Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 43(48): 8231-8242, 2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-37751999

RESUMO

Dopamine is a key neurotransmitter in the signaling cascade controlling ocular refractive development, but the exact role and site of action of dopamine D1 receptors (D1Rs) involved in myopia remains unclear. Here, we determine whether retinal D1Rs exclusively mediate the effects of endogenous dopamine and systemically delivered D1R agonist or antagonist in the mouse form deprivation myopia (FDM) model. Male C57BL/6 mice subjected to unilateral FDM or unobstructed vision were divided into the following four groups: one noninjected and three groups that received intraperitoneal injections of a vehicle, D1R agonist SKF38393 (18 and 59 nmol/g), or D1R antagonist SCH39166 (0.1 and 1 nmol/g). The effects of these drugs on FDM were further assessed in Drd1-knock-out (Drd1-KO), retina-specific conditional Drd1-KO (Drd1-CKO) mice, and corresponding wild-type littermates. In the visually unobstructed group, neither SKF38393 nor SCH39166 affected normal refractive development, whereas myopia development was attenuated by SKF38393 and enhanced by SCH39166 injections. In Drd1-KO or Drd1-CKO mice, however, these drugs had no effect on FDM development, suggesting that activation of retinal D1Rs is pertinent to myopia suppression by the D1R agonist. Interestingly, the development of myopia was unchanged by either Drd1-KO or Drd1-CKO, and neither SKF38393 nor SCH39166 injections, nor Drd1-KO, affected the retinal or vitreal dopamine and the dopamine metabolite DOPAC levels. Effects on axial length were less marked than effects on refraction. Therefore, activation of D1Rs, specifically retinal D1Rs, inhibits myopia development in mice. These results also suggest that multiple dopamine D1R mechanisms play roles in emmetropization and myopia development.SIGNIFICANCE STATEMENT While dopamine is recognized as a "stop" signal that inhibits myopia development (myopization), the location of the dopamine D1 receptors (D1Rs) that mediate this action remains to be addressed. Answers to this key question are critical for understanding how dopaminergic systems regulate ocular growth and refraction. We report here the results of our study showing that D1Rs are essential for controlling ocular growth and myopia development in mice, and for identifying the retina as the site of action for dopaminergic control via D1Rs. These findings highlight the importance of intrinsic retinal dopaminergic mechanisms for the regulation of ocular growth and suggest specific avenues for exploring the retinal mechanisms involved in the dopaminergic control of emmetropization and myopization.


Assuntos
Dopamina , Miopia , Masculino , Camundongos , Animais , Dopamina/metabolismo , 2,3,4,5-Tetra-Hidro-7,8-Di-Hidroxi-1-Fenil-1H-3-Benzazepina/farmacologia , Camundongos Endogâmicos C57BL , Miopia/genética , Miopia/metabolismo , Retina/metabolismo , Receptores de Dopamina D1/metabolismo
2.
Hippocampus ; 34(3): 126-140, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38140716

RESUMO

The hippocampus has been implicated in temporal learning. Plasticity within the hippocampus requires NMDA receptor-dependent glutamatergic neurotransmission. We tested the prediction that hippocampal NMDA receptors are required for learning about time by testing mice that lack postembryonal NMDARs in the CA1 and dentate gyrus (DG) hippocampal subfields on three different appetitive temporal learning procedures. The conditional knockout mice (Grin1ΔDCA1 ) showed normal sensitivity to cue duration, responding at a higher level to a short duration cue than compared to a long duration cue. Knockout mice also showed normal precision and accuracy of response timing in the peak procedure in which reinforcement occurred after 10 s delay within a 30 s cue presentation. Mice were tested on the matching of response rates to reinforcement rates on instrumental conditioning with two levers reinforced on a concurrent variable interval schedule. Pressing on one lever was reinforced at a higher rate than the other lever. Grin1ΔDGCA1 mice showed normal sensitivity to the relative reinforcement rates of the levers. In contrast to the lack of effect of hippocampal NMDAR deletion on measures of temporal sensitivity, Grin1ΔDGCA1 mice showed increased baseline measures of magazine activity and lever pressing. Furthermore, reversal learning was enhanced when the reward contingencies were switched in the lever pressing task, but this was true only for mice trained with a large difference between relative reinforcement rates between the levers. The results failed to demonstrate a role for NMDARs in excitatory CA1 and DG neurons in learning about temporal information.


Assuntos
Aprendizagem , Receptores de N-Metil-D-Aspartato , Camundongos , Animais , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Camundongos Knockout , Aprendizagem/fisiologia , Hipocampo/fisiologia , Giro Denteado/metabolismo
3.
Cell Mol Life Sci ; 80(8): 211, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37462735

RESUMO

Esophageal squamous cell carcinoma (ESCC) is a common malignancy worldwide with a low survival rate due to a lack of therapeutic targets. Here, our results showed that nuclear mitotic apparatus protein 1 (NUMA1) transcript and protein levels are significantly upregulated in ESCC patient samples and its high expression predicated poor prognosis. Knock-down of NUMA1 promoted cell apoptosis and suppressed cell proliferation and colony formation. By using cell-derived xenograft (CDX) and patient-derived xenograft (PDX) mice models, we found silencing the NUMA1 expression suppressed tumor progression. In addition, conditional knocking-out of NUMA1 reduced 4NQO-induced carcinogenesis in mice esophagus, which further confirmed the oncogenic role of NUMA1 in ESCC. Mechanistically, from the immunoprecipitation assay we revealed that NUMA1 interacted with GSTP1 and TRAF2, promoted the association of TRAF2 with GSTP1 while inhibited the interaction of TRAF2 and ASK1, thus to regulate sustained activation of JNK. In summary, our findings suggest that NUMA1 plays an important role during ESCC progression and it functions through regulating ASK1-MKK4-SAPK/JNK signaling pathway.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Animais , Camundongos , Carcinoma de Células Escamosas do Esôfago/genética , Sistema de Sinalização das MAP Quinases , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Fator 2 Associado a Receptor de TNF/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Apoptose , Regulação Neoplásica da Expressão Gênica , Movimento Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo
4.
J Neurosci ; 42(23): 4755-4765, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35534227

RESUMO

Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common genetic cause of Parkinson's disease (PD), but the pathogenic mechanism underlying LRRK2 mutations remains unresolved. In this study, we investigate the consequence of inactivation of LRRK2 and its functional homolog LRRK1 in male and female mice up to 25 months of age using behavioral, neurochemical, neuropathological, and ultrastructural analyses. We report that LRRK1 and LRRK2 double knock-out (LRRK DKO) mice exhibit impaired motor coordination at 12 months of age before the onset of dopaminergic neuron loss in the substantia nigra (SNpc). Moreover, LRRK DKO mice develop age-dependent, progressive loss of dopaminergic terminals in the striatum. Evoked dopamine (DA) release measured by fast-scan cyclic voltammetry in the dorsal striatum is also reduced in the absence of LRRK. Furthermore, LRRK DKO mice at 20-25 months of age show substantial loss of dopaminergic neurons in the SNpc. The surviving SNpc neurons in LRRK DKO mice at 25 months of age accumulate large numbers of autophagic and autolysosomal vacuoles and are accompanied with microgliosis. Surprisingly, the cerebral cortex is unaffected, as shown by normal cortical volume and neuron number as well as unchanged number of apoptotic cells and microglia in LRRK DKO mice at 25 months. These findings show that loss of LRRK function causes impairments in motor coordination, degeneration of dopaminergic terminals, reduction of evoked DA release, and selective loss of dopaminergic neurons in the SNpc, indicating that LRRK DKO mice are unique models for better understanding dopaminergic neurodegeneration in PD.SIGNIFICANCE STATEMENT Our current study employs a genetic approach to uncover the normal function of the LRRK family in the brain during mouse life span. Our multidisciplinary analysis demonstrates a critical normal physiological role of LRRK in maintaining the integrity and function of dopaminergic terminals and neurons in the aging brain, and show that LRRK DKO mice recapitulate several key features of PD and provide unique mouse models for elucidating molecular mechanisms underlying dopaminergic neurodegeneration in PD.


Assuntos
Transtornos Motores , Doença de Parkinson , Animais , Dopamina , Neurônios Dopaminérgicos/fisiologia , Feminino , Leucina , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Masculino , Camundongos , Camundongos Knockout , Transtornos Motores/patologia , Doença de Parkinson/genética , Doença de Parkinson/patologia
5.
J Neural Transm (Vienna) ; 130(9): 1097-1112, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36792833

RESUMO

The enzyme dimethylarginine dimethylaminohydrolase 1 (DDAH1) plays a pivotal role in the regulation of nitric oxide levels by degrading the main endogenous nitric oxide synthase inhibitor asymmetric dimethylarginine (ADMA). Growing evidence highlight the potential implication of DDAH/ADMA axis in the etiopathogenesis of several neuropsychiatric and neurological disorders, yet the underlying molecular mechanisms remain elusive. In this study, we sought to investigate the role of DDAH1 in behavioral endophenotypes with neuropsychiatric relevance. To achieve this, a global DDAH1 knock-out (DDAH1-ko) mouse strain was employed. Behavioral testing and brain region-specific neurotransmitter profiling have been conducted to assess the effect of both genotype and sex. DDAH1-ko mice exhibited increased exploratory behavior toward novel objects, altered amphetamine response kinetics and decreased dopamine metabolite 3,4-dihydroxyphenylacetic acid (DOPAC) level in the piriform cortex and striatum. Females of both genotypes showed the most robust amphetamine response. These results support the potential implication of the DDAH/ADMA pathway in central nervous system processes shaping the behavioral outcome. Yet, further experiments are required to complement the picture and define the specific brain-regions and mechanisms involved.


Assuntos
Anfetamina , Dopamina , Animais , Feminino , Camundongos , Amidoidrolases/genética , Amidoidrolases/metabolismo , Anfetamina/farmacologia , Inibidores Enzimáticos/farmacologia , Genótipo , Camundongos Knockout , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase/genética
6.
Eur J Nutr ; 62(1): 407-417, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36071290

RESUMO

PURPOSE: Protein synthesis and proteolysis are known to be controlled through mammalian target of rapamycin, AMP-activated kinase (AMPK) and general control non-derepressible 2 (GCN2) pathways, depending on the nutritional condition. This study aimed at investigating the contribution of liver AMPK and GCN2 on the adaptation to high variations in protein intake. METHODS: To evaluate the answer of protein pathways to high- or low-protein diet, male wild-type mice and genetically modified mice from C57BL/6 background with liver-specific AMPK- or GCN2-knockout were fed from day 25 diets differing in their protein level as energy: LP (5%), NP (14%) and HP (54%). Two hours after a 1 g test meal, protein synthesis rate was measured after a 13C valine flooding dose. The gene expression of key enzymes involved in proteolysis and GNC2 signaling pathway were quantified. RESULTS: The HP diet but not the LP diet was associated with a decrease in fractional synthesis rate by 29% in the liver compared to NP diet. The expression of mRNA encoding ubiquitin and Cathepsin D was not sensitive to the protein content. The deletion of AMPK or GCN2 in the liver did not affect nor protein synthesis rates and neither proteolysis markers in the liver or in the muscle, whatever the protein intake. In the postprandial state, protein level alters protein synthesis in the liver but not in the muscle. CONCLUSIONS: Taken together, these results suggest that liver AMPK and GCN2 are not involved in this adaptation to high- and low-protein diet observed in the postprandial period.


Assuntos
Proteínas Quinases Ativadas por AMP , Proteínas Serina-Treonina Quinases , Camundongos , Masculino , Animais , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Dieta com Restrição de Proteínas , Período Pós-Prandial , Camundongos Endogâmicos C57BL , Fígado/metabolismo , Mamíferos/metabolismo
7.
Int J Mol Sci ; 23(6)2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35328819

RESUMO

Acid sphingomyelinase (ASM) regulates a variety of physiological processes and plays an important role in emotional behavior. The role of ASM in fear-related behavior has not been investigated so far. Using transgenic mice overexpressing ASM (ASMtg) and ASM deficient mice, we studied whether ASM regulates fear learning and expression of cued and contextual fear in a classical fear conditioning paradigm, a model used to investigate specific attributes of post-traumatic stress disorder (PTSD). We show that ASM does not affect fear learning as both ASMtg and ASM deficient mice display unaltered fear conditioning when compared to wild-type littermates. However, ASM regulates the expression of contextual fear in a sex-specific manner. While ASM overexpression enhances the expression of contextual fear in both male and female mice, ASM deficiency reduces the expression of contextual fear specifically in male mice. The expression of cued fear, however, is not regulated by ASM as ASMtg and ASM deficient mice display similar tone-elicited freezing levels. This study shows that ASM modulates the expression of contextual fear but not of cued fear in a sex-specific manner and adds a novel piece of information regarding the involvement of ASM in hippocampal-dependent aversive memory.


Assuntos
Memória , Esfingomielina Fosfodiesterase , Animais , Condicionamento Clássico/fisiologia , Sinais (Psicologia) , Medo/fisiologia , Feminino , Masculino , Memória/fisiologia , Camundongos , Esfingomielina Fosfodiesterase/genética
8.
Int J Mol Sci ; 23(6)2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35328617

RESUMO

Formation of neutrophil extracellular traps (NETs) is a two-faced innate host defense mechanism, which, on the one hand, can counteract microbial infections, but on the other hand, can contribute to massive detrimental effects on the host. Cholesterol depletion from the cellular membrane by Methyl-ß-cyclodextrin (MßCD) is known as one of the processes initiating NET formation. Since neutrophils mainly act in an inflammatory environment with decreased, so-called hypoxic, oxygen conditions, we aimed to study the effect of oxygen and the oxygen stress regulator hypoxia-inducible factor (HIF)-1α on cholesterol-dependent NET formation. Thus, murine bone marrow-derived neutrophils from wild-type and HIF-knockout mice or human neutrophils were stimulated with MßCD under normoxic (21% O2) compared to hypoxic (1% O2) conditions, and the formation of NETs were studied by immunofluorescence microscopy. We found significantly induced NET formation after treatment with MßCD in murine neutrophils derived from wild-type as well as HIF-1α KO mice at both hypoxic (1% O2) as well as normoxic (21% O2) conditions. Similar observations were made in freshly isolated human neutrophils after stimulation with MßCD or statins, which block the HMG-CoA reductase as the key enzyme in the cholesterol metabolism. HPLC was used to confirm the reduction of cholesterol in treated neutrophils. In summary, we were able to show that NET formation via MßCD or statin-treatment is oxygen and HIF-1α independent.


Assuntos
Armadilhas Extracelulares , Animais , Colesterol/metabolismo , Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Camundongos , Neutrófilos/metabolismo , Oxigênio/metabolismo
9.
J Neurochem ; 157(4): 1196-1206, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33156548

RESUMO

Intracellular signaling pathways that promote axon regeneration are closely linked to the mechanism of neurite outgrowth. TC10, a signaling molecule that acts on neurite outgrowth through membrane transport, is a member of the Rho family G proteins. Axon injury increases the TC10 levels in motor neurons, suggesting that TC10 may be involved in axon regeneration. In this study, we tried to understand the roles of TC10 in the nervous system using TC10 knock-out mice. In cultured hippocampal neurons, TC10 ablation significantly reduced axon elongation without affecting ordinary polarization. We determined a role of TC10 in microtubule stabilization at the growth cone neck; therefore, we assume that TC10 limits axon retraction and promotes in vitro axon outgrowth. In addition, there were no notable differences in the size and structure of brains during prenatal and postnatal development between wild-type and TC10 knock-out mice. In motor neurons, axon regeneration after injury was strongly suppressed in mice lacking TC10 (both in conventional and injured nerve specific deletion). In retinal ganglion cells, TC10 ablation suppressed the axon regeneration stimulated by intraocular inflammation and cAMP after optic nerve crush. These results show that TC10 plays an important role in axon regeneration in both the peripheral and central nervous systems, and the role of TC10 in peripheral axon regeneration is neuron-intrinsic.


Assuntos
Axônios/metabolismo , Regeneração Nervosa/fisiologia , Proteínas rho de Ligação ao GTP/metabolismo , Animais , Hipocampo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Crescimento Neuronal/fisiologia , Neurônios/metabolismo , Transdução de Sinais/fisiologia
10.
Eur J Neurosci ; 54(2): 4445-4455, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33942407

RESUMO

γ-Aminobutyric acid (GABA) acting through heteropentameric GABAA receptors plays a pivotal role in the sleep-promoting circuitry. Whereas the role of the different GABAA receptor α-subunits in sleep regulation and in mediating the effect of benzodiazepines for treatment of insomnia is well-described, the ß-subunits are less studied. Here we report the first study characterizing sleep in mice lacking the GABAA receptor ß1 -subunit (ß1-/- mice). We show that ß1-/- mice have a distinct and abnormal sleep phenotype characterized by increased delta power in non-rapid eye movement (NREM) sleep and decreased theta activity in rapid eye movement (REM) sleep compared to ß1+/+ mice, without any change in the overall sleep-wake architecture. From GABAA receptor-specific autoradiography, it is further demonstrated that functional ß1 -subunit-containing GABAA receptors display the highest binding levels in the hippocampus and frontal cortex. In conclusion, this study suggests that the GABAA receptor ß1 -subunit does not play an important role in sleep initiation or maintenance but instead regulates the power spectrum and especially the expression of theta rhythm. This provides new knowledge on the complex role of GABAA receptor subunits in sleep regulation. In addition, ß1-/- mice could provide a useful mouse model for future studies of the physiological role of delta and theta rhythms during sleep.


Assuntos
Receptores de GABA-A , Sono REM , Animais , Eletroencefalografia , Camundongos , Camundongos Knockout , Receptores de GABA-A/genética , Sono , Ácido gama-Aminobutírico
11.
Transgenic Res ; 30(5): 701-707, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34117597

RESUMO

Chronic cholestatic liver diseases including primary sclerosing cholangitis (PSC) present a complex spectrum with regards to the cause, age of manifestation and histopathological features. Current treatment options are severely limited primarily due to a paucity of model systems mirroring the disease. Here, we describe the Keratin 5 (K5)-Cre; Klf5fl/fl mouse that spontaneously develops severe liver disease during the postnatal period with features resembling PSC including a prominent ductular reaction, fibrotic obliteration of the bile ducts and secondary degeneration/necrosis of liver parenchyma. Over time, there is an expansion of Sox9+ hepatocytes in the damaged livers suggestive of a hepatocyte-mediated regenerative response. We conclude that Klf5 is required for the normal function of the hepatobiliary system and that the K5-Cre; Klf5fl/fl mouse is an excellent model to probe the molecular events interlinking damage and regenerative response in the liver.


Assuntos
Colangite Esclerosante , Hepatopatias , Animais , Integrases , Queratina-5 , Fatores de Transcrição Kruppel-Like/genética , Fígado , Camundongos
12.
Int J Mol Sci ; 22(15)2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34361060

RESUMO

Homeodomain-interacting protein kinase 2 (HIPK2) is a serine-threonine kinase that phosphorylates various transcriptional and chromatin regulators, thus modulating numerous important cellular processes, such as proliferation, apoptosis, DNA damage response, and oxidative stress. The role of HIPK2 in the pathogenesis of cancer and fibrosis is well established, and evidence of its involvement in the homeostasis of multiple organs has been recently emerging. We have previously demonstrated that Hipk2-null (Hipk2-KO) mice present cerebellar alterations associated with psychomotor abnormalities and that the double ablation of HIPK2 and its interactor HMGA1 causes perinatal death due to respiratory failure. To identify other alterations caused by the loss of HIPK2, we performed a systematic morphological analysis of Hipk2-KO mice. Post-mortem examinations and histological analysis revealed that Hipk2 ablation causes neuronal loss, neuronal morphological alterations, and satellitosis throughout the whole central nervous system (CNS); a myopathic phenotype characterized by variable fiber size, mitochondrial proliferation, sarcoplasmic inclusions, morphological alterations at neuromuscular junctions; and a cardiac phenotype characterized by fibrosis and cardiomyocyte hypertrophy. These data demonstrate the importance of HIPK2 in the physiology of skeletal and cardiac muscles and of different parts of the CNS, thus suggesting its potential relevance for different new aspects of human pathology.


Assuntos
Sistema Nervoso Central/patologia , Fibrose/patologia , Miocárdio/patologia , Neurônios/patologia , Proteínas Serina-Treonina Quinases/fisiologia , Animais , Sistema Nervoso Central/metabolismo , Feminino , Fibrose/metabolismo , Proteínas HMGA/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miocárdio/metabolismo , Neurônios/metabolismo , Fenótipo , Fosforilação
13.
Int J Mol Sci ; 22(23)2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34884539

RESUMO

Spermatogenesis and folliculogenesis involve cell-cell interactions and gene expression orchestrated by luteinizing hormone (LH) and follicle-stimulating hormone (FSH). FSH regulates the proliferation and maturation of germ cells independently and in combination with LH. In humans, the requirement for high intratesticular testosterone (T) concentration in spermatogenesis remains both a dogma and an enigma, as it greatly exceeds the requirement for androgen receptor (AR) activation. Several data have challenged this dogma. Here we report our findings on a man with mutant LH beta subunit (LHß) that markedly reduced T production to 1-2% of normal., but despite this minimal LH stimulation, T production by scarce mature Leydig cells was sufficient to initiate and maintain complete spermatogenesis. Also, in the LH receptor (LHR) knockout (LuRKO) mice, low-dose T supplementation was able to maintain spermatogenesis. In addition, in antiandrogen-treated LuRKO mice, devoid of T action, the transgenic expression of a constitutively activating follicle stimulating hormone receptor (FSHR) mutant was able to rescue spermatogenesis and fertility. Based on rodent models, it is believed that gonadotropin-dependent follicular growth begins at the antral stage, but models of FSHR inactivation in women contradict this claim. The complete loss of FSHR function results in the complete early blockage of folliculogenesis at the primary stage, with a high density of follicles of the prepubertal type. These results should prompt the reassessment of the role of gonadotropins in spermatogenesis, folliculogenesis and therapeutic applications in human hypogonadism and infertility.


Assuntos
Hormônio Foliculoestimulante/metabolismo , Hipogonadismo/patologia , Infertilidade/patologia , Hormônio Luteinizante/metabolismo , Folículo Ovariano/patologia , Espermatogênese , Testosterona/metabolismo , Animais , Feminino , Humanos , Hipogonadismo/metabolismo , Infertilidade/metabolismo , Masculino , Folículo Ovariano/metabolismo
14.
J Neurosci ; 39(45): 9013-9027, 2019 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-31527119

RESUMO

Cleavage of amyloid precursor protein (APP) by ß-secretase BACE1 initiates the production and accumulation of neurotoxic amyloid-ß peptides, which is widely considered an essential pathogenic mechanism in Alzheimer's disease (AD). Here, we report that BACE1 is essential for normal auditory function. Compared with wild-type littermates, BACE1-/- mice of either sex exhibit significant hearing deficits, as indicated by increased thresholds and reduced amplitudes in auditory brainstem responses (ABRs) and decreased distortion product otoacoustic emissions (DPOAEs). Immunohistochemistry revealed aberrant synaptic organization in the cochlea and hypomyelination of auditory nerve fibers as predominant neuropathological substrates of hearing loss in BACE1-/- mice. In particular, we found that fibers of spiral ganglion neurons (SGN) close to the organ of Corti are disorganized and abnormally swollen. BACE1 deficiency also engenders organization defects in the postsynaptic compartment of SGN fibers with ectopic overexpression of PSD95 far outside the synaptic region. During postnatal development, auditory fiber myelination in BACE1-/- mice lags behind dramatically and remains incomplete into adulthood. We relate the marked hypomyelination to the impaired processing of Neuregulin-1 when BACE1 is absent. To determine whether the cochlea of adult wild-type mice is susceptible to AD treatment-like suppression of BACE1, we administered the established BACE1 inhibitor NB-360 for 6 weeks. The drug suppressed BACE1 activity in the brain, but did not impair hearing performance and, upon neuropathological examination, did not produce the characteristic cochlear abnormalities of BACE1-/- mice. Together, these data strongly suggest that the hearing loss of BACE1 knock-out mice represents a developmental phenotype.SIGNIFICANCE STATEMENT Given its crucial role in the pathogenesis of Alzheimer's disease (AD), BACE1 is a prime pharmacological target for AD prevention and therapy. However, the safe and long-term administration of BACE1-inhibitors as envisioned in AD requires a comprehensive understanding of the various physiological functions of BACE1. Here, we report that BACE1 is essential for the processing of auditory signals in the inner ear, as BACE1-deficient mice exhibit significant hearing loss. We relate this deficit to impaired myelination and aberrant synapse formation in the cochlea, which manifest during postnatal development. By contrast, prolonged pharmacological suppression of BACE1 activity in adult wild-type mice did not reproduce the hearing deficit or the cochlear abnormalities of BACE1 null mice.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Cóclea/metabolismo , Potenciais Evocados Auditivos do Tronco Encefálico , Secretases da Proteína Precursora do Amiloide/genética , Animais , Ácido Aspártico Endopeptidases/genética , Cóclea/fisiologia , Proteína 4 Homóloga a Disks-Large/genética , Proteína 4 Homóloga a Disks-Large/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Bainha de Mielina/metabolismo , Neuregulina-1/genética , Neuregulina-1/metabolismo , Gânglio Espiral da Cóclea/metabolismo , Gânglio Espiral da Cóclea/fisiologia
15.
Cell Immunol ; 349: 104048, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32014271

RESUMO

NFAT2 activity was shown to be of critical importance in B cell receptor signaling, development and proliferation; however its role in B cell development in the periphery is still not completely understood. We confirmed that NFAT2 deletion leads to impaired B1 B cell development, supported by our finding of limited B1 progenitors in the bone marrow and spleen of NFAT2 deficient mice. Moreover, we show for the first time that loss of NFAT2 increases immature B cells in particular transitional T2 and T3 as well as mature follicular B cells while marginal zone B cells are decreased. We further demonstrate that NFAT2 regulates the expression of B220, CD23, CD38, IgM/IgD and ZAP70 in murine B cells. In vivo analyses revealed decreased proliferation and increased apoptosis of NFAT2 deficient B cells. In summary, this study provides an extensive analysis of the role of NFAT2 in peripheral B lymphocyte development.


Assuntos
Subpopulações de Linfócitos B/citologia , Linfopoese/fisiologia , Fatores de Transcrição NFATC/deficiência , Animais , Antígenos de Diferenciação de Linfócitos B/análise , Subpopulações de Linfócitos B/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Inativação de Genes , Genes Letais , Heterozigoto , Imunoglobulina D/biossíntese , Imunoglobulina D/genética , Imunoglobulina M/biossíntese , Imunoglobulina M/genética , Antígenos Comuns de Leucócito/biossíntese , Antígenos Comuns de Leucócito/genética , Ativação Linfocitária , Tecido Linfoide/crescimento & desenvolvimento , Tecido Linfoide/patologia , Linfopoese/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Transcrição NFATC/fisiologia , Especificidade de Órgãos , Organismos Livres de Patógenos Específicos
16.
Cell Tissue Res ; 380(2): 325-340, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31486957

RESUMO

Considering high drug attrition rates in clinical studies and the overall complexity and challenging environment of drug development, it is increasingly important to understand the therapeutic molecule and target and how they intersect with disease biology as fully as possible. This requires one to use numerous tools and investigative approaches in combination. Genetically engineered mouse models are a critical component to the drug development toolbox as they can provide key insights across multiple steps of the drug development process. While knock-out and knock-in mice can inform questions of basic biology, genetically engineered mice can also be applied to model diseases for efficacy studies, to discriminate on-target and off-target effects of novel therapeutics, and to inform an array of biologic and pharmacologic questions, including pharmacodynamics, pharmacokinetics, and biomarker discovery. However, use of these models requires not only an understanding of their strengths and limitations but also a careful consideration of the context in which they are being used and the hypotheses being addressed by them. Additionally, they should not be used in isolation, but instead in combination with other biochemical, in vitro, and clinical data to create a broad understanding of the drug, target, and disease biology.


Assuntos
Desenvolvimento de Medicamentos/métodos , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos
17.
Cereb Cortex ; 29(5): 2291-2304, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30877792

RESUMO

Hyperpolarization-activated cation channels are involved, among other functions, in learning and memory, control of synaptic transmission and epileptogenesis. The importance of the HCN1 and HCN2 isoforms for brain function has been demonstrated, while the role of HCN4, the third major neuronal HCN subunit, is not known. Here we show that HCN4 is essential for oscillatory activity in the thalamocortical (TC) network. HCN4 is selectively expressed in various thalamic nuclei, excluding the thalamic reticular nucleus. HCN4-deficient TC neurons revealed a massive reduction of Ih and strongly reduced intrinsic burst firing, whereas the current was normal in cortical pyramidal neurons. In addition, evoked bursting in a thalamic slice preparation was strongly reduced in the mutant mice probes. HCN4-deficiency also significantly slowed down thalamic and cortical oscillations during active wakefulness. Taken together, these results establish that thalamic HCN4 channels are essential for the production of rhythmic intrathalamic oscillations and determine regular TC oscillatory activity during alert states.


Assuntos
Ondas Encefálicas , Córtex Cerebral/fisiologia , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/fisiologia , Neurônios/fisiologia , Tálamo/fisiologia , Potenciais de Ação , Animais , Feminino , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Neurológicos , Vias Neurais/fisiologia
18.
Int J Mol Sci ; 21(3)2020 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-32050445

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disorder and is the most common form of dementia in the elderly. Caspases, a family of cysteine proteases, are major mediators of apoptosis and inflammation. Caspase-6 is considered to be an up-stream modulator of AD pathogenesis as active caspase-6 is abundant in neuropil threads, neuritic plaques, and neurofibrillary tangles of AD brains. In order to further elucidate the role of caspase-6 activity in the pathogenesis of AD, we produced a double transgenic mouse model, combining the 5xFAD mouse model of AD with caspase-6 knock out (C6-KO) mice. Behavioral examinations of 5xFAD/C6-KO double transgenic mice showed improved performance in spatial learning, memory, and anxiety/risk assessment behavior, as compared to 5xFAD mice. Hippocampal mRNA expression analyses showed significantly reduced levels of inflammatory mediator TNF-α, while the anti-inflammatory cytokine IL-10 was increased in 5xFAD/C6-KO mice. A significant reduction in amyloid-ß plaques could be observed and immunohistochemistry analyses showed reduced levels of activated microglia and astrocytes in 5xFAD/C6-KO, compared to 5xFAD mice. Together, these results indicate a substantial role for caspase-6 in the pathology of the 5xFAD model of AD and suggest further validation of caspase-6 as a potential therapeutic target for AD.


Assuntos
Doença de Alzheimer/genética , Caspase 6/genética , Doença de Alzheimer/patologia , Doença de Alzheimer/fisiopatologia , Animais , Modelos Animais de Doenças , Feminino , Deleção de Genes , Masculino , Memória , Camundongos , Camundongos Knockout , Mutação , Placa Amiloide/genética , Placa Amiloide/patologia , Placa Amiloide/fisiopatologia , Aprendizagem Espacial
19.
Blood Cells Mol Dis ; 77: 129-136, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31059942

RESUMO

Autophagy is primarily considered as an important survival mechanism for both normal cells and cancer cells in response to metabolic stress or chemotherapy; but the role of autophagy in leukemogenesis is not fully understood. The aim of this study is to explore the role of intrinsic autophagy in the leukemogenesis of B-cell acute lymphoblastic leukemia (B-ALL). In this study, conditional knockout mice Atg7f/f;Ubc-Cre, in which an autophagy-essential gene Atg7 is universally deleted, were used as recipients, B-ALL cell line 697 was used as donor cells to generate leukemia mouse model. Compared to wild-type mice, Atg7 knockout mice were more susceptible to engrafted leukemogenesis, shown by increase in white blood cells, lymphocytes, and platelets, decrease in HSPC number and its colony-forming unit (CFU). The liver and spleen displayed hepatosplenomegaly and inflammatory cell infiltration. Furthermore, second competitive transplantation revealed dysfunction of the HSPC in Atg7-knockout leukemia mice represented by destructive self-renew ability (CFU) and reconstitution ability including decreased B220, Ter 119 cells, and increased Gr-1 cell percentage. In summary, Mice with universal deletion of Atg7 are more inclined to the occurrence of engrafted human leukemia, which is largely attributed to the deterioration of the function of HSPC in autophagy deficient mice.


Assuntos
Autofagia/genética , Transformação Celular Neoplásica/genética , Predisposição Genética para Doença , Leucemia/genética , Animais , Proteína 7 Relacionada à Autofagia/deficiência , Modelos Animais de Doenças , Estudos de Associação Genética , Genótipo , Leucemia/metabolismo , Leucemia/patologia , Camundongos , Camundongos Knockout
20.
Clin Genet ; 95(2): 277-286, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30298696

RESUMO

The majority of men with defects in spermatogenesis remain undiagnosed. Acephalic spermatozoa is one of the diseases causing primary infertility. However, the causes underlying over half of affected cases remain unclear. Here, we report by whole-exome sequencing the identification of homozygous and compound heterozygous truncating mutations in PMFBP1 of two unrelated individuals with acephalic spermatozoa. PMFBP1 was highly and specifically expressed in human and mouse testis. Furthermore, immunofluorescence staining in sperm from a normal control showed that PMFBP1 localizes to the head-flagella junction region, and the absence of PMFBP1 was confirmed in patients harboring PMFBP1 mutations. In addition, we generated Pmfbp1 knock-out (KO) mice, which we found recapitulate the acephalic sperm phenotype. Label-free quantitative proteomic analysis of testicular sperm from Pmfbp1 KO and control mice showed 124 and 35 proteins, respectively, increased or decreased in sperm from KO mice compared to that found in control mice. Gene ontology analysis indicates that the biological process of Golgi vesicle transport was the most highly enriched in differentially expressed proteins, indicating process defects related to Golgi complex function may disturb formation of the head-neck junction. Collectively, our data indicate that PMFBP1 is necessary for sperm morphology in both humans and mice, and that biallelic truncating mutations in PMFBP1 cause acephalic spermatozoa.


Assuntos
Alelos , Proteínas do Citoesqueleto/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Mutação , Teratozoospermia/diagnóstico , Teratozoospermia/genética , Animais , Análise Mutacional de DNA , Modelos Animais de Doenças , Homozigoto , Humanos , Masculino , Camundongos , Linhagem , Proteoma , Análise do Sêmen , Espermatozoides/metabolismo , Sequenciamento do Exoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA