration of IFNγ responses without affecting inflammatory IL-17 production.


Assuntos
Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Hepatite B Crônica/imunologia , Inflamação/imunologia , Adulto , Células Cultivadas , Feminino , Humanos , Inflamação/patologia , Interferon gama/biossíntese , Interferon gama/imunologia , Interleucina-17/biossíntese , Interleucina-17/imunologia , Masculino , Pessoa de Meia-Idade
17.
Int Immunopharmacol ; 47: 159-165, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28410529

RESUMO

Cytotoxic T lymphocytes (CTLs) are a key player in cancer immunotherapies, and MHC class I molecules on the cell surface are crucial for cellular recognition. However, the aberrant expression of MHC class I molecules is frequently found in various malignancies. IFNγ has dual functions in cancer progression, and its effect on tumor immunity is controversial. To investigate whether IFNγ can enhance cytotoxic efficiency of the tumor antigen-specific CTLs, we generated the CTLs using modified human dendritic cells as antigen presenting cells, then studied the activities of CTLs on human leukocyte antigen (HLA)-A2 positive glioma cells treated with, or without IFNγ. The results from both ELISpot and cytotoxicity assays demonstrated that the CTLs recognized and eliminated the HLA-A2 positive glioma cells treated with IFNγ more effectively when compared to the glioma cells deprived of IFNγ treatment. In addition, in vitro experiments showed that the levels of MHC class I molecules were upregulated in all of the HLA-A2 positive glioma cells. Using the publicly accessed TCGA data of low-grade glioma, we found significantly positive associations between IFNγ and both MHC class I molecules and CD8+ T cell activation score (p<0.0001). Furthermore, we found a significantly reduced risk of death in the glioma patients with high T cell activation score in comparison to those with low score (p=0.022). These findings suggest that a clinical application of IFNγ treatment may have potential benefits.


Assuntos
Células Dendríticas/imunologia , Glioma/imunologia , Antígeno HLA-A2/metabolismo , Imunoterapia Adotiva/métodos , Interferon gama/metabolismo , Linfócitos T Citotóxicos/imunologia , Apresentação de Antígeno , Antígenos de Neoplasias/imunologia , Linhagem Celular Tumoral , Citotoxicidade Imunológica , ELISPOT , Regulação Neoplásica da Expressão Gênica , Humanos , Ativação Linfocitária , Regulação para Cima
18.
Microbes Infect ; 15(10-11): 749-54, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23792139

RESUMO

Invasive Staphylococcus aureus (S. aureus) disease is associated with neutrophil activity and pro-inflammatory cytokine expression, including interferon-gamma (IFNγ). Using a mouse model of S. aureus peritonitis, we identify neutrophils as the predominant source of IFNγ and link this induction with the SaeR/S two-component gene regulatory system. Relative to wild-type (BALB/c) mice, IFNγ-deficient mice demonstrated increased bacterial clearance and reduced cellular cytotoxicity following intraperitoneal challenge with S. aureus. Interestingly, bacterial burden and cytotoxicity were similar in BALB/c and IFNγ-deficient mice when infected with an isogenic saeR/S mutant strain. These findings suggest saeR/S-mediated neutrophil-derived IFNγ diminishes innate antibacterial mechanisms against S. aureus.


Assuntos
Proteínas de Bactérias/imunologia , Interferon gama/metabolismo , Neutrófilos/imunologia , Neutrófilos/microbiologia , Peritonite/imunologia , Proteínas Quinases/imunologia , Infecções Estafilocócicas/imunologia , Animais , Carga Bacteriana , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Peritonite/microbiologia , Peritonite/patologia , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/patologia , Fatores de Transcrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA