Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 13(2): 2117-2127, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-32208637

RESUMO

Laser-textured surfaces enabling reversible wettability switching and improved optical properties are gaining importance in cutting-edge applications, including self-cleaning interfaces, tunable optical lenses, microfluidics, and lab-on-chip systems. Fabrication of such surfaces by combining nanosecond-laser texturing and low-temperature annealing of titanium Ti-6Al-4V alloy was demonstrated by Lian et al. in ACS Appl. Mater. Inter. 2020, 12 (5), 6573-6580. However, it is difficult to agree with (i) their contradictory explanation of the wettability transition due to low-temperature annealing and (ii) their theoretical description of the optical behavior of the laser-textured titanium surface. This comment provides an alternative view-supported by both experimental results and theoretical investigation-on how the results by Lian et al. could be interpreted more correctly. The annealing experiments clarify that controlled contamination is crucial in obtaining consistent surface wettability alterations after low-temperature annealing. Annealing of laser-textured titanium at 100 °C in contaminated and contaminant-free furnaces leads to completely different wettability transitions. Analysis of the surface chemistry by XPS and ToF-SIMS reveals that (usually overlooked) contamination with hydrophobic polydimethylsiloxane (PDMS) may arise from the silicone components of the furnace. In this case, a homogeneous thin PDMS film over the entire surface results in water repellency (contact angle of 161° and roll-off angle of 15°). In contrast, annealing under the same conditions but in a contaminant-free furnace preserves the initial superhydrophilicity, whereas the annealing at 350 °C turns the hydrophobicity "off". The theoretical calculations of optical properties demonstrate that the laser-induced oxide layer formed during the laser texturing significantly influences the surface optical behavior. Consequently, the interference of light reflected by the air-oxide and the oxide-metal interfaces should not be neglected and enables several advanced approaches to exploit such optical properties.

2.
Materials (Basel) ; 10(7)2017 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-28773184

RESUMO

Wear of elements subjected to friction and sliding is among the main causes of low tribological performance and short lifetime of strategic materials such as titanium alloys. These types of alloys are widely used in different areas such as aerospace and the biomechanics industry. In this sense, surface modification treatments allow for the overcoming of limitations and improvement of features and properties. In the case of titanium alloys, improvements in the main weaknesses of these materials can be obtained. Laser texturing of UNS R56400 (Ti6Al4V) alloy, according to Unified Numbering System designation, surface layers in a non-protective atmosphere produces an increase of the oxides, especially of titanium dioxide (TiO2) species. The presence of oxides in the alloy results in color tonality variations as well as hardness increases. In addition, specific roughness topographies may be produced by the track of laser beam irradiation. In this research, thermochemical oxidation of UNS R56400 alloy has been developed through laser texturing, using scan speed of the beam (Vs) as the process control variable, and its influence on the sliding wear behavior was analyzed. For this purpose, using pin on disc tribological tests, wear was evaluated from the friction coefficient, and wear mechanisms involved in the process were analyzed. Combined studies of wear mechanisms and the friction coefficient verified that by means of specific surface treatments, an increase in the wear resistance of this type of alloys is generated. The most advantageous results for the improvement of tribological behavior have been detected in textured surfaces using a Vs of 150 mm/s, resulting in a decrease in the friction coefficient values by approximately 20%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA