RESUMO
Immune checkpoint therapy has emerged as an effective treatment option for various types of cancers. Key immune checkpoint molecules, such as cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), programmed cell death protein 1 (PD-1), and lymphocyte activation gene 3 (LAG-3), have become pivotal targets in cancer immunotherapy. Antibodies designed to inhibit these molecules have demonstrated significant clinical efficacy. Nevertheless, the ability to monitor changes in the immune status of tumors and predict treatment response remains limited. Conventional methods, such as assessing lymphocytes in peripheral blood or conducting tumor biopsies, are inadequate for providing real-time, spatial information about T-cell distributions within heterogeneous tumors. Positron emission tomography (PET) using T-cell specific probes represents a promising and noninvasive approach to monitor both systemic and intratumoral immune changes during treatment. This technique holds substantial clinical significance and potential utility. In this paper, we review the applications of PET probes that target immune cells in molecular imaging.
RESUMO
PURPOSE: To introduce a biomarker-based dosimetry method for the rational selection of a treatment activity for patients undergoing radioactive iodine 131I therapy (RAI) for metastatic differentiated thyroid cancer (mDTC) based on single-timepoint imaging of individual lesion uptake by 124I PET. METHODS: Patients referred for RAI therapy of mDTC were enrolled in institutionally approved protocols. A total of 208 mDTC lesions (in 21 patients) with SUVmax > 1 underwent quantitative PET scans at 24, 48, 72, and 120 h post-administration of 222 MBq of theranostic NaI-124I to determine the individual lesion radiation-absorbed dose. Using a general estimating equation, a prediction curve for biomarker development was generated in the form of a best-fit regression line and 95% prediction interval, correlating individual predicted lesion radiation dose metrics, with candidate biomarkers ("predictors") such as SUVmax and activity in microcurie per gram, from a single imaging timepoint. RESULTS: In the 169 lesions (in 15 patients) that received 131I therapy, individual lesion cGy varied over 3 logs with a median of 22,000 cGy, confirming wide heterogeneity of lesion radiation dose. Initial findings from the prediction curve on all 208 lesions confirmed that a 48-h SUVmax was the best predictor of lesion radiation dose and permitted calculation of the 131I activity required to achieve a lesional threshold radiation dose (2000 cGy) within defined confidence intervals. CONCLUSIONS: Based on MIRD lesion-absorbed dose estimates and regression statistics, we report on the feasibility of a new single-timepoint 124I-PET-based dosimetry biomarker for RAI in patients with mDTC. The approach provides clinicians with a tool to select personalized (precision) therapeutic administration of radioactivity (MBq) to achieve a desired target lesion-absorbed dose (cGy) for selected index lesions based on a single 48-h measurement 124I-PET image, provided the selected activity does not exceed the maximum tolerated activity (MTA) of < 2 Gy to blood, as is standard of care at Memorial Sloan Kettering Cancer Center. TRIAL REGISTRATION: NCT04462471, Registered July 8, 2020. NCT03647358, Registered Aug 27, 2018.
Assuntos
Adenocarcinoma , Neoplasias da Glândula Tireoide , Humanos , Adenocarcinoma/tratamento farmacológico , Radioisótopos do Iodo/uso terapêutico , Doses de Radiação , Neoplasias da Glândula Tireoide/diagnóstico por imagem , Neoplasias da Glândula Tireoide/radioterapia , Neoplasias da Glândula Tireoide/tratamento farmacológicoRESUMO
Low ß-2-[18F]-fluoro-2-deoxy-d-glucose (18F-FDG) uptake in gastric mucinous adenocarcinoma may cause false-negative diagnosis and erroneous staging. Thus, there is an urgent need for developing tumor-specific imaging agents in gastric cancer diagnostics. Triggering receptor expressed on myeloid cells 2 (TREM2) is a transmembrane protein expressed on the surface of tumor-associated macrophages (TAMs) and is considerably overexpressed in tumor tissues. This study aimed to develop new human TREM2 (hTREM2)-targeting imaging agents to diagnose and monitor gastric cancer. We established a cell line, MGC803, with upregulated expression of hTREM2, at the cell surface. We produced a monoclonal antibody (5-mAb) against hTREM2 by immunizing mice with the hTREM2 antigen to obtain the antibody fragment 5-F(ab')2 using an immunoglobulin G-degrading enzyme of Streptococcus pyogenes (IdeS). Another anti-TREM2-mAb (clone 237920) and its fragment anti-TREM2-F(ab')2 were employed for the comparative study in vitro and in vivo. After 124I labeling, we constructed the probes: 124I-5-mAb, 124I-5-F(ab')2, 124I-anti-TREM2-mAb, and 124I-anti-TREM2-F(ab')2. We found that 5-mAb exhibited higher hTREM2 affinity and slower blood clearance than anti-TREM2-mAb, whose corresponding F(ab')2 fragments demonstrated the same trend. The micro-PET/CT revealed that 124I-5-F(ab')2 exhibited advantages of tumor enrichment and fast metabolism. The biodistribution study results were consistent with those of micro-PET/CT. Among the four tracers, 124I-5-F(ab')2 was the most suitable specific radiotracer for targeting hTREM2 and displayed potential utility as a tumor-imaging tracer for diagnosing gastric carcinoma.
Assuntos
Carcinoma , Neoplasias Gástricas , Camundongos , Humanos , Animais , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Neoplasias Gástricas/diagnóstico por imagem , Distribuição Tecidual , Fragmentos Fab das Imunoglobulinas/metabolismo , Anticorpos Monoclonais/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptores Imunológicos/metabolismoRESUMO
Radioiodinated imaging agents for Aß amyloid plaque imaging in Alzheimer's disease (AD) patients have not been actively pursued. Our previous studies employed the "diaza" derivatives [11C]TAZA and [18F]flotaza in order to develop successful positron emission tomography (PET) imaging agents for Aß plaques. There is a need for radioiodinated imaging agents for Aß plaques for single photon emission computed tomography (SPECT) and PET imaging. We report our findings on the preparation of [124/125I]IAZA, a "diaza" analog of [11C]TAZA and [18F]flotaza, and the evaluation of binding to Aß plaques in the postmortem human AD brain. The binding affinity of IAZA for Aß plaques was Ki = 10.9 nM with weak binding affinity for neurofibrillary tangles (Ki = 3.71 µM). Both [125I]IAZA and [124I]IAZA were produced in >25% radiochemical yield and >90% radiochemical purity. In vitro binding of [125I]IAZA and [124I]IAZA in postmortem human AD brains was higher in gray matter containing Aß plaques compared to white matter (ratio of gray to white matter was >7). Anti-Aß immunostaining strongly correlated with [124/125I]IAZA in postmortem AD human brains. The binding of [124/125I]IAZA in postmortem human AD brains was displaced by the known Aß plaque imaging agents. Thus, radiolabeled [124/123I]IAZA may potentially be a useful PET or SPECT radioligand for Aß plaques in brain imaging studies.
Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/metabolismo , Radioisótopos do Iodo/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Placa Amiloide/diagnóstico por imagem , Placa Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismoRESUMO
Activated T cells played critical roles in immunotherapy and adoptive T cell therapy, and a non-invasive imaging strategy can provide us useful information concerning the transportation, accumulation, and homing of T cells in vivo. In this paper, by utilizing the long half-life radionuclide iodine-124 (124I) and CD25 specific monoclonal antibody Basiliximab, we have fabricated a novel probe, namely, 124I-Basiliximab, which was highly promising in the immuno-PET imaging of T cells. In vitro, 124I-Basiliximab had superior affinity to CD25 protein (Kd = 5.31 nM) and exhibited much higher accumulation in CD25 high-expression lymphoma cell line Karpas299 than that in CD25-negative cell line Daudi. In vivo, 124I-Basiliximab was excreted slowly from the body of mice, rendering it a relatively high effective dose (0.393 mSv/MBq) when applied in the immuno-PET imaging. In Karpas299 tumor xenograft, 124I-Basiliximab probe was observed to accumulate in the tumor quickly after tracer administration, with the optimal image acquired at 24 h post-injection. More importantly, PHA-activated hPBMC had much higher uptake of 124I-Basiliximab, indicating the potential utility of 124I-Basiliximab to discriminate activated hPBMC from its non-activated status. In summary, 124I-Basiliximab was fabricated for the first time, which can be applied in CD25-targeted immuno-PET imaging of activated T cells in vivo.
Assuntos
Neoplasias , Linfócitos T , Animais , Basiliximab , Humanos , Radioisótopos do Iodo , Camundongos , Tomografia por Emissão de Pósitrons , Proteínas Recombinantes de FusãoRESUMO
Several fluorine-18-labeled PET ß-amyloid (Aß) plaque radiotracers for Alzheimer's disease (AD) are in clinical use. However, no radioiodinated imaging agent for Aß plaques has been successfully moved forward for either single-photon emission computed tomography (SPECT) or positron emission tomography (PET) imaging. Radioiodinated pyridyl benzofuran derivatives for the SPECT imaging of Aß plaques using iodine-123 and iodine-125 are being pursued. In this study, we assess the iodine-124 radioiodinated pyridyl benzofuran derivative 5-(5-[124I]iodobenzofuran-2-yl)-N,N-dimethylpyridin-2-amine ([124I]IBETA) (Ki = 2.36 nM) for utilization in PET imaging for Aß plaques. We report our findings on the radioiododestannylation reaction used to prepare [124/125I]IBETA and evaluate its binding to Aß plaques in a 5 × FAD mouse model and postmortem human AD brain. Both [125I]IBETA and [124I]IBETA are produced in >25% radiochemical yield and >85% radiochemical purity. The in vitro binding of [125I]IBETA and [124I]IBETA in transgenic 5 × FAD mouse model for Aß plaques was high in the frontal cortex, anterior cingulate, thalamus, and hippocampus, which are regions of high Aß accumulation, with very little binding in the cerebellum (ratio of brain regions to cerebellum was >5). The in vitro binding of [125I]IBETA and [124I]IBETA in postmortem human AD brains was higher in gray matter containing Aß plaques compared to white matter (ratio of gray to white matter was >5). Anti-Aß immunostaining strongly correlated with [124/125I]IBETA regional binding in both the 5 × FAD mouse and postmortem AD human brains. The binding of [124/125I]IBETA in 5 × FAD mouse and postmortem human AD brains was displaced by the known Aß plaque imaging agent, Flotaza. Preliminary PET/CT studies of [124I]IBETA in the 5 × FAD mouse model suggested [124I]IBETA was relatively stable in vivo with a greater localization of [124I]IBETA in the brain regions with a high concentration of Aß plaques. Some deiodination was observed at later time points. Therefore, [124I]IBETA may potentially be a useful PET radioligand for Aß plaques in brain studies.
Assuntos
Doença de Alzheimer , Benzofuranos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Benzofuranos/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Modelos Animais de Doenças , Humanos , Radioisótopos do Iodo , Camundongos , Camundongos Transgênicos , Placa Amiloide/diagnóstico por imagem , Placa Amiloide/metabolismo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/metabolismoRESUMO
Radioiodines have a long history in nuclear medicine. Herein, we discuss the production, properties and applications of these versatile iodine-based imaging and theragnostic agents. There are 38 isotopes of iodine (I) including one stable form (127 I). The most common radionuclides used in medical imaging and treatment, including Iodine-123 (123 I), Iodine-124 (124 I), Iodine-125 (125 I) and Iodine-131 (131 I), are discussed in this review.
Assuntos
Medicina NuclearRESUMO
In conventional thyroid diagnostics, the topographical correlation between thyroid nodules (TN) depicted on ultrasound (US) in axial or sagittal orientation and coronally displayed scintigraphy images can be challenging. Sensor-navigated I-124-PET/US fusion imaging has been introduced as a problem-solving tool for ambiguous cases. The purpose of this study was to investigate the results of multiple unexperienced medical students (MS) versus multiple nuclear medicine physicians (MD) regarding the overvalue of I-124-PET/US in comparison to conventional diagnostics (CD) for the functional assessment of TN. METHODS: Out of clinical routine, cases with ambiguous findings on CD were selected for I-124-PET/US fusion imaging. Sixty-eight digital patient case files (PCF) of 34 patients (CDonly and CD+PET/US PCF) comprising 66 TN were provided to be retrospectively evaluated by 70 MD and 70 MS, respectively. A total of 2174 ratings (32.9 per TN) were carried out: 555 ratings (8.4 per TN) for CDonly and 532 ratings (8.1 per TN) for CD+PET/US by each MD and MS. RESULTS: Functional assessment revealed 8.5%/11.7% (n.s.) (16.4%/25.8% (p = 0.0002)), 41.8%/28.5% (p < 0.0001) (23.9%/17.9% (p = 0.0193)), 36.0%/30.5% (n.s.) (57.3%/53.9% (n.s.)), and 13.7%/29.4% (p < 0.0001) (2.4%/2.4% (n.s.)) hyperfunctioning, indifferent, hypofunctioning, and not rateable TNs for CDonly (CD+PET/US) and MD/MS, respectively. The respective rating confidence was indicated as absolute certain, quite certain, equivocal, uncertain, and not rateable in 11.7/3.4% (p < 0.0001) (44.9%/38.9% (p = 0.0541), 51.9%/26.7% (p < 0.0001) (46.2%/41.5% (n.s.)), 21.6%/29.0% (p = 0.0051) (6.2%/14.8% (p < 0.0001)), 1.1%/11.5% (p < 0.0001) (0.2%/2.3% (p = 0.0032)), and 13.7%/29.4% (p < 0.0001) (2.4%/2.4% (n.s.)) by MD/MS, respectively. There was a significant difference in the diversity of the observers' functional assessment of TN (MD 0.84 vs. MS 1.02, p = 0.0006) and the respective confidence in functional assessment (MD 0.93 vs. MS 1.16, p < 0.0001) between MD and MS on CDonly, whereas CD+PET/US revealed weaker differences for both groups (MD 0.48 vs. MS 0.47, p = 0.57; and MD 0.66 vs. MS 0.83, p = 0.0437). With the additional application of I-124-PET/US, the rating diversity of both MD and MS markedly tends towards more consistency (p < 0.0001 in each case). CONCLUSION: The additional application of sensor-navigated I-124-PET/US fusion imaging significantly influenced the functional assessment of TN positively, especially for unexperienced observers.
Assuntos
Tomografia por Emissão de Pósitrons , Estudantes de Medicina , Nódulo da Glândula Tireoide , Ultrassonografia , Humanos , Radioisótopos do Iodo , Estudos Retrospectivos , Nódulo da Glândula Tireoide/diagnóstico por imagemRESUMO
Background: Boron Neutron Capture Therapy (BNCT) is a binary approach to cancer therapy that requires accumulation of boron atoms preferentially in tumour cells. This can be achieved by using nanoparticles as boron carriers and taking advantage of the enhanced permeability and retention (EPR) effect. Here, we present the preparation and characterization of size and shape-tuned gold NPs (AuNPs) stabilised with polyethylene glycol (PEG) and functionalized with the boron-rich anion cobalt bis(dicarbollide), commonly known as COSAN. The resulting NPs were radiolabelled with 124I both at the core and the shell, and were evaluated in vivo in a mouse model of human fibrosarcoma (HT1080 cells) using positron emission tomography (PET). Methods: The thiolated COSAN derivatives for subsequent attachment to the gold surface were synthesized by reaction of COSAN with tetrahydropyran (THP) followed by ring opening using potassium thioacetate (KSAc). Iodination on one of the boron atoms of the cluster was also carried out to enable subsequent radiolabelling of the boron cage. AuNPs grafted with mPEG-SH (5 Kda) and thiolated COSAN were prepared by ligand displacement. Radiolabelling was carried out both at the shell (isotopic exchange) and at the core (anionic absorption) of the NPs using 124I to enable PET imaging. Results: Stable gold nanoparticles simultaneously functionalised with PEG and COSAN (PEG-AuNPs@[4]-) with hydrodynamic diameter of 37.8 ± 0.5 nm, core diameter of 19.2 ± 1.4 nm and ξ-potential of -18.0 ± 0.7 mV were obtained. The presence of the COSAN on the surface of the NPs was confirmed by Raman Spectroscopy and UV-Vis spectrophotometry. PEG-AuNPs@[4]- could be efficiently labelled with 124I both at the core and the shell. Biodistribution studies in a xenograft mouse model of human fibrosarcoma showed major accumulation in liver, lungs and spleen, and poor accumulation in the tumour. The dual labelling approach confirmed the in vivo stability of the PEG-AuNPs@[4]-. Conclusions: PEG stabilized, COSAN-functionalised AuNPs could be synthesized, radiolabelled and evaluated in vivo using PET. The low tumour accumulation in the animal model assayed points to the need of tuning the size and geometry of the gold core for future studies.
Assuntos
Terapia por Captura de Nêutron de Boro , Boro , Ouro/química , Nanopartículas Metálicas/química , Polietilenoglicóis/química , Animais , Boro/química , Linhagem Celular Tumoral , Humanos , Radioisótopos do Iodo/química , Nanopartículas Metálicas/ultraestrutura , Camundongos , Tamanho da Partícula , Tomografia por Emissão de Pósitrons , Análise Espectral Raman , Distribuição Tecidual , Transplante HeterólogoRESUMO
BACKGROUND: Radioactive isotope-labeled gold nanomaterials have potential biomedical applications. Here, we report the synthesis and characterization of PEGylated crushed gold shell-radioactive iodide-124-labeled gold core nanoballs (PEG-124I-Au@AuCBs) for in vivo tumor imaging applications through combined positron emission tomography and Cerenkov luminescent imaging (PET/CLI). RESULTS: PEG-124I-Au@AuCBs showed high stability and sensitivity in various pH solutions, serum, and in vivo conditions and were not toxic to tested cells. Combined PET/CLI clearly revealed tumor lesions at 1 h after injection of particles, and both signals remained visible in tumor lesions at 24 h, consistent with the biodistribution results. CONCLUSION: Taken together, the data provided strong evidence for the application of PEG-124I-Au@AuCBs as promising imaging agents in nuclear medicine imaging of various biological systems, particularly in cancer diagnosis.
Assuntos
Ouro/química , Medições Luminescentes , Nanoestruturas/química , Polietilenoglicóis/química , Tomografia por Emissão de Pósitrons , Animais , Neoplasias da Mama/patologia , Linhagem Celular , Feminino , Humanos , Concentração de Íons de Hidrogênio , Radioisótopos do Iodo , SoluçõesRESUMO
PURPOSE: The aims of the study were to develop and evaluate a novel residualizing peptide for labeling internalizing antibodies with (124)I to support clinical development using immuno-positron emission tomography (PET). METHODS: The anti-epidermal growth factor receptor antibody ch806 was radiolabeled directly or indirectly with isotopes and various residualizing peptides. Azido-derivatized radiolabeled peptides were conjugated to dibenzylcyclooctyne-derivatized ch806 antibody via click chemistry. The radiochemical purities, antigen-expressing U87MG.de2-7 human glioblastoma cell-binding properties, and targeting of xenografts at 72 hours post injection of all radioconjugates were compared. Biodistribution of (124)I-PEG4-tptddYddtpt-ch806 and immuno-PET imaging were evaluated in tumor-bearing mice. RESULTS: Biodistribution studies using xenografts at 72 hours post injection showed that (131)I-PEG4-tptddYddtpt-ch806 tumor uptake was similar to (111)In-CHX-Aâ³-DTPA-ch806. (125)I-PEG4-tptddyddtpt-ch806 showed a lower tumor uptake value but higher than directly labeled (125)I-ch806. (124)I-PEG4-tptddYddtpt-ch806 was produced at 23% labeling efficiency, 98% radiochemical purity, 25.9 MBq/mg specific activity, and 64% cell binding in the presence of antigen excess. Tumor uptake for (124)I-PEG4-tptddYddtpt-ch806 was similar to (111)In-CHX-Aâ³-DTPA-ch806. High-resolution immuno-PET/magnetic resonance imaging of tumors showed good correlation with biodistribution data. CONCLUSIONS: The mixed d/l-enantiomeric peptide, dThr-dPro-dThr-dAsp-dAsp-Tyr-dAsp-dAsp-dThr-dPro-dThr, is suitable for radiolabeling antibodies with radiohalogens such as (124)I for high-resolution immuno-PET imaging of tumors and for evaluation in early-phase clinical trials.
Assuntos
Anticorpos Monoclonais/farmacocinética , Neoplasias Encefálicas/diagnóstico por imagem , Glioblastoma/diagnóstico por imagem , Peptídeos/farmacocinética , Animais , Anticorpos Monoclonais/química , Linhagem Celular Tumoral , Humanos , Radioisótopos do Iodo/química , Camundongos , Transplante de Neoplasias , Peptídeos/química , Compostos Radiofarmacêuticos/química , Distribuição Tecidual , TirosinaRESUMO
PURPOSE: The aim of this study was to compare integrated PET/CT and PET/MRI for their usefulness in detecting and categorizing cervical iodine-positive lesions in patients with differentiated thyroid cancer using (124)I as tracer. METHODS: The study group comprised 65 patients at high risk of iodine-positive metastasis who underwent PET/CT (low-dose CT scan, PET acquisition time 2 min; PET/CT2) followed by PET/MRI of the neck 24 h after (124)I administration. PET images from both modalities were analysed for the numbers of tracer-positive lesions. Two different acquisition times were used for the comparisons, one matching the PET/CT2 acquisition time (2 min, PET/MRI2) and the other covering the whole MRI scan time (30 min, PET/MRI30). Iodine-positive lesions were categorized as metastasis, thyroid remnant or inconclusive according to their location on the PET/CT images. Morphological information provided by MRI was considered for evaluation of lesions on PET/MRI and for volume information. RESULTS: PET/MRI2 detected significantly more iodine-positive metastases and thyroid remnants than PET/CT2 (72 vs. 60, p = 0.002, and 100 vs. 80, p = 0.001, respectively), but the numbers of patients with at least one tumour lesion identified were not significantly different (21/65 vs. 17/65 patients). PET/MRI30 tended to detect more PET-positive metastases than PET/MRI2 (88 vs. 72), but the difference was not significant (p = 0.07). Of 21 lesions classified as inconclusive on PET/CT, 5 were assigned to metastasis or thyroid remnant when evaluated by PET/MRI. Volume information was available in 34 % of iodine-positive metastases and 2 % of thyroid remnants on PET/MRI. CONCLUSIONS: PET/MRI of the neck was found to be superior to PET/CT in detecting iodine-positive lesions. This was attributed to the higher sensitivity of the PET component, Although helpful in some cases, we found no substantial advantage of PET/MRI over PET/CT in categorizing iodine-positive lesions as either metastasis or thyroid remnant. Volume information provided by MRI for some iodine-positive lesions might be useful in dosimetry.
Assuntos
Radioisótopos do Iodo , Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Neoplasias da Glândula Tireoide/diagnóstico por imagem , Adulto , Idoso , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Radioisótopos do Iodo/uso terapêutico , Masculino , Pessoa de Meia-Idade , Recidiva , Neoplasias da Glândula Tireoide/patologia , Neoplasias da Glândula Tireoide/radioterapia , Adulto JovemRESUMO
Heat shock protein 90 (Hsp90) is an ATP dependent molecular chaperone protein whose function is critical for maintaining several key proteins involved in survival and proliferation of cancer cells. PU-H71 (1), is a potent purine-scaffold based ATP pocket binding Hsp90 inhibitor which has been shown to have potent activity in a broad range of in vivo cancer models and is currently in Phase I clinical trials in patients with advanced solid malignancies, lymphomas, and myeloproliferative neoplasms. In this report, we describe the radiosynthesis of [(124)I]-PU-H71(5); this was synthesized from the corresponding Boc-protected stannane precursor 3 by iododestannylation with [(124)I]-NaI using chloramine-T as an oxidant for 2 min, followed by Boc deprotection with 6 N HCl at 50 °C for 30 min to yield the final compound. The final product 5 was purified using HPLC and was isolated with an overall yield of 55 ± 6% (n = 6, isolated) from 3, and >98% purity and an average specific activity of 980 mCi/µmol. Our report sets the stage for the introduction of [(124)I]-PU-H71 as a potential non-invasive probe for understanding biodistribution and pharmacokinetics of PU-H71 in living subjects using positron emission tomography imaging.
Assuntos
Benzodioxóis/química , Radioisótopos do Iodo/química , Purinas/química , Compostos Radiofarmacêuticos/síntese química , Proteínas de Choque Térmico HSP90/antagonistas & inibidoresRESUMO
PURPOSE: Claudin 18.2 (CLDN18.2), due to its highly selective expression in tumor cells, has made breakthrough progress in clinical research and is expected to be integrated into routine tumor diagnosis and treatment. METHODS: In this research, we obtained an scFv-Fc fusion protein (SF106) targeting CLDN18.2 through hybridoma technology. The scFv-Fc fusion protein was labeled with radioactive isotopes (124I and 177Lu) to generate the radio-probes. The targeting and specificity of the radio-probes were tested in cellular models, and its diagnostic and therapeutic potential was further evaluated in tumor-bearing models. RESULTS: The molecular probes [124I]I-SF106 and [177Lu]Lu-DOTA-SF106 possess high radiochemical purity (RCP, 98.18 ± 0.93 % and 97.05 ± 1.1 %) and exhibit good stability in phosphate buffer saline and 5 % human serum albumin (92.44 ± 4.68 % and 91.03 ± 2.42 % at 120 h). [124I]I-SF106 uptake in cells expressing CLDN18.2 was well targeted and specific, and the dissociation constant was 17.74 nM [124I]I-SF106 micro-PET imaging showed that the maximum standardized uptake value (SUVmax) was significantly higher than CLDN18.2-negative tumors (1.83 ± 0.02 vs. 1.23 ± 0.04, p < 0.001). The maximum uptake was attained in tumors expressing CLDN18.2 at 48 h after injection. [124I]I-SF106 and [177Lu]Lu-DOTA-SF106 dosimetric study showed that the effective dose in humans complies with the medical safety standards required for their clinical application. The results of treatment experiments showed that 3 MBq of [177Lu]Lu-DOTA-SF106 in CLDN18.2-expressing tumor-bearing mice could significantly inhibit tumor growth. CONCLUSION: These results indicate that radionuclide-labeled scFv-Fc molecular probes ([124I]I-SF106 and [177Lu]Lu-DOTA-SF106) provide a new possibility for the diagnosis and treatment of CLDN18.2-positive cancer patients in clinical practice.
Assuntos
Neoplasias , Compostos Radiofarmacêuticos , Humanos , Camundongos , Animais , Compostos Radiofarmacêuticos/farmacologia , Compostos Radiofarmacêuticos/uso terapêutico , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Albumina Sérica Humana , Radioisótopos do Iodo , Sondas Moleculares , Linhagem Celular Tumoral , ClaudinasRESUMO
Based on studies in experimental animals demonstrating that administration of adeno-associated virus (AAV) vectors to the cerebrospinal fluid (CSF) is an effective route to transfer genes to the nervous system, there are increasing number of clinical trials using the CSF route to treat nervous system disorders. With the knowledge that the CSF turns over four to five times daily, and evidence in experimental animals that at least some of CSF administered AAV vectors are distributed to systemic organs, we asked: with AAV administration to the CSF, what fraction of the total dose remains in the nervous system and what fraction goes off target and is delivered systemically? To quantify the biodistribution of AAV capsids immediately after administration, we covalently labeled AAV capsids with iodine 124 (I-124), a cyclotron generated positron emitter, enabling quantitative positron emission tomography scanning of capsid distribution for up to 96 h after AAV vector administration. We assessed the biodistribution to nonhuman primates of I-124-labeled capsids from different AAV clades, including 9 (clade F), rh.10 (E), PHP.eB (F), hu68 (F), and rh91(A). The analysis demonstrated that 60-90% of AAV vectors administered to the CSF through either the intracisternal or intrathecal (lumbar) routes distributed systemically to major organs. These observations have potentially significant clinical implications regarding accuracy of AAV vector dosing to the nervous system, evoking systemic immunity at levels similar to that with systemic administration, and potential toxicity of genes designed to treat nervous system disorders being expressed in non-nervous system organs. Based on these data, individuals in clinical trials using AAV vectors administered to the CSF should be monitored for systemic as well as nervous system adverse events and CNS dosing considerations should account for a significant AAV systemic distribution.
Assuntos
Dependovirus , Doenças do Sistema Nervoso , Animais , Dependovirus/genética , Radioisótopos do Iodo , Capsídeo , Distribuição Tecidual , Transdução Genética , Terapia Genética/métodos , Tomografia por Emissão de Pósitrons , Vetores Genéticos/genética , Técnicas de Transferência de GenesRESUMO
BACKGROUND: The noninvasive detection of cardiac amyloid, as well as deposits in other vital organs, is critical for early diagnosis and quantitative disease monitoring. Positron emission tomography is an intrinsically quantitative imaging modality suitable for high-resolution amyloid detection. OBJECTIVES: This study sought to evaluate the safety and efficacy of a novel amyloid-reactive peptide, designated p5+14, labeled with iodine-124 (124I), in patients with diverse types of systemic amyloidosis. METHODS: In a single-site, open label phase 1/2 study (NCT03678259), the safety, biodistribution, and sensitivity of a single intravenous infusion of 124I-evuzamitide was assessed in patients with systemic amyloidosis (n = 50), asymptomatic transthyretin sequence variant carriers (n = 2), and healthy volunteers (n = 5). Subjects were administered 1.4 ± 0.2 mg of 124I-evuzamitide (71.5 ± 12.4 MBq) and positron emission tomography/x-ray computed tomography images acquired at 5.2 hours (Q25-Q75: 4.9-5.4 hours) postinfusion. Images were assessed visually and semi-quantitatively for positive uptake of radiotracer in the heart and other major organs. RESULTS: Uptake of 124I-evuzamitide in the heart and other abdominothoracic organs was consistent with the patient's clinical presentation and the type of amyloidosis. The patient- and cardiac-associated sensitivity for imaging and clinical observations was 93.6% (95% CI: 82.8%-97.8%) and 96.2% (95% CI: 81.8%-99.8%), respectively. Semi-quantitative uptake of the radiotracer correlated significantly with serum N-terminal pro-B-type natriuretic peptide measurements in patients with light chain-associated amyloidosis. Cardiac uptake was not observed in any healthy volunteers. The agent was well tolerated, with 1 drug-related adverse event and no deaths. CONCLUSIONS: 124I-evuzamitide is an amyloid-binding radiotracer capable of detecting cardiac amyloid in patients with high sensitivity.
Assuntos
Amiloidose , Amiloidose de Cadeia Leve de Imunoglobulina , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Distribuição Tecidual , Valor Preditivo dos Testes , Amiloide , Radioisótopos do Iodo , Amiloidose/diagnóstico por imagemRESUMO
Synthetic and naturally occurring siderophores and their conjugates provide access to the bacterial cytoplasm via active membrane transport. Previously, we displaced iron with the radioactive isotope 67Ga to quantify and track in vitro and in vivo uptake and distribution of siderophore Trojan Horse antibiotic conjugates. Here, we introduce a multi-isotope tagging strategy to individually elucidate the fate of metal cargo and the ligand construct with radioisotopes 67Ga and 124I. We synthesized gallium(III) model complexes of a ciprofloxacin-functionalized linear desferrichrome (Ga-D6) and deferoxamine (Ga-D7) incorporating an iodo-tyrosine linker to enable radiolabeling using the metal-binding (67Ga) and the cargo-conjugation site (124I). Radiochemical experiments with Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa wt strains show that 67Ga-D6/D7 and Ga-D6-124I/D7-124I have comparable uptake, indicating intact complex import and siderophore-mediated uptake. In naive mice, 67Ga-D6/D7 and Ga-D6-124I/D7-124I demonstrate predominantly renal clearance; urine metabolite analysis indicates in vivo dissociation of Ga(III) is a likely mechanism of degradation for 67Ga-D6/D7 when compared to ligand radiolabeled compounds, Ga-D6-124I/D7-124I, which remain >60% intact in urine. Cumulatively, this work demonstrates that a multi-isotope tagging strategy effectively elucidates the in vitro uptake, pharmacokinetics, and in vivo stability of xenometallomycins with modular chemical structures.
Assuntos
Ciprofloxacina , Sideróforos , Animais , Ciprofloxacina/farmacologia , Escherichia coli , Ligantes , Camundongos , Pseudomonas aeruginosa , Sideróforos/metabolismo , Staphylococcus aureusRESUMO
BACKGROUND: RNA-based vaccination strategies tailoring immune response to specific reactions have become an important pillar for a broad range of applications. Recently, the use of lipid-based nanoparticles opened the possibility to deliver RNA to specific sites within the body, overcoming the limitation of rapid degradation in the bloodstream. Here, we have investigated whether small animal PET/MRI can be employed to image the biodistribution of RNA-encoded protein. For this purpose, a reporter RNA coding for the sodium-iodide-symporter (NIS) was in vitro transcribed in cell lines and evaluated for expression. RNA-lipoplex nanoparticles were then assembled by complexing RNA with liposomes at different charge ratios, and functional NIS protein translation was imaged and quantified in vivo and ex vivo by Iodine-124 PET upon intravenous administration in mice. RESULTS: NIS expression was detected on the membrane of two cell lines as early as 6 h after transfection and gradually decreased over 48 h. In vivo and ex vivo PET/MRI of anionic spleen-targeting or cationic lung-targeting NIS-RNA lipoplexes revealed a visually detectable rapid increase of Iodine-124 uptake in the spleen or lung compared to control-RNA-lipoplexes, respectively, with minimal background in other organs except from thyroid, stomach and salivary gland. CONCLUSIONS: The strong organ selectivity and high target-to-background acquisition of NIS-RNA lipoplexes indicate the feasibility of small animal PET/MRI to quantify organ-specific delivery of RNA.
RESUMO
BACKGROUND: In recurrent differentiated thyroid cancer patients, detectability in 124I PET is limited for lesions with low radioiodine uptake. We assess the improvements in lesion detectability and image quality between three generations of PET scanners with different detector technologies. The results are used to suggest an optimized protocol. METHODS: Datasets of 10 patients with low increasing thyroglobulin or thyroglobulin antibody levels after total thyroidectomy and radioiodine therapies were included. PET data were acquired and reconstructed on a Biograph mCT PET/CT (whole-body, 4-min acquisition time per bed position; OSEM, OSEM-TOF, OSEM-TOF+PSF), a non-TOF Biograph mMR PET/MR (neck region, 4 min and 20 min; OSEM), and a new generation Biograph Vision PET/CT (whole-body, 4 min; OSEM, OSEM-TOF, OSEM-TOF+PSF). The 20-min image on the mMR was used as reference to calculate the detection efficacy in the neck region. Image quality was rated on a 5-point scale. RESULTS: All detected lesions were in the neck region. Detection efficacy was 8/9 (Vision OSEM-TOF and OSEM-TOF+PSF), 4/9 (Vision OSEM), 3/9 (mMR OSEM and mCT OSEM-TOF+PSF), and 2/9 (mCT OSEM and OSEM-TOF). Median image quality was 4 (Vision OSEM-TOF and OSEM-TOF+PSF), 3 (Vision OSEM, mCT OSEM-TOF+PSF, and mMR OSEM 20-min), 2 (mCT OSEM-TOF), 1.5 (mCT OSEM), and 1 (mMR OSEM 4 min). CONCLUSION: At a clinical standard acquisition time of 4 min per bed position, the new generation Biograph Vision using a TOF-based image reconstruction demonstrated the highest detectability and image quality and should, if available, be preferably used for imaging of low-uptake lesions. A prolonged acquisition time for the mostly affected neck region can be useful.
RESUMO
The standard treatment of differentiated thyroid cancer (DTC) consists of surgery followed by iodine-131 (131I) administration. Although the majority of DTC has a very good prognosis, more aggressive histologic subtypes convey a worse prognosis. Follow-up consists of periodically measurements of serum thyroglobulin, thyroglobulin antibodies and neck ultrasound and 123I/131I whole-body scan. However, undifferentiated thyroid tumors have a lower avidity for radioiodine and the ability of DTC to concentrate 131I may be lost in metastatic disease. Positron emission tomography (PET)/computed tomography (CT) has been introduced in the evaluation of patients with thyroid tumors and the 2-[18F]-fluoro-2-deoxyd-glucose (18F-FDG) has been largely validated as marker of cell's metabolism. According to the 2015 American Thyroid Association guidelines, 18F-FDG PET/CT is recommended in the follow-up of high-risk patients with elevated serum thyroglobulin and negative 131I imaging, in the assessment of metastatic patients, for lesion detection and risk stratification and in predicting the response to therapy. It should be considered that well-differentiated iodine avid lesions could not concentrate 18F-FDG, and a reciprocal pattern of iodine and 18F-FDG uptake has been observed. Beyond 18F-FDG, other tracers are available for PET imaging of thyroid tumors, such as Iodine-124 (124I), 18F-tetrafluoroborate and Gallium-68 prostate-specific membrane antigen. Moreover, the recent introduction of PET/MRI, offers now several opportunities in the field of patients with DTC. This review summarizes the evidences on the role of PET/CT in management of patients with DTC, focusing on potential applications and on elucidating some still debating points.