Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Neurosci ; 40(3): 496-508, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31719168

RESUMO

Computations that require speed and temporal precision are implemented throughout the nervous system by neurons capable of firing at very high rates, rapidly encoding and transmitting a rich amount of information, but with substantial metabolic and physical costs. For economical fast spiking and high throughput information processing, neurons need to optimize multiple biophysical properties in parallel, but the mechanisms of this coordination remain unknown. We hypothesized that coordinated gene expression may underlie the coordinated tuning of the biophysical properties required for rapid firing and signal transmission. Taking advantage of the diversity of fast-spiking cell types in the medial vestibular nucleus of mice of both sexes, we examined the relationship between gene expression, ionic currents, and neuronal firing capacity. Across excitatory and inhibitory cell types, genes encoding voltage-gated ion channels responsible for depolarizing and repolarizing the action potential were tightly coexpressed, and their absolute expression levels increased with maximal firing rate. Remarkably, this coordinated gene expression extended to neurofilaments and specific presynaptic molecules, providing a mechanism for coregulating axon caliber and transmitter release to match firing capacity. These findings suggest the presence of a module of genes, which is coexpressed in a graded manner and jointly tunes multiple biophysical properties for economical differentiation of firing capacity. The graded tuning of fast-spiking capacity by the absolute expression levels of specific ion channels provides a counterexample to the widely held assumption that cell-type-specific firing patterns can be achieved via a vast combination of different ion channels.SIGNIFICANCE STATEMENT Although essential roles of fast-spiking neurons in various neural circuits have been widely recognized, it remains unclear how neurons efficiently coordinate the multiple biophysical properties required to maintain high rates of action potential firing and transmitter release. Taking advantage of diverse fast-firing capacities among medial vestibular nucleus neurons of mice, we identify a group of ion channel, synaptic, and structural genes that exhibit mutually correlated expression levels, which covary with firing capacity. Coexpression of this fast-spiking gene module may be a basic strategy for neurons to efficiently and coordinately tune the speed of action potential generation and propagation and transmitter release at presynaptic terminals.


Assuntos
Canais Iônicos/biossíntese , Proteínas de Neurofilamentos/biossíntese , Neurônios/metabolismo , Sinapses/genética , Núcleos Vestibulares/metabolismo , Potenciais de Ação , Animais , Axônios/metabolismo , Axônios/fisiologia , Fenômenos Eletrofisiológicos/genética , Feminino , Regulação da Expressão Gênica/genética , Estudo de Associação Genômica Ampla , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Patch-Clamp , Transmissão Sináptica/genética , Transmissão Sináptica/fisiologia , Núcleos Vestibulares/citologia
2.
J Neurooncol ; 134(2): 397-405, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28752501

RESUMO

Increasing evidence suggests that ion channels not only regulate electric signaling in excitable cells but also play important roles in the development of human cancer. However, the roles of ion channels in glioma remain controversial. We systematically analyzed the expression patterns of ion channel genes in a cohort of Chinese patients with glioma using whole-genome mRNA expression profiling. First, a molecular signature comprising 47 ion channel genes (IC47) was identified using Spearman's rank correlation test conducted between tumor grade and gene expression. We assigned a risk score based on IC47 to each glioma patient. We demonstrated that the risk score effectively predicted overall survival in glioma patients. Next, we screened IC47 in different molecular glioma subtypes. IC47 showed a Mesenchymal subtype and wild-type IDH1 preference. Gene ontology (GO) analysis and gene set variation analysis (GSVA) for the functional annotation of IC47 showed that patients with high-risk scores tended to exhibit the decreased expression of proteins associated with the apoptosis and cell adhesion, and higher expression of proteins associated with the cell cycle and cell proliferation. These results suggest that ion channel gene expression could improve the subtype classification in gliomas at the molecular level. The findings in the present study have been validated in two independent cohorts.


Assuntos
Neoplasias Encefálicas/genética , Glioma/genética , Canais Iônicos/genética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/cirurgia , Seguimentos , Perfilação da Expressão Gênica , Estudos de Associação Genética , Testes Genéticos , Glioma/metabolismo , Glioma/patologia , Glioma/cirurgia , Humanos , Canais Iônicos/metabolismo , Isocitrato Desidrogenase/genética , Análise em Microsséries , Mutação , Gradação de Tumores , Prognóstico , RNA Mensageiro/metabolismo
3.
Ir J Med Sci ; 193(1): 417-424, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37477849

RESUMO

BACKGROUND: Although available literature indicates that the incidence of dementia in the epilepsy population and the risk of seizures in the Alzheimer's disease (AD) population are high, the specific genetic risk factors and the interaction mechanism are unclear, rendering rational genetic interpretation rather challenging. AIMS: Our work aims to identify the common core ion channel genes in epilepsy and AD. METHODS: In this study, we first integrated gene expression omnibus datasets (GSE48350 and GSE6834) on AD and epilepsy to identify differentially expressed genes (DEGs), performing Gene Ontology function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of DEGs. The related protein-protein interaction (PPI) network was constructed for DEGs, and the hub gene was evaluated. RESULTS: A total of 2800 and 35 genes were identified in GSE48350 and GSE6834, and 12 DEGs were significantly differentially expressed between the datasets. KEGG pathway analysis showed that DEGs were primarily enriched in glutamatergic synapse and dopaminergic synapse pathways. SCN2A, GRIA1, and KCNJ9 were the hub genes with high connectivity. CONCLUSIONS: The findings suggest that the three genes, SCN2A, GRIA1, and KCNJ9, may serve as potential targets for treating AD comorbid with epilepsy.


Assuntos
Doença de Alzheimer , Epilepsia , Humanos , Mapas de Interação de Proteínas , Canais Iônicos/genética , Canais Iônicos/metabolismo , Perfilação da Expressão Gênica , Biologia Computacional
4.
Heliyon ; 10(7): e27301, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38560261

RESUMO

Background: Less than 10% of people who have pancreatic ductal adenocarcinoma (PDAC) will survive the malignancy for five years. The ion channel genes-related biomarker and predictive model were needed for exploitation. Methods: Differentially expressed ion channel genes (DEICGs) were detected in PDAC patients. GO and KEGG enrichment analysis was conducted on DEICGs. The prognostic genes were found using Cox regression analysis. After that, a risk model was created and examined. A nomogram was created based on independent predictive analysis. The molecular functions of two risk groups were explored. Immune checkpoint molecule expression was compared in two risk groups. We evaluated the possible cancer immunotherapy response in two risk groups using the TIDE method. We further examined how TRPV2 functions in PDAC as a potent oncogene and regulates the activity of macrophages by in vitro validation, including CCK8, EdU, and Transwell assays. Results: A total of twenty-four DEICGs were found. Next, we discovered that two DEICGs (TRPV2 and GJB3) were connected to PDAC patients' overall survival (OS). The risk model was created and validated, and a nomogram was used to forecast the overall survival of PDAC patients. The high-risk group considerably accumulated oncogenic pathways. Furthermore, we discovered a correlation between the expression of critical immunological checkpoints and the risk score. Furthermore, patients in the high-risk category had a lower chance of benefiting from immune therapy. The HPA database confirmed that TRPV2 is expressed as a protein. Lastly, TRPV2 controls macrophage activity and acts as a potent oncogene in PDAC. Conclusion: Altogether, this study suggested that two ion channel genes, TRPV2 and GJB3, were potential biomarkers for the prognosis of PDAC and immunotherapy targets, and the research will be crucial for creating novel PDAC treatment targets and predictive molecular indicators.

5.
Biomedicines ; 11(10)2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37893054

RESUMO

Neuropathic pain (NP) is a typical symptom of peripheral nerve disorders, including painful neuropathy. The biological mechanisms that control ion channels are important for many cell activities and are also therapeutic targets. Disruption of the cellular mechanisms that govern ion channel activity can contribute to pain pathophysiology. The voltage-gated sodium channel (VGSC) is the most researched ion channel in terms of NP; however, VGSC impairment is detected in only <20% of painful neuropathy patients. Here, we discuss the potential role of the other peripheral ion channels involved in sensory signaling (transient receptor potential cation channels), neuronal excitation regulation (potassium channels), involuntary action potential generation (hyperpolarization-activated cyclic nucleotide-gated channels), thermal pain (anoctamins), pH modulation (acid sensing ion channels), and neurotransmitter release (calcium channels) related to pain and their prospective role as therapeutic targets for painful neuropathy.

6.
Trends Pharmacol Sci ; 43(5): 392-405, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35427475

RESUMO

Induced pluripotent stem cell (iPSC) and gene editing technologies have revolutionized the field of in vitro disease modeling, granting us access to disease-pertinent human cells of the central nervous system. These technologies are particularly well suited for the study of diseases with strong monogenic etiologies. Epilepsy is one of the most common neurological disorders in children, with approximately half of all genetic cases caused by mutations in ion channel genes. These channelopathy-associated epilepsies are clinically diverse, mechanistically complex, and hard to treat. Here, we review the genetic links to epilepsy, the opportunities and challenges of iPSC-based approaches for developing in vitro models of channelopathy-associated disorders, the available tools for effective phenotyping of iPSC-derived neurons, and discuss the potential therapeutic approaches for these devastating diseases.


Assuntos
Canalopatias , Epilepsia , Células-Tronco Pluripotentes Induzidas , Criança , Epilepsia/genética , Epilepsia/terapia , Humanos , Mutação , Neurônios
7.
Front Genet ; 12: 595934, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34712263

RESUMO

The clinical heterogeneity of autism spectrum disorder (ASD) is closely associated with the diversity of genes related to ASD pathogenesis. With their low effect size, it has been hard to define the role of common variants of genes in ASD phenotype. In this study, we reviewed genetic results and clinical scores widely used for ASD diagnosis to investigate the role of genes in ASD phenotype considering their functions in molecular pathways. Genetic data from next-generation sequencing (NGS) were collected from 94 participants with ASD. We analyzed enrichment of cellular processes and gene ontology using the Database for Annotation, Visualization, and Integrated Discovery (DAVID). We compared clinical characteristics according to genetic functional characteristics. We found 266 genes containing nonsense, frame shift, missense, and splice site mutations. Results from DAVID revealed significant enrichment for "ion channel" with an enrichment score of 8.84. Moreover, ASD participants carrying mutations in ion channel-related genes showed higher total IQ (p = 0.013) and lower repetitive, restricted behavior (RRB)-related scores (p = 0.003) and mannerism subscale of social responsiveness scale scores, compared to other participants. Individuals with variants in ion channel genes showed lower RRB scores, suggesting that ion channel genes might be relatively less associated with RRB pathogenesis. These results contribute to understanding of the role of common variants in ASD and could be important in the development of precision medicine of ASD.

8.
Lung Cancer ; 158: 29-39, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34111567

RESUMO

OBJECTIVES: Abnormal expressions of ion channel genes are associated with the occurrence and progression of tumors. At present, their roles in the carcinogenesis of lung adenocarcinoma (LUAD) are not clear. MATERIALS AND METHODS: Differentially expressed (DE) genes in the tumorigenesis were identified from 328 ion channel genes in 102 LUAD and paired adjacent normal samples. Similar analyses were performed between 177 metastatic and 286 non-metastatic LUAD samples to identify DE ion channel genes in the progression of LUAD. Independent prognostic factors selected from DE ion channel genes were used to construct a prognostic model. Correlation analysis and drugs-drug targets interaction network were used to screen the potential drugs for LUAD patients stratified by GJB2 or SCNN1B. RESULTS: Six ion channel genes (GJB2, CACNA1D, KCNQ1, SCNN1B, SCNN1G and TRPV6) were continuous differentially expressed in the tumorigenesis and progression of LUAD. The survival analysis in four datasets with 522 LUAD samples showed that GJB2 and SCNN1B were independent prognostic biomarkers. Patients with overexpression of GJB2 or underexpression of SCNN1B had shorter overall survival. Moreover, multi-omics analysis showed that hypomethylation of GJB2 and hypermethylation of SCNN1B in the promoter region may contribute to their aberrant expressions. KEGG enrichment analysis showed that the overexpressed genes in the group with high GJB2 or low SCNN1B were enriched in cancer-related pathways, while the underexpressed genes were enriched in metabolism-related pathways. The prognostic model with GJB2 and SCNN1B can stratify all LUAD patients into two groups with significantly different survival. Correlation analysis and drugs-drug targets interaction network suggested that GJB2 and SCNN1B expression might have indicative therapeutic values for LUAD patients. Finally, pan-cancer analysis in other eight cancer types showed that GJB2 and SCNN1B might be also potential prognostic factors for KIRC. CONCLUSIONS: GJB2 and SCNN1B were identified as prognostic biomarkers and therapeutic targets for LUAD.


Assuntos
Adenocarcinoma de Pulmão , Conexina 26/genética , Canais Epiteliais de Sódio/genética , Neoplasias Pulmonares , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/genética , Biomarcadores Tumorais/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Canais Iônicos/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Prognóstico
9.
Cells ; 9(11)2020 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-33126486

RESUMO

Hemiplegic migraine (HM) is a rare migraine disorder with aura subtype including temporary weakness and visual, sensory, and/or speech symptoms. To date, three main genes-CACNA1A, ATP1A2, and SCN1A-have been found to cause HM. These encode ion channels or transporters, important for regulating neuronal ion balance and synaptic transmission, leading to HM being described as a channelopathy. However, <20% of HM cases referred for genetic testing have mutations in these genes and other genes with roles in ion and solute transport, and neurotransmission has also been implicated in some HM cases. In this study, we performed whole exome sequencing for 187 suspected HM probands referred for genetic testing, but found to be negative for CACNA1A, ATP1A2, and SCN1A mutations, and applied targeted analysis of whole exome sequencing data for rare missense or potential protein-altering variants in the PRRT2, PNKD, SLC1A3, SLC2A1, SLC4A4, ATP1A3, and ATP1A4 genes. We identified known mutations and some potentially pathogenic variants in each of these genes in specific cases, suggesting that their screening improves molecular diagnosis for the disorder. However, the majority of HM patients were found not to have candidate mutations in any of the previously reported HM genes, suggesting that additional genetic factors contributing to the disorder are yet to be identified.


Assuntos
Éxons/genética , Hemiplegia/complicações , Hemiplegia/genética , Transtornos de Enxaqueca/complicações , Transtornos de Enxaqueca/genética , Mutação/genética , Análise de Sequência de DNA , Sequência de Bases , Estudos de Coortes , Hemiplegia/epidemiologia , Humanos , Proteínas de Membrana/genética , Transtornos de Enxaqueca/epidemiologia , Proteínas do Tecido Nervoso/genética , Prevalência , Sequenciamento do Exoma
10.
Clin Transl Med ; 10(1): 238-257, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32508047

RESUMO

BACKGROUND: Atrioventricular nodal reentry tachycardia (AVNRT) is the most common manifestation of paroxysmal supraventricular tachycardia (PSVT). Increasing data have indicated familial clustering and participation of genetic factors in AVNRT, and no pathogenic genes related to AVNRT have been reported. METHODS: Whole-exome sequencing (WES) was performed in 82 patients with AVNRT and 100 controls. Reference genes, genome-wide association analysis, gene-based collapsing, and pathway enrichment analysis were performed. A protein-protein interaction (PPI) network was then established; WES database in the UK Biobank and one only genetic study of AVNRT in Denmark were used for external data validation. RESULTS: Among 95 reference genes, 126 rare variants in 48 genes were identified in the cases (minor allele frequency < 0.001). Gene-based collapsing analysis and pathway enrichment analysis revealed six functional pathways related to AVNRT as with neuronal system/neurotransmitter release cycles and ion channel/cardiac conduction among the top 30 enriched pathways, and then 36 candidate pathogenic genes were selected. By combining with PPI analysis, 10 candidate genes were identified, including RYR2, NOS1, SCN1A, CFTR, EPHB4, ROBO1, PRKAG2, MMP2, ASPH, and ABCC8. From the UK Biobank database, 18 genes from candidate genes including SCN1A, PRKAG2, NOS1, and CFTR had rare variants in arrhythmias, and the rare variants in PIK3CB, GAD2, and HIP1R were in patients with PSVT. Moreover, one rare variant of RYR2 (c.4652A > G, p.Asn1551Ser) in our study was also detected in the Danish study. Considering the gene functional roles and external data validation, the most likely candidate genes were SCN1A, PRKAG2, RYR2, CFTR, NOS1, PIK3CB, GAD2, and HIP1R. CONCLUSION: The preliminary results first revealed potential candidate genes such as SCN1A, PRKAG2, RYR2, CFTR, NOS1, PIK3CB, GAD2, and HIP1R, and the pathways mediated by these genes, including neuronal system/neurotransmitter release cycles or ion channels/cardiac conduction, might be involved in AVNRT.

11.
Gene ; 561(2): 276-82, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25701599

RESUMO

As an ideal model, Locusta migratoria manilensis (Meyen) has been widely used in the study of endocrinological and neurobiological processes. Here we created a large transcriptome of the locust neurons, which enriched ion channels whose potential for functional genetic experiments is currently limited. With high-throughput Illumina sequencing technology, we obtained more than 50 million raw reads, which were assembled into 61,056 unique sequences with average size of 737bp. Among the unigenes, a total 24,884 sequences had significant similarities with proteins in the five public databases (NR, SwissProt, GO, COG and KEGG) with a cut-off E-value of 10(-5) using BLASTx. Moreover, the number of potential genes of the cys-loop ligand-gated ion channels (LGICs) was manually curated, including 39 putative nicotinic acetylcholine receptors (nAChRs), 6 putative γ-aminobutyric acid (GABA) gated anion channels, 21 putative glutamate-gated chloride channels (GluCls) and 1 histamine-gated chloride channels (HisCls). In addition, the full-length of 11 nAChRs subunits (9 alpha and 2 beta) were obtained by RACE technique that would be helpful to further studies on nAChR neurochemistry and pharmacological aspects. To our knowledge, this is the first study to characterize the locust neuron transcriptome, which will provide a useful resource especially for future studies on the neuro-function and behavior of the locust.


Assuntos
Receptores de Canais Iônicos de Abertura Ativada por Ligante com Alça de Cisteína/genética , Proteínas de Insetos/genética , Locusta migratoria/genética , Neurônios/metabolismo , Animais , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Filogenia , Alinhamento de Sequência , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA