Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(42): e2210857119, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36215494

RESUMO

The adsorption of ions to water-hydrophobe interfaces influences a wide range of phenomena, including chemical reaction rates, ion transport across biological membranes, and electrochemical and many catalytic processes; hence, developing a detailed understanding of the behavior of ions at water-hydrophobe interfaces is of central interest. Here, we characterize the adsorption of the chaotropic thiocyanate anion (SCN-) to two prototypical liquid hydrophobic surfaces, water-toluene and water-decane, by surface-sensitive nonlinear spectroscopy and compare the results against our previous studies of SCN- adsorption to the air-water interface. For these systems, we observe no spectral shift in the charge transfer to solvent spectrum of SCN-, and the Gibb's free energies of adsorption for these three different interfaces all agree within error. We employed molecular dynamics simulations to develop a molecular-level understanding of the adsorption mechanism and found that the adsorption for SCN- to both water-toluene and water-decane interfaces is driven by an increase in entropy, with very little enthalpic contribution. This is a qualitatively different mechanism than reported for SCN- adsorption to the air-water and graphene-water interfaces, wherein a favorable enthalpy change was the main driving force, against an unfavorable entropy change.


Assuntos
Grafite , Água , Adsorção , Alcanos , Ânions , Íons/química , Solventes , Tiocianatos/química , Tolueno , Água/química
2.
Nano Lett ; 24(26): 7941-7947, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38912650

RESUMO

Reducing friction is of great interest, and an external potential applied to the friction pair can regulate lubricity. Electrochemical atomic force microscopy (EC-AFM) is used to study the tribological and adsorption behavior of monovalent and trivalent ionic solutions between charged surfaces. An opposite trend of coefficient of friction (COF) and normal force that varies with the applied electric potential is witnessed. Direct force measurements and theoretical models have disclosed that, for the NaCl solution, the negative electric field reduces the COF by increasing cation adsorption. As for LaCl3 solution, the positive electric field promotes the primary adsorption of anions on HOPG, resulting in the disappearance of the attractive ion-ion correlation between the trivalent ions, thereby reducing the COF. The shear behavior of adsorbed ions in electrolyte solution is sensitive to their valence, because of their different surface force contribution. The study further provides a framework to optimize the design of hydration lubrication.

3.
Nano Lett ; 24(39): 12036-12044, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39311142

RESUMO

Water-enabled electricity generation (WEG), which harvests energy from the natural water cycle, is a novel strategy for producing green electricity. Taking advantage of the ion sieving effect based on evaporation-induced water flows in charged nanopores, various WEG devices have been developed. Here, we report that a carbonized mushroom produces a record-high current output of up to 96.7 µA, which is attributed to a unique ion adsorption effect combined with an ion sieving effect. Specifically, the natural gradient potential from root to cap in a mushroom caused by tissue differentiation adsorbs different ions, enhancing the traditional ion sieving current. In synergy with the two effects, the mushroom can operate under a broad range of concentrations (0 to 0.6 mol L-1) and represents significant improvements in current, duration, and total charge transfer. These findings reveal the hidden talent of mushrooms as natural materials for WEG, providing inspiration for the development of high-performance WEG devices.

4.
Langmuir ; 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39279588

RESUMO

Solid surfaces in contact with nonaqueous solvents play a key role in electrochemistry, analytical chemistry, and industrial chemistry. In this work, the zeta potentials of cotton membranes in acetonitrile solutions were determined by streaming potential and bulk conductivity measurements. By applying the Gouy-Chapman theory and the Langmuir adsorption isotherm of ions to the experimental data, the mechanism of the electrification at the cotton/acetonitrile interface is revealed for the first time to be solely due to ion adsorption on the surface, rather than proton dissociation at the interface. Different salts were found to produce opposite signs of the zeta potentials. This behavior can be attributed to ion solvation effects and the strong ordering of acetonitrile molecules at the interface. Furthermore, a trend of the electroviscous effect was observed, in agreement with the standard electrokinetic theory. These findings demonstrate that electrokinetics in acetonitrile, a polar aprotic solvent, can be treated in the same manner as in water.

5.
Proc Natl Acad Sci U S A ; 118(19)2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33947813

RESUMO

Electrostatic interactions near surfaces and interfaces are ubiquitous in many fields of science. Continuum electrostatics predicts that ions will be attracted to conducting electrodes but repelled by surfaces with lower dielectric constant than the solvent. However, several recent studies found that certain "chaotropic" ions have similar adsorption behavior at air/water and graphene/water interfaces. Here we systematically study the effect of polarization of the surface, the solvent, and solutes on the adsorption of ions onto the electrode surfaces using molecular dynamics simulation. An efficient method is developed to treat an electrolyte system between two parallel conducting surfaces by exploiting the mirror-expanded symmetry of the exact image-charge solution. With neutral surfaces, the image interactions induced by the solvent dipoles and ions largely cancel each other, resulting in no significant net differences in the ion adsorption profile regardless of the surface polarity. Under an external electric field, the adsorption of ions is strongly affected by the surface polarization, such that the charge separation across the electrolyte and the capacitance of the cell is greatly enhanced with a conducting surface over a low-dielectric-constant surface. While the extent of ion adsorption is highly dependent on the electrolyte model (the polarizability of solvent and solutes, as well as the van der Waals radii), we find the effect of surface polarization on ion adsorption is consistent throughout different electrolyte models.

6.
Ecotoxicol Environ Saf ; 281: 116642, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38941660

RESUMO

Following ion-adsorption rare earth mining, the residual tailings experience considerable heavy metal contamination and gradually evolve into a pollution source. Therefore, the leaching characteristics and environmental impact of heavy metals in ion-adsorption rare earth tailings require immediate and thorough investigation. This study adopted batch and column experiments to investigate the leaching behaviour of heavy metals in tailings and assess the impact of tailings on paddy soil, thereby providing a scientific basis for environmental protection in mining areas. The results showed that Mn, Zn, and Pb contents were 431.67, 155.05, and 264.33 mg·kg-1, respectively, which were several times higher than their respective background values, thereby indicating significant heavy metal contamination in the tailings. The batch leaching experiment indicated that Mn and Pb were priority control heavy metals. Heavy metals were divided into fast and slow leaching stages. The Mn and Pb leaching concentrations far exceeded environmental limits. The DoseResp model perfectly fitted the leaching of all heavy metals from the tailings (R2 > 0.99). In conjunction with the findings of the column experiment and correlation analysis, the chemical form, rainfall pH, ammonia nitrogen, and mineral properties were identified as the primary factors controlling heavy metal release from tailings. Rainfall primarily caused heavy metal migration in the acid-extraction form from the tailings. The tailing leachate not only introduced heavy metals into the paddy soil but also caused the transformation of the chemical form of heavy metals in the paddy soil, further exacerbating the environmental risk posed by heavy metals. The study findings are significant for environmental conservation in mining areas and implementing environmentally friendly practices in rare earth mining.


Assuntos
Monitoramento Ambiental , Metais Pesados , Metais Terras Raras , Mineração , Chuva , Poluentes do Solo , Metais Pesados/análise , Poluentes do Solo/análise , Metais Terras Raras/análise , Chuva/química , Solo/química , Adsorção
7.
Int J Mol Sci ; 25(2)2024 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-38256105

RESUMO

This study investigates the efficacy of adsorbents from locally sourced olive waste-encompassing olive skins, leaves, and pits, recovered from the initial centrifugation of olives (OWP)-and a composite with sodium alginate (OWPSA) for the removal of Cu2+ ions from synthetic wastewater. Experimental analyses conducted at room temperature, with an initial Cu2+ concentration of 50 mg/L and a solid/liquid ratio of 1 g/L, showed that the removal efficiencies were approximately 79.54% and 94.54% for OWP and OWPSA, respectively, highlighting the positive impact of alginate on adsorption capacity. Utilizing statistical physics isotherm models, particularly the single-layer model coupled to real gas (SLMRG), allowed us to robustly fit the experimental data, providing insights into the adsorption mechanisms. Thermodynamic parameters affirmed the spontaneity and endothermic nature of the processes. Adsorption kinetics were interpreted effectively using the pseudo-second-order (PSO) model. Molecular modeling investigations, including the conductor-like screening model for real solvents (COSMO-RS), density functional theory (DFT), and atom-in-molecule (AIM) analysis, unveiled intricate molecular interactions among the adsorbent components-cellulose, hemicellulose, lignin, and alginate-and the pollutant Cu2+, confirming their physically interactive nature. These findings emphasize the synergistic application of experimental and theoretical approaches, providing a comprehensive understanding of copper adsorption dynamics at the molecular level. This methodology holds promise for unraveling intricate processes across various adsorbent materials in wastewater treatment applications.


Assuntos
Olea , Cobre , Águas Residuárias , Adsorção , Alginatos
8.
J Environ Manage ; 368: 122184, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39128358

RESUMO

Ion adsorption rare earth ore nearly satisfy global market demand for heavy rare earth elements (HREEs). Bio-leaching has important potential for the clean and efficient extraction of ion-adsorption rare earth ore. However, the complexities of in-situ mining restrict the use of contact/direct bio-leaching, and non-contact/indirect bio-leaching would be the best choice. This study explore the potential of fermentation broths prepared by Yarrowia lipolytica (ATCC 30162) for the bio-leaching of ion-adsorption rare earth ore, and three typical metabolites (potassium citrate (K3Cit), sodium citrate (Na3Cit) and ammonium citrate ((NH4)3Cit) of Yarrowia lipolytica were further evaluated in simulated bioleaching (non-contact bioleaching) of ion-adsorption rare earth ore, including leaching behavior, seepage rule and rare earth elements (REEs) morphological transformation. The column leaching experiments shown that direct leaching of REEs using fermentation broths results in incomplete leaching of REEs due to the influence of impurities. Using the purified and prepared metabolites as lixiviant, REEs can be effectively extracted (leaching efficiency >90%) at cation concentration was only 10 % of the commonly used ammonium sulfate concentration (45 mM). Cation type had less effect on leaching efficiency. During the ion-adsorption rare earth ore leaching process, rare earth ions form a variety of complex chelates with citrate, thus transferring rare earth elements from the mineral surface to the leachate. Experimental results showed that pH and concentration together determined the type and form of rare earth chelates, which in turn affect the leaching behavior of REEs and solution seepage rule. This study helps to provide a theoretical basis for the regulation and enhancement of ion-adsorption rare earth ore non-contact bioleaching process.


Assuntos
Metais Terras Raras , Metais Terras Raras/metabolismo , Adsorção , Mineração , Yarrowia/metabolismo , Fermentação , Íons
9.
Molecules ; 29(3)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38338300

RESUMO

The adsorption of divalent ions on metal oxides is controlled by the pH of a solution. It is commonly assumed that this is a reversible process for pH changes. However, there are reports that the sorption of ions on oxides may not be reversible. To verify this, we used potentiometric titration, ion-selective electrodes (ISEs), and electrokinetic measurements to examine the reversibility of the adsorption of hydrogen ions and three metal ions (Ca2+, Cu2+, and Fe2+) on TiO2. The ferrous ion was used as a reference because its adsorption is entirely irreversible. The surface charge determined by potentiometric titration and the adsorption edges measured using ISE indicate that the adsorption of copper ions is reversible with changes in pH. In the case of calcium ions, the results suggest a certain degree of irreversibility. There are apparent differences in the electrokinetic potential data obtained during titration with base and acid, which suggests that the adsorption is irreversible. We have explained this contradiction by considering the complex and dynamic nature of electrophoretic mobility. In our opinion, potentiometric titration may be the simplest and most reliable method for assessing the reversibility of multivalent ion adsorption.

10.
Angew Chem Int Ed Engl ; 63(22): e202404886, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38563659

RESUMO

The ion extraction and electro/photo catalysis are promising methods to address environmental and energy issues. Covalent organic frameworks (COFs) are a class of promising template to construct absorbents and catalysts because of their stable frameworks, high surface areas, controllable pore environments, and well-defined catalytic sites. Among them, ionic COFs as unique class of crystalline porous materials, with charges in the frameworks or along the pore walls, have shown different properties and resulting performance in these applications with those from charge-neutral COFs. In this review, current research progress based on the ionic COFs for ion extraction and energy conversion, including cationic/anionic materials and electro/photo catalysis is reviewed in terms of the synthesis strategy, modification methods, mechanisms of adsorption and catalysis, as well as applications. Finally, we demonstrated the current challenges and future development of ionic COFs in design strategies and applications.

11.
Environ Sci Technol ; 57(8): 3357-3368, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36790364

RESUMO

To cope with the urgent and unprecedented demands for rare earth elements (REEs) in sophisticated industries, increased attention has been paid to REE recovery from recycled streams. However, the similar geochemical behaviors of REEs and transition metals often result in poor separation performance due to nonselectivity. Here, a unique approach based on the selective transformation between ceria sulfation and iron/manganese mineralization was proposed, leading to the enhancement of the selective separation of REEs. The mechanism of the selective transformation of minerals could be ascribed to the distinct geochemical and metallurgical properties of ions, resulting in different combinations of cations and anions. According to hard-soft acid-base (HSAB) theory, the strong Lewis acid of Ce(III) was inclined to combine with the hard base of sulfates (SO42-), while the borderline acid of Fe(II)/Mn(II) prefers to interact with oxygen ions (O2-). Both in situ characterization and density functional theory (DFT) calculation further revealed that such selective transformation might trigger by the generation of an oxygen vacancy on the surface of CeO2, leading to the formation of Ce2(SO4)3 and Fe/Mn spinel. Although the electron density difference of the configurations (CeO2-x-SO4, Fe2O3-x-SO4, and MnO2-x-SO4) shared a similar direction of the electron transfer from the metals to the sulfate-based oxygen, the higher electron depletion of Ce (QCe = -1.91 e) than Fe (QFe = -1.66 e) and Mn (QMn = -1.64 e) indicated the higher stability in the Ce-O-S complex, resulting in the larger adsorption energy of CeO2-x-SO4 (-6.88 eV) compared with Fe2O3-x-SO4 (-3.10 eV) and MnO2-x-SO4 (-2.49 eV). This research provided new insights into the selective transformation of REEs and transition metals in pyrometallurgy and thus offered a new approach for the selective recovery of REEs from secondary resources.


Assuntos
Metais Terras Raras , Elementos de Transição , Manganês , Ferro , Adsorção , Sulfatos
12.
Environ Res ; 224: 115439, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36801234

RESUMO

The incorporation of active functional groups into the mesoporous organosilica hybrid materials is efficient for various applications. A newly designed mesoporous organosilica adsorbent was prepared using diaminopyridyl groups bridged-(bis-trimethoxy)organosilane (DAPy) precursor by using Pluronic P123 as structure directing template via sol-gel co-condensation method. The hydrolysis reaction of DAPy precursor and tetraethyl orthosilacate (TEOS) with a DAPy content of about 20 mol% to TEOS were incorporated into the mesopore walls of the mesoporous organosilica hybrid nanoparticles (DAPy@MSA NPs). Low-angle XRD and FT-IR, N2 adsorption-desorption analysis, SEM, TEM, and TG analysis were used to characterize the synthesized DAPy@MSA NPs. The DAPy@MSA NPs exhibit an order mesoporous structure with a high surface area, mesopore size and pore volume of approximately ∼465 m2/g, 4.4 nm and 0.48 cm3/g, respectively. The pyridyl groups integrated DAPy@MSA NPs showed the selective adsorption of Cu2+ ions from the aqueous medium by metal-ligand complex coordination of Cu2+ ions with the integrated pyridyl groups and the pendant hydroxyl (-OH) functional groups present into the mesopore walls of the DAPy@MSA NPs. In the presence of other competitive metal ions (Cr2+, Cd2+, Ni2+, Zn2+, and Fe2+), the DAPy@MSA NPs showed relatively high adsorption of Cu2+ ions (276 mg/g) from aqueous solution as compared to the other competitive metal ions at the same concentration (100 mg/L) of initial metal ion solution.


Assuntos
Cobre , Nanopartículas , Cobre/química , Espectroscopia de Infravermelho com Transformada de Fourier , Adsorção , Íons , Água
13.
Acta Biotheor ; 71(3): 15, 2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37148457

RESUMO

It is common to say that the origin of the membrane potential is attributed to transmembrane ion transport, but it is theoretically possible to explain its generation by the mechanism of ion adsorption. It has been previously suggested that the ion adsorption mechanism even leads to potential formulae identical to the famous Nernst equation or the Goldman-Hodgkin-Katz equation. Our further analysis, presented in this paper, indicates that the potential formula based on the ion adsorption mechanism leads to an equation that is a function of the surface charge density of the material and the surface potential of the material. Furthermore, we have confirmed that the equation holds in all the different experimental systems that we have studied. This equation appears to be a key equation that governs the characteristics of the membrane potential in all systems.


Assuntos
Potenciais da Membrana , Animais , Transporte de Íons , Adsorção
14.
Molecules ; 28(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36615618

RESUMO

Novel spherically shaped organosilica materials with (propyl)ethylenediamine groups were obtained via a modified one-pot Stöber co-condensation method. The porosity of these materials was tuned with the controlled addition of three silica monomers acting as structuring agents (tetraethoxysilane and bridged silanes with ethylene and phenylene bridges). The morphologies and structures of the synthesized materials were studied by SEM, DRIFT spectroscopy, CHNS elemental analysis, low-temperature nitrogen adsorption-desorption, and electrokinetic potential measurements. Their sizes were in the range of 50 to 100 nm, depending on the amount of structuring silane used in the reaction. The degree of the particles' agglomeration determined the mesoporosity of the samples. The content of the (propyl)ethylenediamine groups was directly related with the amount of functional silane used in the reaction. The zeta potential measurements indicated the presence of silanol groups in bissilane-based samples, which added new active centers on the surface and reduced the activity of the amino groups. The static sorption capacities (SSCs) of the obtained samples towards Cu(II), Ni(II), and Eu(III) ions depended on the porosity of the samples and the spatial arrangement of the ethylenediamine groups; therefore, the SSC values were not always higher for the samples with the largest number of groups. The highest SSC values achieved were 1.8 mmolCu(II)/g (for ethylene-bridged samples), 0.83 mmolNi(II)/g (for phenylene-bridged samples), and 0.55 mmolEu(III)/g (for tetraethoxysilane-based samples).

15.
MRS Bull ; 47(3): 267-275, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35316936

RESUMO

Rare earth elements (REEs) are important raw materials for green technologies. However, REE mining and production uses techniques that are often not environmentally sustainable. Life cycle assessment (LCA) is a well-recognized method for evaluating the environmental impacts of products and technologies. This article provides an overview of the environmental impacts based on published LCA results of primary REE production. Existing major REE deposits (Bayan Obo in China, Mountain Pass in the United States, Mount Weld in Australia, ion-adsorption deposits in several Chinese southern provinces) and currently possible production routes are compared. Alternative minerals, such as eudialyte, are also discussed. The article shows which environmental effects can be minimized by technology optimization and environmental safety strategies. Additionally, some of the environmental impacts discussed, may be difficult to mitigate, as they depend on the mineral type. Activities along the complex process chain of REEs production that have particularly high environmental impacts are identified.

16.
Environ Res ; 212(Pt A): 113211, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35367425

RESUMO

A mesoporous silica hybrid functionalized with aromatic 1,2-phenyl dithiol (PT@MS NPs) was prepared in two steps such as sol-gel co-condensation of VTMS and tetraethyl orthosilicate (TEOS) using Pluronic P123 as a structure directing surfactant, and surface grafting reaction of 1,2-phenyl dithiol with vinyl groups via click-reaction. Surface area, average pore size, and mesopore volume of the produced PT@MS NPs are approximately 546 m2/g, 2.8 nm, and 0.63 cm3/g, respectively. With an adsorption quantity of 252 mg/g and a removal capacity of nearly 95% from the initial metal ion (100 mg/L of Hg2+ ions) solutions, the PT@MS NPs material showed highly selective adsorption of mercury (Hg2+) from a mixture of other competitive metal (Zn2+, Ni2+, Pb2+, Cd2+, and Fe2+) ions. By treating the adsorbent with an acidic aqueous solution (0.1 M HCl), the produced adsorbent can be recycled and reused up to five times. As a result, the PT@MS NPs adsorbent might be used in wastewater treatment as a highly efficient and selective adsorbent for harmful Hg2+ ions.


Assuntos
Mercúrio , Poluentes Químicos da Água , Adsorção , Íons , Mercúrio/análise , Dióxido de Silício/química , Água , Poluentes Químicos da Água/análise
17.
Molecules ; 27(15)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35956809

RESUMO

CeO2 nanoparticle-loaded MnO2 nanoflowers, prepared by a hydrothermal method followed by an adsorption-calcination technique, were utilized for selective catalytic reduction (SCR) of NOx with NH3 at low temperatures. The effects of Ce/Mn ratio and thermal calcination temperature on the NH3-SCR activity of the CeO2-MnO2 nanocomposites were studied comprehensively. The as-prepared CeO2-MnO2 catalysts show high NOx reduction efficiency in the temperature range of 150-300 °C, with a complete NOx conversion at 200 °C for the optimal sample. The excellent NH3-SCR performance could be ascribed to high surface area, intimate contact, and strong synergistic interaction between CeO2 nanoparticles and MnO2 nanoflowers of the well-designed composite catalyst. The in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTs) characterizations evidence that the SCR reaction on the surface of the CeO2-MnO2 nanocomposites mainly follows the Langmuir-Hinshelwood (L-H) mechanism. Our work provides useful guidance for the development of composite oxide-based low temperature NH3-SCR catalysts.

18.
Angew Chem Int Ed Engl ; 61(42): e202210432, 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36056915

RESUMO

Electrochemical conversion of CO2 into valuable feedstocks is a promising strategy for carbon neutrality. However, it remains a challenge to possess a large current density, a high faradaic efficiency and excellent stability for practical applications of CO2 utilization. Herein, we report a facile tactic that enables exceedingly efficient CO2 electroreduction to CO by virtue of low-coordination chloride ion (Cl- ) adsorption on a silver hollow fiber (Ag HF) electrode. A CO faradaic efficiency of 92.3 % at a current density of one ampere per square centimeter (1 A cm-2 ) in 3.0 M KCl with a sustained performance observed during a 150-hour test was achieved, which is better than state-of-the-art electrocatalysts. The electrochemical results and density functional theory (DFT) calculations suggested a low-coordination Cl- adsorption on surface of Ag HF, which not only suppressed the competitive hydrogen evolution reaction (HER), but also facilitated the CO2 reduction kinetics.

19.
Small ; 17(46): e2104178, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34636139

RESUMO

High-energy electrodes at high mass loadings (usually >8.0 mg cm-2 ) are desired for aqueous pseudocapacitors. Yet, how to overcome the thickness-dependent resistance increase of ion/electron transport in pseudocapacitive materials is still challenging. Herein, a high-performance electrode (denoted as AMC) adapted to high mass loading is achieved by promoting the Li-ion affinity of 3D MoO2 /carbon fabric. The experimental results and corresponding computational results reveal that the oxygen-activated surface of AMC, combined with the wettability and conductivity superiority of 3D graphite network, significantly facilitates the Li-ion adsorption and diffusion at the electrode/electrolyte interface, even at large thicknesses. Consequently, even at a high mass loading up to 8.1 mg cm-2 , the AMC electrode also displays an impressive specific capacity (567.5 C g-1 at 2.5 A g-1 ), substantially superior to most advanced pseudocapacitive electrodes. The strategy of boosting energy characteristic by enhancing the affinity of charge carriers is applicable to other pseudocapacitive electrodes.


Assuntos
Carbono , Lítio , Molibdênio , Óxidos
20.
Small ; 17(45): e2103448, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34611985

RESUMO

Water-infiltration-induced power generation has the renewable characteristic of generating electrical energy from ambient water. Importantly, it is found that the carrier concentration in semiconductor constituting the energy generator seriously affect the electricity generation. Nevertheless, few studies are conducted on the influence of semiconductor carrier concentration, a crucial factor on electricity generation. Due to this, understanding of the energy harvesting mechanism is still insufficient. Herein, the semiconductor carrier concentration-dependent behavior in water-infiltration-induced electricity generation and the energy harvesting mechanism by ionovoltaic effect are comprehensively verified. A clue to enhance the electric power generation efficiency is also proposed. When 20 µL of water (NaCl, 0.1 m) infiltrates into a porous CuO nanowires film (PCNF), electric power of ≈0.5 V and ≈1 µA are produced for 25 min. Moreover, the PCNF shows good practicability by generating electricity using various ambient water, turning on LEDs, and being fabricated as a curved one.


Assuntos
Eletricidade , Água , Semicondutores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA