Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 887
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Eur Heart J ; 45(34): 3164-3177, 2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-38842545

RESUMO

BACKGROUND AND AIMS: The spleen serves as an important relay organ that releases cardioprotective factor(s) upon vagal activation during remote ischaemic conditioning (RIC) in rats and pigs. The translation of these findings to humans was attempted. METHODS: Remote ischaemic conditioning or electrical auricular tragus stimulation (ATS) were performed in 10 healthy young volunteers, 10 volunteers with splenectomy, and 20 matched controls. Venous blood samples were taken before and after RIC/ATS or placebo, and a plasma dialysate was infused into isolated perfused rat hearts subjected to global ischaemia/reperfusion. RESULTS: Neither left nor right RIC or ATS altered heart rate and heart rate variability in the study cohorts. With the plasma dialysate prepared before RIC or ATS, respectively, infarct size (% ventricular mass) in the recipient rat heart was 36 ± 6% (left RIC), 34 ± 3% (right RIC) or 31 ± 5% (left ATS), 35 ± 5% (right ATS), and decreased with the plasma dialysate from healthy volunteers after RIC or ATS to 20 ± 4% (left RIC), 23 ± 6% (right RIC) or to 19 ± 4% (left ATS), 26 ± 9% (right ATS); infarct size was still reduced with plasma dialysate 4 days after ATS and 9 days after RIC. In a subgroup of six healthy volunteers, such infarct size reduction was abrogated by intravenous atropine. Infarct size reduction by RIC or ATS was also abrogated in 10 volunteers with splenectomy, but not in their 20 matched controls. CONCLUSIONS: In humans, vagal innervation and the spleen as a relay organ are decisive for the cardioprotective signal transduction of RIC and ATS.


Assuntos
Baço , Esplenectomia , Humanos , Animais , Masculino , Adulto , Ratos , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Transdução de Sinais/fisiologia , Nervo Vago/fisiologia , Precondicionamento Isquêmico Miocárdico/métodos , Frequência Cardíaca/fisiologia , Feminino , Infarto do Miocárdio/fisiopatologia , Infarto do Miocárdio/prevenção & controle , Estimulação Elétrica/métodos , Adulto Jovem
2.
Eur Heart J ; 45(18): 1662-1680, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38666340

RESUMO

BACKGROUND AND AIMS: The Glu504Lys polymorphism in the aldehyde dehydrogenase 2 (ALDH2) gene is closely associated with myocardial ischaemia/reperfusion injury (I/RI). The effects of ALDH2 on neutrophil extracellular trap (NET) formation (i.e. NETosis) during I/RI remain unknown. This study aimed to investigate the role of ALDH2 in NETosis in the pathogenesis of myocardial I/RI. METHODS: The mouse model of myocardial I/RI was constructed on wild-type, ALDH2 knockout, peptidylarginine deiminase 4 (Pad4) knockout, and ALDH2/PAD4 double knockout mice. Overall, 308 ST-elevation myocardial infarction patients after primary percutaneous coronary intervention were enrolled in the study. RESULTS: Enhanced NETosis was observed in human neutrophils carrying the ALDH2 genetic mutation and ischaemic myocardium of ALDH2 knockout mice compared with controls. PAD4 knockout or treatment with NETosis-targeting drugs (GSK484, DNase1) substantially attenuated the extent of myocardial damage, particularly in ALDH2 knockout. Mechanistically, ALDH2 deficiency increased damage-associated molecular pattern release and susceptibility to NET-induced damage during myocardial I/RI. ALDH2 deficiency induced NOX2-dependent NETosis via upregulating the endoplasmic reticulum stress/microsomal glutathione S-transferase 2/leukotriene C4 (LTC4) pathway. The Food and Drug Administration-approved LTC4 receptor antagonist pranlukast ameliorated I/RI by inhibiting NETosis in both wild-type and ALDH2 knockout mice. Serum myeloperoxidase-DNA complex and LTC4 levels exhibited the predictive effect on adverse left ventricular remodelling at 6 months after primary percutaneous coronary intervention in ST-elevation myocardial infarction patients. CONCLUSIONS: ALDH2 deficiency exacerbates myocardial I/RI by promoting NETosis via the endoplasmic reticulum stress/microsomal glutathione S-transferase 2/LTC4/NOX2 pathway. This study hints at the role of NETosis in the pathogenesis of myocardial I/RI, and pranlukast might be a potential therapeutic option for attenuating I/RI, particularly in individuals with the ALDH2 mutation.


Assuntos
Aldeído-Desidrogenase Mitocondrial , Armadilhas Extracelulares , Leucotrieno C4 , Traumatismo por Reperfusão Miocárdica , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Aldeído-Desidrogenase Mitocondrial/genética , Aldeído-Desidrogenase Mitocondrial/metabolismo , Benzamidas , Benzodioxóis , Modelos Animais de Doenças , Armadilhas Extracelulares/metabolismo , Antagonistas de Leucotrienos/farmacologia , Antagonistas de Leucotrienos/uso terapêutico , Leucotrieno C4/antagonistas & inibidores , Leucotrieno C4/metabolismo , Camundongos Knockout , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/metabolismo , Neutrófilos/metabolismo , Proteína-Arginina Desiminase do Tipo 4/metabolismo , Infarto do Miocárdio com Supradesnível do Segmento ST/metabolismo
3.
Gut ; 73(9): 1543-1553, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-38724220

RESUMO

OBJECTIVE: Previous studies indicate that eosinophils are recruited into the allograft following orthotopic liver transplantation and protect from ischaemia reperfusion (IR) injury. In the current studies, we aim to explore whether their protective function could outlast during liver repair. DESIGN: Eosinophil-deficient mice and adoptive transfer of bone marrow-derived eosinophils (bmEos) were employed to investigate the effects of eosinophils on tissue repair and regeneration after hepatic IR injury. Aside from exogenous cytokine or neutralising antibody treatments, mechanistic studies made use of a panel of mouse models of eosinophil-specific IL-4/IL-13-deletion, cell-specific IL-4rα-deletion in liver macrophages and hepatocytes and macrophage-specific deletion of heparin-binding epidermal growth factor-like growth factor (hb-egf). RESULT: We observed that eosinophils persisted over a week following hepatic IR injury. Their peak accumulation coincided with that of hepatocyte proliferation. Functional studies showed that eosinophil deficiency was associated with a dramatic delay in liver repair, which was normalised by the adoptive transfer of bmEos. Mechanistic studies demonstrated that eosinophil-derived IL-4, but not IL-13, was critically involved in the reparative function of these cells. The data further revealed a selective role of macrophage-dependent IL-4 signalling in liver regeneration. Eosinophil-derived IL-4 stimulated macrophages to produce HB-EGF. Moreover, macrophage-specific hb-egf deletion impaired hepatocyte regeneration after IR injury. CONCLUSION: Together, these studies uncovered an indispensable role of eosinophils in liver repair after acute injury and identified a novel crosstalk between eosinophils and macrophages through the IL-4/HB-EGF axis.


Assuntos
Eosinófilos , Fator de Crescimento Semelhante a EGF de Ligação à Heparina , Interleucina-4 , Regeneração Hepática , Macrófagos , Traumatismo por Reperfusão , Animais , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/metabolismo , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/genética , Regeneração Hepática/fisiologia , Traumatismo por Reperfusão/metabolismo , Interleucina-4/metabolismo , Camundongos , Eosinófilos/metabolismo , Macrófagos/metabolismo , Fígado/patologia , Fígado/metabolismo , Fígado/irrigação sanguínea , Hepatócitos/metabolismo , Interleucina-13/metabolismo , Transferência Adotiva , Camundongos Endogâmicos C57BL
4.
J Cell Mol Med ; 28(16): e70043, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39205481

RESUMO

Renal ischaemia-reperfusion injury (RIRI) is a primary cause of acute kidney damage, occurring frequently in situations like renal transplantation, yet the underlying mechanisms were not fully understood. Sentrin-specific protease 1 (SENP1) is an important member of the SENP family, which is widely involved in various diseases. However, the role of SENP1 in RIRI has been unclear. In our study, we discovered that SENP1 was involved in RIRI and reduced renal cell apoptosis and oxidative stress at elevated levels. Further mechanistic studies showed that hypoxia-inducible factor-1α (HIF-1α) was identified as a substrate of SENP1. Furthermore, SENP1 deSUMOylated HIF-1α, which reduced the degradation of HIF-1α, and exerted a renoprotective function. In addition, the protective function was lost after application of the HIF-1α specific inhibitor KC7F2. Briefly, our results fully demonstrated that SENP1 reduced the degradation of HIF-1α and attenuated oxidative stress and apoptosis in RIRI by regulating the deSUMOylation of HIF-1α, suggesting that SENP1 may serve as a potential therapeutic target for the treatment of RIRI.


Assuntos
Apoptose , Cisteína Endopeptidases , Subunidade alfa do Fator 1 Induzível por Hipóxia , Estresse Oxidativo , Traumatismo por Reperfusão , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Animais , Cisteína Endopeptidases/metabolismo , Cisteína Endopeptidases/genética , Sumoilação , Rim/metabolismo , Rim/patologia , Humanos , Masculino , Camundongos
5.
J Cell Mol Med ; 28(8): e18281, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38652092

RESUMO

Conditions to which the cardiac graft is exposed during transplantation with donation after circulatory death (DCD) can trigger the recruitment of macrophages that are either unpolarized (M0) or pro-inflammatory (M1) as well as the release of extracellular vesicles (EV). We aimed to characterize the effects of M0 and M1 macrophage-derived EV administration on post-ischaemic functional recovery and glucose metabolism using an isolated rat heart model of DCD. Isolated rat hearts were subjected to 20 min aerobic perfusion, followed by 27 min global, warm ischaemia or continued aerobic perfusion and 60 min reperfusion with or without intravascular administration of EV. Four experimental groups were compared: (1) no ischaemia, no EV; (2) ischaemia, no EV; (3) ischaemia with M0-macrophage-dervied EV; (4) ischaemia with M1-macrophage-derived EV. Post-ischaemic ventricular and metabolic recovery were evaluated. During reperfusion, ventricular function was decreased in untreated ischaemic and M1-EV hearts, but not in M0-EV hearts, compared to non-ischaemic hearts (p < 0.05). In parallel with the reduced functional recovery in M1-EV versus M0-EV ischaemic hearts, rates of glycolysis from exogenous glucose and oxidative metabolism tended to be lower, while rates of glycogenolysis and lactate release tended to be higher. EV from M0- and M1-macrophages differentially affect post-ischaemic cardiac recovery, potentially by altering glucose metabolism in a rat model of DCD. Targeted EV therapy may be a useful approach for modulating cardiac energy metabolism and optimizing graft quality in the setting of DCD.


Assuntos
Vesículas Extracelulares , Transplante de Coração , Macrófagos , Animais , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/transplante , Ratos , Macrófagos/metabolismo , Masculino , Transplante de Coração/métodos , Glucose/metabolismo , Miocárdio/metabolismo , Modelos Animais de Doenças , Recuperação de Função Fisiológica , Glicólise , Coração/fisiopatologia , Coração/fisiologia
6.
J Physiol ; 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39057844

RESUMO

Renal ischaemia and reperfusion (I/R) is caused by a sudden temporary impairment of the blood flow. I/R is a prevalent cause of acute kidney injury. As nitric oxide generated by inducible nitric oxide synthase (iNOS) has detrimental effects during I/R, the pharmacological blockade of iNOS has been proposed as a potential strategy to prevent I/R injury. The aim of this study was to improve the understanding of 1400W (an iNOS inhibitor) on renal I/R as a pharmacological strategy against kidney disease. BALB/c mice received 30 min of bilateral ischaemia, followed by 48 h or 28 days of reperfusion. Vehicle or 1400W (10 mg/kg) was administered 30 min before inducing ischaemia. We found that after 48 h of reperfusion 1400W decreased the serum creatinine, blood urea nitrogen, neutrophil gelatinase-associated lipocalin and proliferating cell nuclear antigen 3 in the I/R animals. Unexpectedly, we observed mRNA upregulation of genes involved in kidney injury, cell-cycle arrest, inflammation, mesenchymal transition and endothelial activation in the renal medulla of sham animals treated with 1400W. We also explored if 1400W promoted chronic kidney dysfunction 28 days after I/R and did not find significant alterations in renal function, fibrosis, blood pressure or mortality. The results provide evidence that 1400W may have adverse effects in the renal medulla. Importantly, our data point to 1400W-induced endothelial dysfunction, establishing therapeutic limitations for its use. KEY POINTS: Acute kidney injury is a global health problem associated with high morbidity and mortality. The pharmacological blockade of inducible nitric oxide synthase (iNOS) has been proposed as a potential strategy to prevent AKI induced by ischaemia and reperfusion (I/R). Our main finding is that 1400W, a selective and irreversible iNOS inhibitor with low toxicity that is proposed as a therapeutic strategy to prevent kidney I/R injury, produces aberrant gene expression in the medulla associated to tissue injury, cell cycle arrest, inflammation, mesenchymal transition and endothelial activation. The negative effect of 1400W observed in the renal medulla at 48 h from drug administration, is transient as it did not translate into a chronic kidney disease condition.

7.
J Physiol ; 602(18): 4649-4667, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38661672

RESUMO

Defibrillation remains the optimal therapy for terminating ventricular fibrillation (VF) in out-of-hospital cardiac arrest (OHCA) patients, with reported shock success rates of ∼90%. A key persistent challenge, however, is the high rate of VF recurrence (∼50-80%) seen during post-shock cardiopulmonary resuscitation (CPR). Studies have shown that the incidence and time spent in recurrent VF are negatively associated with neurologically-intact survival. Recurrent VF also results in the administration of extra shocks at escalating energy levels, which can cause cardiac dysfunction. Unfortunately, the mechanisms underlying recurrent VF remain poorly understood. In particular, the role of chest-compressions (CC) administered during CPR in mediating recurrent VF remains controversial. In this review, we first summarize the available clinical evidence for refibrillation occurring during CPR in OHCA patients, including the postulated contribution of CC and non-CC related pathways. Next, we examine experimental studies highlighting how CC can re-induce VF via direct mechano-electric feedback. We postulate the ionic mechanisms involved by comparison with similar phenomena seen in commotio cordis. Subsequently, the hypothesized contribution of partial cardiac reperfusion (either as a result of CC or CC independent organized rhythm) in re-initiating VF in a globally ischaemic heart is examined. An overview of the proposed ionic mechanisms contributing to VF recurrence in OHCA during CPR from a cellular level to the whole heart is outlined. Possible therapeutic implications of the proposed mechanistic theories for VF recurrence in OHCA are briefly discussed.


Assuntos
Parada Cardíaca Extra-Hospitalar , Fibrilação Ventricular , Fibrilação Ventricular/fisiopatologia , Humanos , Parada Cardíaca Extra-Hospitalar/terapia , Parada Cardíaca Extra-Hospitalar/fisiopatologia , Animais , Recidiva , Reanimação Cardiopulmonar/métodos
8.
J Physiol ; 602(19): 4959-4985, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39197117

RESUMO

This study investigates the molecular mechanisms behind ischaemia/reperfusion (I/R) injury in the brain, focusing on neuronal apoptosis. It scrutinizes the role of the Jun proto-oncogene in apoptosis, involvement of SOCS1 in neural precursor cell accumulation in ischaemic regions, and the upregulation of C-EBPß in the hippocampus following I/R. Key to the study is understanding how Jun controls C-EBPß degradation via SOCS1, potentially offering new clinical treatment avenues for I/R. Techniques such as mRNA sequencing, KEGG enrichment analysis and protein-protein interaction (PPI) in mouse models have indicated involvement of Jun (AP-1) in I/R-induced cerebral damage. The study employs middle cerebral artery occlusion in different mouse models and oxygen-glucose deprivation/reoxygenation in cortical neurons to examine the impacts of Jun and SOCS1 manipulation on cerebral I/R injury and neuronal damage. The findings reveal that I/R reduces Jun expression in the brain, but its restoration lessens cerebral I/R injury and neuron death. Jun activates SOCS1 transcriptionally, leading to C-EBPß degradation, thereby diminishing cerebral I/R injury through the SOCS1/C-EBPß pathway. These insights provide a deeper understanding of post-I/R cerebral injury mechanisms and suggest new therapeutic targets for cerebral I/R injury. KEY POINTS: Jun and SOCS1 are poorly expressed, and C-EBPß is highly expressed in ischaemia/reperfusion mouse brain tissues. Jun transcriptionally activates SOCS1. SOCS1 promotes the ubiquitination-dependent C-EBPß protein degradation. Jun blunts oxygen-glucose deprivation/reoxygenation-induced neuron apoptosis and alleviates neuronal injury. This study provides a theoretical basis for the management of post-I/R brain injury.


Assuntos
Proteína beta Intensificadora de Ligação a CCAAT , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão , Proteína 1 Supressora da Sinalização de Citocina , Ubiquitinação , Animais , Masculino , Camundongos , Apoptose , Isquemia Encefálica/metabolismo , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Proteína beta Intensificadora de Ligação a CCAAT/genética , Neurônios/metabolismo , Proteólise , Proteínas Proto-Oncogênicas c-jun/metabolismo , Proteínas Proto-Oncogênicas c-jun/genética , Traumatismo por Reperfusão/metabolismo , Proteína 1 Supressora da Sinalização de Citocina/metabolismo , Proteína 1 Supressora da Sinalização de Citocina/genética
9.
Biochem Biophys Res Commun ; 701: 149612, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38316091

RESUMO

Intestinal ischaemia‒reperfusion (I/R) injury is a surgical emergency. This condition is associated with a high mortality rate. At present, there are limited number of efficient therapeutic measures for this injury, and the prognosis is poor. Therefore, the pathophysiological mechanisms of intestinal I/R injury must be elucidated to develop a rapid and specific diagnostic and treatment protocol. Numerous studies have indicated the involvement of endoplasmic reticulum (ER) stress in the development of intestinal I/R injury. Specifically, the levels of unfolded and misfolded proteins in the ER lumen are increased due to unfolded protein response. However, persistent ER stress promotes apoptosis of intestinal mucosal epithelial cells through three signalling pathways in the ER, impairing intestinal mucosal barrier function and leading to the dysfunction of intestinal tissues and distant organ compartments. This review summarises the mechanisms of ER stress in intestinal I/R injury, diagnostic indicators, and related treatment strategies with the objective of providing novel insights into future therapies for this condition.


Assuntos
Estresse do Retículo Endoplasmático , Traumatismo por Reperfusão , Humanos , Resposta a Proteínas não Dobradas , Intestinos , Apoptose
10.
Expert Rev Mol Med ; 26: e3, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38525836

RESUMO

Deubiquitinases are a group of proteins that identify and digest monoubiquitin chains or polyubiquitin chains attached to substrate proteins, preventing the substrate protein from being degraded by the ubiquitin-proteasome system. Deubiquitinases regulate cellular autophagy, metabolism and oxidative stress by acting on different substrate proteins. Recent studies have revealed that deubiquitinases act as a critical regulator in various cardiac diseases, and control the onset and progression of cardiac disease through a board range of mechanism. This review summarizes the function of different deubiquitinases in cardiac disease, including cardiac hypertrophy, myocardial infarction and diabetes mellitus-related cardiac disease. Besides, this review briefly recapitulates the role of deubiquitinases modulators in cardiac disease, providing the potential therapeutic targets in the future.


Assuntos
Infarto do Miocárdio , Ubiquitina , Humanos , Ubiquitina/metabolismo , Poliubiquitina/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Enzimas Desubiquitinantes/genética
11.
Biochem Soc Trans ; 52(2): 693-706, 2024 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-38629629

RESUMO

Pathological breakdown of membrane lipids through excessive lipid peroxidation (LPO) was first described in the mid-20th century and is now recognized as a form of regulated cell death, dubbed ferroptosis. Accumulating evidence unveils how metabolic regulation restrains peroxidation of phospholipids within cellular membranes, thereby impeding ferroptosis execution. Unleashing these metabolic breaks is currently therapeutically explored to sensitize cancers to ferroptosis inducing anti-cancer therapies. Reversely, these natural ferroptotic defense mechanisms can fail resulting in pathological conditions or diseases such as ischemia-reperfusion injury, multi-organ dysfunction, stroke, infarction, or neurodegenerative diseases. This minireview outlines current ferroptosis-inducing anti-cancer strategies and highlights the detection as well as the therapeutic targeting of ferroptosis in preclinical experimental settings. Herein, we also briefly summarize observations related to LPO, iron and redox deregulation in patients that might hint towards ferroptosis as a contributing factor.


Assuntos
Ferroptose , Peroxidação de Lipídeos , Neoplasias , Humanos , Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Animais , Ferro/metabolismo , Oxirredução , Antineoplásicos/uso terapêutico , Traumatismo por Reperfusão/metabolismo , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/tratamento farmacológico
12.
Toxicol Appl Pharmacol ; 492: 117113, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39343043

RESUMO

Cardiac ischaemia/reperfusion (I/R) impairs mitochondrial function, resulting in excessive oxidative stress and cardiomyocyte ferroptosis and death. Nuclear factor E2-related factor 2 (Nrf2) is a key regulator of redox homeostasis and has cardioprotective effects against various stresses. Here, we tested whether CBR-470-1, a noncovalent Nrf2 activator, can protect against cardiomyocyte death caused by I/R stress. Compared with vehicle treatment, the administration of CBR-470-1 (2 mg/kg) to mice significantly increased Nrf2 protein levels and ameliorated the infarct size, the I/R-induced decrease in cardiac contractile performance, and the I/R-induced increases in cell apoptosis, ROS levels, and inflammation. Consistently, the beneficial effects of CBR-470-1 on cardiomyocytes were verified in a hypoxia/reoxygenation (H/R) model in vitro, but this cardioprotection was dramatically attenuated by the GPX4 inhibitor RSL3. Mechanistically, CBR-470-1 upregulated Nrf2 expression, which increased the expression levels of antioxidant enzymes (NQO1, SOD1, Prdx1, and Gclc) and antiferroptotic proteins (SLC7A11 and GPX4) and downregulated the protein expression of p53 and Nlrp3, leading to the inhibition of ROS production and inflammation and subsequent cardiomyocyte death (apoptosis, ferroptosis and pyroptosis). In summary, CBR-470-1 prevented I/R-mediated cardiac injury possibly through inhibiting cardiomyocyte apoptosis, ferroptosis and pyroptosis via Nrf2-mediated inhibition of p53 and Nlrp3 and activation of the SLC7A11/GPX4 pathway. Our data also highlight that CBR-470-1 may serve as a valuable agent for treating ischaemic heart disease.

13.
Toxicol Appl Pharmacol ; 487: 116954, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705402

RESUMO

Dual-specificity phosphatase 26 (DUSP26) acts as a pivotal player in the transduction of signalling cascades with its dephosphorylating activity. Currently, DUSP26 attracts extensive attention due to its particular function in several pathological conditions. However, whether DUSP26 plays a role in kidney ischaemia-reperfusion (IR) injury is unknown. Aims of the current work were to explore the relevance of DUSP26 in kidney IR damage. DUSP26 levels were found to be decreased in renal tubular epithelial cells following hypoxia-reoxygenation (HR) and kidney samples subjected to IR treatments. DUSP26-overexpressed renal tubular epithelial cells exhibited protection against HR-caused apoptosis and inflammation, while DUSP26-depleted renal tubular epithelial cells were more sensitive to HR damage. Upregulation of DUSP26 in rat kidneys by infecting adenovirus expressing DUSP26 markedly ameliorated kidney injury caused by IR, while also effectively reducing apoptosis and inflammation. The mechanistic studies showed that the activation of transforming growth factor-ß-activated kinase 1 (TAK1)-JNK/p38 MAPK, contributing to kidney injury under HR or IR conditions, was restrained by increasing DUSP26 expression. Pharmacological restraint of TAK1 markedly diminished DUSP26-depletion-exacebated effects on JNK/p38 activation and HR injury of renal tubular cells. The work reported a renal-protective function of DUSP26, which protects against IR-related kidney damage via the intervention effects on the TAK1-JNK/p38 axis. The findings laid a foundation for understanding the molecular pathogenesis of kidney IR injury and provide a prospective target for treating this condition.


Assuntos
Apoptose , Células Epiteliais , Túbulos Renais , MAP Quinase Quinase Quinases , Ratos Sprague-Dawley , Traumatismo por Reperfusão , Proteínas Quinases p38 Ativadas por Mitógeno , Animais , Traumatismo por Reperfusão/patologia , MAP Quinase Quinase Quinases/metabolismo , MAP Quinase Quinase Quinases/genética , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Masculino , Túbulos Renais/patologia , Túbulos Renais/metabolismo , Ratos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Fosfatases de Especificidade Dupla/metabolismo , Fosfatases de Especificidade Dupla/genética , Linhagem Celular , Injúria Renal Aguda/patologia , Injúria Renal Aguda/metabolismo , Inflamação/patologia , Inflamação/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Fosfatases da Proteína Quinase Ativada por Mitógeno/metabolismo , Fosfatases da Proteína Quinase Ativada por Mitógeno/genética , Transdução de Sinais/fisiologia
14.
Rev Cardiovasc Med ; 25(2): 67, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39077342

RESUMO

Background: Ischaemia-reperfusion injury (IRI) is the damage that occurs when blood flow is restored to a tissue or organ after a period of ischaemia. Postconditioning is a therapeutic strategy aimed at reducing the tissue damage caused by IRI. Postconditioning in rodents is a useful tool to investigate the potential mechanisms of postconditioning. Currently, there is no convenient approach for postconditioning rodents. Methods: Rats were subjected to a balloon postconditioning procedure. A balloon was used to control the flow in the vessel. This allowed for easy and precise manipulation of perfusion. Evans blue and triphenyltetrazolium chloride (TTC) double staining were used to determine the infarct size. Apoptosis in the myocardium was visualised and quantified by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL). Western blotting was performed to assess the expression of key apoptotic proteins, i.e., B-cell lymphoma 2 (Bcl-2), Bcl-2 Associated X (Bax), and cleaved caspase-3. Results: The balloon control approach to postconditioning provided accurate control of coronary blood flow and simplified the postconditioning manipulation. Infarct size reduction was observed in IRI rats after post-conditioning. There was a decrease in cardiac apoptosis in IRI rats after conditioning, as detected by TUNEL staining. IRI rats showed increased Bcl-2 levels and decreased Bax and cleaved caspase-3 levels in the myocardium. Conclusions: Postconditioning was successfully applied in rats using this novel approach. Postconditioning with this approach reduced infarct size and apoptosis in the area at risk.

15.
Clin Sci (Lond) ; 138(8): 491-514, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38639724

RESUMO

The non-stop provision of chemical energy is of critical importance to normal cardiac function, requiring the rapid turnover of ATP to power both relaxation and contraction. Central to this is the creatine kinase (CK) phosphagen system, which buffers local ATP levels to optimise the energy available from ATP hydrolysis, to stimulate energy production via the mitochondria and to smooth out mismatches between energy supply and demand. In this review, we discuss the changes that occur in high-energy phosphate metabolism (i.e., in ATP and phosphocreatine) during ischaemia and reperfusion, which represents an acute crisis of energy provision. Evidence is presented from preclinical models that augmentation of the CK system can reduce ischaemia-reperfusion injury and improve functional recovery. Energetic impairment is also a hallmark of chronic heart failure, in particular, down-regulation of the CK system and loss of adenine nucleotides, which may contribute to pathophysiology by limiting ATP supply. Herein, we discuss the evidence for this hypothesis based on preclinical studies and in patients using magnetic resonance spectroscopy. We conclude that the correlative evidence linking impaired energetics to cardiac dysfunction is compelling; however, causal evidence from loss-of-function models remains equivocal. Nevertheless, proof-of-principle studies suggest that augmentation of CK activity is a therapeutic target to improve cardiac function and remodelling in the failing heart. Further work is necessary to translate these findings to the clinic, in particular, a better understanding of the mechanisms by which the CK system is regulated in disease.


Assuntos
Insuficiência Cardíaca , Traumatismo por Reperfusão , Humanos , Creatina Quinase/metabolismo , Trifosfato de Adenosina/metabolismo , Coração , Metabolismo Energético/fisiologia , Traumatismo por Reperfusão/metabolismo , Fosfocreatina/metabolismo , Doença Crônica , Miocárdio/patologia
16.
Clin Sci (Lond) ; 138(10): 599-614, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38739452

RESUMO

AIM: Acute kidney injury (AKI) increases the risk for progressive chronic kidney disease (CKD). MicroRNA (miR)-486-5p protects against kidney ischemia-reperfusion (IR) injury in mice, although its long-term effects on the vasculature and development of CKD are unknown. We studied whether miR-486-5p would prevent the AKI to CKD transition in rat, and affect vascular function. METHODS: Adult male rats were subjected to bilateral kidney IR followed by i.v. injection of liposomal-packaged miR-486-5p (0.5 mg/kg). Kidney function and histologic injury were assessed after 24 h and 10 weeks. Kidney endothelial protein levels were measured by immunoblot and immunofluorescence, and mesenteric artery reactivity was determined by wire myography. RESULTS: In rats with IR, miR-486-5p blocked kidney endothelial cell increases in intercellular adhesion molecule-1 (ICAM-1), reduced neutrophil infiltration and histologic injury, and normalized plasma creatinine (P<0.001). However, miR-486-5p attenuated IR-induced kidney endothelial nitric oxide synthase (eNOS) expression (P<0.05). At 10 weeks, kidneys from rats with IR alone had decreased peritubular capillary density and increased interstitial collagen deposition (P<0.0001), and mesenteric arteries showed impaired endothelium-dependent vasorelaxation (P<0.001). These changes were inhibited by miR-486-5p. Delayed miR-486-5p administration (96 h, 3 weeks after IR) had no impact on kidney fibrosis, capillary density, or endothelial function. CONCLUSION: In rats, administration of miR-486-5p early after kidney IR prevents injury, and protects against CKD development and systemic endothelial dysfunction. These protective effects are associated with inhibition of endothelial ICAM-1 and occur despite reduction in eNOS. miR-486-5p holds promise for the prevention of ischemic AKI and its complications.


Assuntos
Injúria Renal Aguda , Rim , MicroRNAs , Insuficiência Renal Crônica , Traumatismo por Reperfusão , Animais , Masculino , Ratos , Injúria Renal Aguda/prevenção & controle , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/genética , Injúria Renal Aguda/patologia , Modelos Animais de Doenças , Progressão da Doença , Células Endoteliais/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo , Molécula 1 de Adesão Intercelular/genética , Rim/patologia , Rim/irrigação sanguínea , Rim/metabolismo , MicroRNAs/metabolismo , MicroRNAs/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Ratos Sprague-Dawley , Insuficiência Renal Crônica/prevenção & controle , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/patologia , Traumatismo por Reperfusão/prevenção & controle , Traumatismo por Reperfusão/metabolismo
17.
Exp Physiol ; 109(11): 1882-1895, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39264256

RESUMO

Hyperglycaemia, hyperlipidaemia, hypertension and obesity are the main risk factors affecting the development and prognosis of ischaemic heart disease, which is still an important cause of death today. In our study, male Sprague-Dawley rats were fed either a standard diet (SD) or a high fat and high carbohydrate diet (HF-HCD) for 8 weeks and streptozotocin (STZ) was injected at the seventh week of the feeding period. In one set of rats, a mixture of a prebiotic and probiotics (synbiotic, SYN) was administered by gavage starting from the beginning of the feeding period. Experimental myocardial ischaemia-reperfusion (30 min/60 min) was induced at the end of 8 weeks. Hyperglycaemia, hypertension and increased serum low-density lipoprotein levels occurred in SD- and HF-HCD-fed and STZ-treated rats followed for 8 weeks. Increased density of the Proteobacteria phylum was observed in rats with increased blood glucose levels, indicating intestinal dysbiosis. The severity of cardiac damage was highest in the dysbiotic HF-HCD-fed hyperglycaemic rats, which was evident with increased serum creatine kinase-MB (CK-MB), cardiac troponin I (cTnI), tumour necrosis factor-α, and interleukin-6 levels, along with a decrease in ST-segment resolution index. SYN supplementation to either a normal or a high-fat high-carbohydrate diet improved gut dysbiosis, reduced anxiety, decreased CK-MB and cTnI levels, and alleviated myocardial ischaemia-reperfusion injury in hyperglycaemic rats.


Assuntos
Ansiedade , Microbioma Gastrointestinal , Hiperglicemia , Traumatismo por Reperfusão Miocárdica , Ratos Sprague-Dawley , Simbióticos , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Masculino , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Ratos , Simbióticos/administração & dosagem , Dieta Hiperlipídica/efeitos adversos , Disbiose , Glicemia/metabolismo , Suplementos Nutricionais , Probióticos/farmacologia , Probióticos/uso terapêutico
18.
Exp Physiol ; 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38478872

RESUMO

Ischaemic heart diseases (IHD) are among the major causes of mortality in the elderly population. Although timely reperfusion is a common treatment for IHD, it causes additional damage to the ischaemic myocardium known as ischaemia-reperfusion (IR) injury. Considering the importance of preventing reperfusion injuries, we aimed to examine the combination effect of mitochondrial transplantation (MT) and coenzyme Q10 (CoQ10 ) in myocardial IR injury of aged male rats. Seventy-two aged male Wistar rats were randomly divided into six groups: Sham, IR, CoQ10 , MT, combination therapy (MT + CoQ10 ) and vehicle. Myocardial IR injury was established by occlusion of the left anterior descending coronary artery followed by reopening. Young male Wistar rats were used as mitochondria donors. Isolated mitochondria were injected intraventricularly (500 µL of a respiration buffer containing 6 × 106 ± 5 × 105  mitochondria/mL) in MT-receiving groups at the onset of reperfusion. CoQ10  (10 mg/kg/day) was injected intraperitoneally for 2 weeks before IR induction. Twenty-four hours after reperfusion, haemodynamic parameters, myocardial infarct size (IS), lactate dehydrogenase (LDH) release and cardiac mitochondrial function (mitochondrial reactive oxygen species (ROS) generation and membrane potential) were measured. The combination of MT and CoQ10  improved haemodynamic index changes and reduced IS and LDH release (P < 0.05). It also decreased mitochondrial ROS generation and increased membrane potential (P < 0.05). CoQ10 also showed a significant cardioprotective effect. Combination therapy displayed greater cardioprotective effects than single treatments. This study revealed that MT and CoQ10 combination treatment can be considered as a promising cardioprotective strategy to reduce myocardial IR injury in ageing, in part by restoring mitochondrial function.

19.
Exp Physiol ; 2024 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-39480684

RESUMO

Intestinal ischaemia-reperfusion (I/R) is a common clinical pathology with high incidence and mortality rates. However, the mechanisms underlying intestinal I/R injury remain unclear. In this study, we investigated the role and mechanism of chitinase 3-like 1 (CHI3L1) during intestinal I/R injury. Therefore, we analysed the expression levels of CHI3L1 in the intestinal tissue of an intestinal I/R rat model and explored its effects and mechanism in a hypoxia-reoxygenation (H/R) IEC-6 cell model. We found that intestinal I/R injury elevated CHI3L1 levels in the serum, ileum and duodenum, whereas H/R enhanced CHI3L1 expression in IEC-6 cells. The H/R-induced inhibition of proliferation and apoptosis was alleviated by CHI3L1 knockdown and aggravated by CHI3L1 overexpression. In addition, CHI3L1 knockdown alleviated, and CHI3L1 overexpression aggravated, the H/R-induced inflammatory response and oxidative stress. Mechanistically, CHI3L1 overexpression weakened the activation of the phosphoinositide 3-kinase (PI3K)/AKT pathway, suppressed the nuclear translocation of Nrf2, and promoted the nuclear translocation of nuclear factor κB (NF-κB). Moreover, CHI3L1 knockdown had the opposite effect on the PI3K/AKT pathway, Nrf2, and NF-κB. Moreover, the PI3K inhibitor LY294002 blocked the effect of CHI3L1 knockdown on the H/R-induced inhibition of proliferation, apoptosis, inflammatory response and oxidative stress. In conclusion, CHI3L1 expression was induced during intestinal I/R and H/R injury in IEC-6 cells, and CHI3L1 overexpression aggravated H/R injury in IEC-6 cells by inhibiting the PI3K/AKT signalling pathway. Therefore, CHI3L1 may be an effective target for controlling intestinal I/R injury.

20.
Exp Physiol ; 109(4): 524-534, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38213082

RESUMO

Hindlimb ischaemia-reperfusion (IR) is among the most prominent pathophysiological conditions observed in peripheral artery disease (PAD). An exaggerated arterial blood pressure (BP) response during exercise is associated with an elevated risk of cardiovascular events in individuals with PAD. However, the precise mechanisms leading to this exaggerated BP response are poorly elucidated. The P2X3 signalling pathway, which plays a key role in modifying the exercise pressor reflex (EPR), is the focus of the present study. We determined the regulatory role of P2X3 on the EPR in a rat model of hindlimb IR. In vivo and in vitro approaches were used to determine the expression and functions of P2X3 in muscle afferent nerves and EPR in IR rats. We found that in IR rats there was (1) upregulation of P2X3 protein expression in the L4-6 dorsal root ganglia (DRG); (2) amplified P2X currents in isolated isolectin B4 (IB4)-positive muscle DRG neurons; and (3) amplification of the P2X-mediated BP response. We further verified that both A-317491 and siRNA knockdown of P2X3 significantly decreased the activity of P2X currents in isolated muscle DRG neurons. Moreover, inhibition of muscle afferents' P2X3 receptor using A-317491 was observed to alleviate the exaggerated BP response induced by static muscle contraction and P2X-induced BP response by α,ß-methylene ATP injection. P2X3 signalling pathway activity is amplified in muscle afferent DRG neurons in regulating the EPR following hindlimb IR.


Assuntos
Gânglios Espinais , Neurônios Aferentes , Fenóis , Compostos Policíclicos , Ratos , Animais , Gânglios Espinais/metabolismo , Ratos Sprague-Dawley , Neurônios Aferentes/fisiologia , Reflexo , Neurônios/metabolismo , Músculo Esquelético/metabolismo , Isquemia/metabolismo , Membro Posterior/metabolismo , Receptores Purinérgicos P2X3/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA