Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Int J Mol Sci ; 24(24)2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38139226

RESUMO

Legumes represent an important source of food protein for human nutrition and animal feed. Therefore, sustainable production of legume crops is an issue of global importance. It is well-known that legume-rhizobia symbiosis allows an increase in the productivity and resilience of legume crops. The efficiency of this mutualistic association strongly depends on precise regulation of the complex interactions between plant and rhizobia. Their molecular dialogue represents a complex multi-staged process, each step of which is critically important for the overall success of the symbiosis. In particular, understanding the details of the molecular mechanisms behind the nodule formation and functioning might give access to new legume cultivars with improved crop productivity. Therefore, here we provide a comprehensive literature overview on the dynamics of the signaling network underlying the development of the legume-rhizobia symbiosis. Thereby, we pay special attention to the new findings in the field, as well as the principal directions of the current and prospective research. For this, here we comprehensively address the principal signaling events involved in the nodule inception, development, functioning, and senescence.


Assuntos
Fabaceae , Rhizobium , Humanos , Fabaceae/metabolismo , Simbiose/fisiologia , Rhizobium/fisiologia , Fixação de Nitrogênio , Estudos Prospectivos , Verduras , Produtos Agrícolas , Nódulos Radiculares de Plantas/metabolismo
2.
J Integr Plant Biol ; 65(5): 1297-1311, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36534458

RESUMO

Nodulation Receptor Kinase (NORK) functions as a co-receptor of Nod factor receptors to mediate rhizobial symbiosis in legumes, but its direct phosphorylation substrates that positively mediate root nodulation remain to be fully identified. Here, we identified a GmNORK-Interacting Small Protein (GmNISP1) that functions as a phosphorylation target of GmNORK to promote soybean nodulation. GmNORKα directly interacted with and phosphorylated GmNISP1. Transcription of GmNISP1 was strongly induced after rhizobial infection in soybean roots and nodules. GmNISP1 encodes a peptide containing 90 amino acids with a "DY" consensus motif at its N-terminus. GmNISP1 protein was detected to be present in the apoplastic space. Phosphorylation of GmNISP1 by GmNORKα could enhance its secretion into the apoplast. Pretreatment with either purified GmNISP1 or phosphorylation-mimic GmNISP112D on the roots could significantly increase nodule numbers compared with the treatment with phosphorylation-inactive GmNISP112A . The data suggested a model that soybean GmNORK phosphorylates GmNISP1 to promote its secretion into the apoplast, which might function as a potential peptide hormone to promote root nodulation.


Assuntos
Fabaceae , Rhizobium , Glycine max/genética , Simbiose , Nodulação , Raízes de Plantas/metabolismo , Proteínas de Transporte/metabolismo , Rhizobium/fisiologia , Nódulos Radiculares de Plantas
3.
Appl Environ Microbiol ; 88(15): e0052622, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35852362

RESUMO

The environmental context of the nitrogen-fixing mutualism between leguminous plants and rhizobial bacteria varies over space and time. Variation in resource availability, population density, and composition likely affect the ecology and evolution of rhizobia and their symbiotic interactions with hosts. We examined how host genotype, nitrogen addition, rhizobial density, and community complexity affected selection on 68 rhizobial strains in the Sinorhizobium meliloti-Medicago truncatula mutualism. As expected, host genotype had a substantial effect on the size, number, and strain composition of root nodules (the symbiotic organ). The understudied environmental variable of rhizobial density had a stronger effect on nodule strain frequency than the addition of low nitrogen levels. Higher inoculum density resulted in a nodule community that was less diverse and more beneficial but only in the context of the more selective host genotype. Higher density resulted in more diverse and less beneficial nodule communities with the less selective host. Density effects on strain composition deserve additional scrutiny as they can create feedback between ecological and evolutionary processes. Finally, we found that relative strain rankings were stable across increasing community complexity (2, 3, 8, or 68 strains). This unexpected result suggests that higher-order interactions between strains are rare in the context of nodule formation and development. Our work highlights the importance of examining mechanisms of density-dependent strain fitness and developing theoretical predictions that incorporate density dependence. Furthermore, our results have translational relevance for overcoming establishment barriers in bioinoculants and motivating breeding programs that maintain beneficial plant-microbe interactions across diverse agroecological contexts. IMPORTANCE Legume crops establish beneficial associations with rhizobial bacteria that perform biological nitrogen fixation, providing nitrogen to plants without the economic and greenhouse gas emission costs of chemical nitrogen inputs. Here, we examine the influence of three environmental factors that vary in agricultural fields on strain relative fitness in nodules. In addition to manipulating nitrogen, we also use two biotic variables that have rarely been examined: the rhizobial community's density and complexity. Taken together, our results suggest that (i) breeding legume varieties that select beneficial strains despite environmental variation is possible, (ii) changes in rhizobial population densities that occur routinely in agricultural fields could drive evolutionary changes in rhizobial populations, and (iii) the lack of higher-order interactions between strains will allow the high-throughput assessments of rhizobia winners and losers during plant interactions.


Assuntos
Medicago truncatula , Rhizobium , Genótipo , Medicago truncatula/genética , Medicago truncatula/microbiologia , Nitrogênio , Fixação de Nitrogênio/genética , Melhoramento Vegetal , Rhizobium/genética , Nódulos Radiculares de Plantas/microbiologia , Simbiose/genética
4.
New Phytol ; 235(5): 1995-2007, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35611584

RESUMO

Rhizobial lipochitooligosaccharidic Nod factors (NFs), specified by nod genes, are the primary determinants of host specificity in the legume-Rhizobia symbiosis. We examined the nodulation ability of Medicago truncatula cv Jemalong A17 and M. truncatula ssp. tricycla R108 with the Sinorhizobium meliloti nodF/nodL mutant, which produces modified NFs. We then applied genetic and functional approaches to study the genetic basis and mechanism of nodulation of R108 by this mutant. We show that the nodF/nodL mutant can nodulate R108 but not A17. Using genomics and reverse genetics, we identified a newly evolved, chimeric LysM receptor-like kinase gene in R108, LYK2bis, which is responsible for the phenotype and can allow A17 to gain nodulation with the nodF/nodL mutant. We found that LYK2bis is involved in nodulation by mutants producing nonO-acetylated NFs and interacts with the key receptor protein NFP. Many, but not all, natural S. meliloti and S. medicae strains tested require LYK2bis for efficient nodulation of R108. Our findings reveal that a newly evolved gene in R108, LYK2bis, extends nodulation specificity to mutants producing nonO-acetylated NFs and is important for nodulation by many natural Sinorhizobia. Evolution of this gene may present an adaptive advantage to allow nodulation by a greater variety of strains.


Assuntos
Medicago truncatula , Rhizobium , Sinorhizobium meliloti , Medicago truncatula/genética , Medicago truncatula/metabolismo , Fenótipo , Sinorhizobium meliloti/genética , Simbiose/genética
5.
Plant Cell Environ ; 44(5): 1627-1641, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33386621

RESUMO

Legumes control their nodule numbers through the autoregulation of nodulation (AON). Rhizobia infection stimulates the production of root-derived CLE peptide hormones that are translocated to the shoot where they regulate a new signal. We used soybean to demonstrate that this shoot-derived signal is miR2111, which is transported via phloem to the root where it targets transcripts of Too Much Love (TML), a negative regulator of nodulation. Shoot perception of rhizobia-induced CLE peptides suppresses miR2111 expression, resulting in TML accumulation in roots and subsequent inhibition of nodule organogenesis. Feeding synthetic mature miR2111 via the petiole increased nodule numbers per plant. Likewise, elevating miR2111 availability by over-expression promoted nodulation, while target mimicry of TML induced the opposite effect on nodule development in wild-type plants and alleviated the supernodulating and stunted root growth phenotypes of AON-defective mutants. Additionally, in non-nodulating wild-type plants, ectopic expression of miR2111 significantly enhanced lateral root emergence with a decrease in lateral root length and average root diameter. In contrast, hairy roots constitutively expressing the target mimic construct exhibited reduced lateral root density. Overall, these findings demonstrate that miR2111 is both the critical shoot-to-root factor that positively regulates root nodule development and also acts to shape root system architecture.


Assuntos
Glycine max/crescimento & desenvolvimento , Glycine max/genética , MicroRNAs/metabolismo , Família Multigênica , Brotos de Planta/genética , Rhizobium/fisiologia , Nódulos Radiculares de Plantas/crescimento & desenvolvimento , Nódulos Radiculares de Plantas/genética , Sequência de Aminoácidos , Sequência de Bases , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , Modelos Biológicos , Fenótipo , Floema/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcrição Gênica
6.
New Phytol ; 228(1): 28-34, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-31276218

RESUMO

Most plant-microbe interactions are facultative, with microbes experiencing temporally and spatially variable selection. How this variation affects microbial evolution is poorly understood. Given its tractability and ecological and agricultural importance, the legume-rhizobia nitrogen-fixing symbiosis is a powerful model for identifying traits and genes underlying bacterial fitness. New technologies allow high-throughput measurement of the relative fitness of bacterial mutants, strains and species in mixed inocula in the host, rhizosphere and soil environments. I consider how host genetic variation (G × G), other environmental factors (G × E), and host life-cycle variation may contribute to the maintenance of genetic variation and adaptive trajectories of rhizobia - and, potentially, other facultative symbionts. Lastly, I place these findings in the context of developing beneficial inoculants in a changing climate.


Assuntos
Fabaceae , Rhizobium , Bactérias , Fabaceae/genética , Fixação de Nitrogênio , Simbiose
7.
Mol Plant Microbe Interact ; 32(8): 939-948, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30893001

RESUMO

In the establishment of plant-rhizobial symbiosis, the plant hosts express nodulin proteins during root nodule organogenesis. A limited number of nodulins have been characterized, and these perform essential functions in root nodule development and metabolism. Most nodulins are expressed in the nodule and at lower levels in other plant tissues. Previously, we isolated Nodulin 22 (PvNod22) from a common bean (Phaseolus vulgaris L.) cDNA library derived from Rhizobium-infected roots. PvNod22 is a noncanonical, endoplasmic reticulum (ER)-localized, small heat shock protein that confers protection against oxidative stress when overexpressed in Escherichia coli. Virus-induced gene silencing of PvNod22 resulted in necrotic lesions in the aerial organs of P. vulgaris plants cultivated under optimal conditions, activation of the ER-unfolded protein response (UPR), and, finally, plant death. Here, we examined the expression of PvNod22 in common bean plants during the establishment of rhizobial endosymbiosis and its relationship with two cellular processes associated with plant immunity, the UPR and autophagy. In the RNA interference lines, numerous infection threads stopped their progression before reaching the cortex cell layer of the root, and nodules contained fewer nitrogen-fixing bacteroids. Collectively, our results suggest that PvNod22 has a nonredundant function during legume-rhizobia symbiosis associated with infection thread elongation, likely by sustaining protein homeostasis in the ER.


Assuntos
Interações Hospedeiro-Patógeno , Proteínas de Membrana , Phaseolus , Proteínas de Plantas , Rhizobium , Simbiose , Regulação da Expressão Gênica de Plantas , Proteínas de Choque Térmico , Interações Hospedeiro-Patógeno/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Fixação de Nitrogênio , Phaseolus/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Rhizobium/fisiologia , Nódulos Radiculares de Plantas/microbiologia , Simbiose/genética
8.
New Phytol ; 222(3): 1325-1337, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30671951

RESUMO

Mutually beneficial resource exchange is fundamental to global biogeochemical cycles and plant and animal nutrition. However, there is inherent potential conflict in mutualisms, as each organism benefits more when the exchange ratio ('price') minimizes its own costs and maximizes its benefits. Understanding the bargaining power that each partner has in these interactions is key to our ability to predict the exchange ratio and therefore the functionality of the cell, organism, community and ecosystem. We tested whether partners have symmetrical ('fair') or asymmetrical ('unfair') bargaining power in a legume-rhizobia nitrogen-fixing symbiosis using measurements of carbon and nitrogen dynamics in a mathematical modeling framework derived from economic theory. A model of symmetric bargaining power was not consistent with our data. Instead, our data indicate that the growth benefit to the plant (Medicago truncatula) has greater weight in determining trade dynamics than the benefit to the bacteria. Quantitative estimates of the relative power of the plant revealed that the plant's influence rises as soil nitrogen availability decreases and trade benefits to both partners increase. Our finding that M. truncatula legumes have more bargaining power than their rhizobial partner at lower nitrogen availabilities highlights the importance of context-dependence for the evolution of mutualism with increasing nutrient deposition.


Assuntos
Medicago truncatula/microbiologia , Modelos Biológicos , Plantas/metabolismo , Rhizobium/fisiologia , Carbono/metabolismo , Nitrogênio/metabolismo , Solo , Simbiose
9.
New Phytol ; 221(1): 446-458, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30084172

RESUMO

Efficient host control predicts the extirpation of ineffective symbionts, but they are nonetheless widespread in nature. We tested three hypotheses for the maintenance of symbiotic variation in rhizobia that associate with a native legume: partner mismatch between host and symbiont, such that symbiont effectiveness varies with host genotype; resource satiation, whereby extrinsic sources of nutrients relax host control; and variation in host control among host genotypes. We inoculated Acmispon strigosus from six populations with three Bradyrhizobium strains that vary in symbiotic effectiveness on sympatric hosts. We measured proxies of host and symbiont fitness in single- and co-inoculations under fertilization treatments of zero added nitrogen (N) and near-growth-saturating N. We examined two components of host control: 'host investment' into nodule size during single- and co-inoculations, and 'host sanctions' against less effective strains during co-inoculations. The Bradyrhizobium strains displayed conserved growth effects on hosts, and host control did not decline under experimental fertilization. Host sanctions were robust in all hosts, but host lines from different populations varied significantly in measures of host investment in both single- and co-inoculation experiments. Variation in host investment could promote variation in symbiotic effectiveness and prevent the extinction of ineffective Bradyrhizobium from natural populations.


Assuntos
Bradyrhizobium/fisiologia , Lotus/genética , Lotus/microbiologia , Simbiose/genética , Genótipo , Lotus/fisiologia , Análise de Regressão , Nódulos Radiculares de Plantas/microbiologia
10.
New Phytol ; 210(3): 1011-21, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26790563

RESUMO

In root nodules rhizobia enter host cells via infection threads. The release of bacteria to a host cell is possible from cell wall-free regions of the infection thread. We hypothesized that the VAMP721d and VAMP721e exocytotic pathway, identified before in Medicago truncatula, has a role in the local modification of cell wall during the release of rhizobia. To clarify the role of VAMP721d and VAMP721e we used Glycine max, a plant with a determinate type of nodule. The localization of the main polysaccharide compounds of primary cell walls was analysed in control vs nodules with partially silenced GmVAMP721d. The silencing of GmVAMP721d blocked the release of rhizobia. Instead of rhizobia-containing membrane compartments - symbiosomes - the infected cells contained big clusters of bacteria embedded in a matrix of methyl-esterified and de-methyl-esterified pectin. These clusters were surrounded by a membrane. We found that GmVAMP721d-positive vesicles were not transporting methyl-esterified pectin. We hypothesized that they may deliver the enzymes involved in pectin turnover. Subsequently, we found that GmVAMP721d is partly co-localized with pectate lyase. Therefore, the biological role of VAMP721d may be explained by its action in delivering pectin-modifying enzymes to the site of release.


Assuntos
Glycine max/metabolismo , Glycine max/microbiologia , Pectinas/metabolismo , Proteínas de Plantas/metabolismo , Rhizobium/fisiologia , Nódulos Radiculares de Plantas/microbiologia , Celulose/metabolismo , Esterificação , Inativação Gênica , Polissacarídeo-Liases/metabolismo , Transporte Proteico , Nódulos Radiculares de Plantas/metabolismo , Nódulos Radiculares de Plantas/ultraestrutura , Simbiose
11.
Int J Mol Sci ; 17(6)2016 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-27271618

RESUMO

A genome-wide analysis identified the set of small RNAs (sRNAs) from the agronomical important legume Phaseolus vulgaris (common bean), including novel P. vulgaris-specific microRNAs (miRNAs) potentially important for the regulation of the rhizobia-symbiotic process. Generally, novel miRNAs are difficult to identify and study because they are very lowly expressed in a tissue- or cell-specific manner. In this work, we aimed to analyze sRNAs from common bean root hairs (RH), a single-cell model, induced with pure Rhizobium etli nodulation factors (NF), a unique type of signal molecule. The sequence analysis of samples from NF-induced and control libraries led to the identity of 132 mature miRNAs, including 63 novel miRNAs and 1984 phasiRNAs. From these, six miRNAs were significantly differentially expressed during NF induction, including one novel miRNA: miR-RH82. A parallel degradome analysis of the same samples revealed 29 targets potentially cleaved by novel miRNAs specifically in NF-induced RH samples; however, these novel miRNAs were not differentially accumulated in this tissue. This study reveals Phaseolus vulgaris-specific novel miRNA candidates and their corresponding targets that meet all criteria to be involved in the regulation of the early nodulation events, thus setting the basis for exploring miRNA-mediated improvement of the common bean-rhizobia symbiosis.


Assuntos
Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , Phaseolus/genética , Nodulação/genética , Raízes de Plantas/genética , Interferência de RNA , RNA Mensageiro/genética , Biologia Computacional/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de DNA
12.
Ecol Lett ; 18(11): 1270-1284, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26388306

RESUMO

Cheating is a focal concept in the study of mutualism, with the majority of researchers considering cheating to be both prevalent and highly damaging. However, current definitions of cheating do not reliably capture the evolutionary threat that has been a central motivation for the study of cheating. We describe the development of the cheating concept and distill a relative-fitness-based definition of cheating that encapsulates the evolutionary threat posed by cheating, i.e. that cheaters will spread and erode the benefits of mutualism. We then describe experiments required to conclude that cheating is occurring and to quantify fitness conflict more generally. Next, we discuss how our definition and methods can generate comparability and integration of theory and experiments, which are currently divided by their respective prioritisations of fitness consequences and traits. To evaluate the current empirical evidence for cheating, we review the literature on several of the best-studied mutualisms. We find that although there are numerous observations of low-quality partners, there is currently very little support from fitness data that any of these meet our criteria to be considered cheaters. Finally, we highlight future directions for research on conflict in mutualisms, including novel research avenues opened by a relative-fitness-based definition of cheating.

13.
J Environ Sci (China) ; 27: 179-87, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25597676

RESUMO

To better understand the diversity of metal resistance genetic determinant from microbes that survived at metal tailings in northwest of China, a highly elevated level of heavy metal containing region, genomic analyses was conducted using genome sequence of three native metal-resistant plant growth promoting bacteria (PGPB). It shows that: Mesorhizobium amorphae CCNWGS0123 contains metal transporters from P-type ATPase, CDF (Cation Diffusion Facilitator), HupE/UreJ and CHR (chromate ion transporter) family involved in copper, zinc, nickel as well as chromate resistance and homeostasis. Meanwhile, the putative CopA/CueO system is expected to mediate copper resistance in Sinorhizobium meliloti CCNWSX0020 while ZntA transporter, assisted with putative CzcD, determines zinc tolerance in Agrobacterium tumefaciens CCNWGS0286. The greenhouse experiment provides the consistent evidence of the plant growth promoting effects of these microbes on their hosts by nitrogen fixation and/or indoleacetic acid (IAA) secretion, indicating a potential in-site phytoremediation usage in the mining tailing regions of China.


Assuntos
Agrobacterium tumefaciens/genética , Proteínas de Bactérias/genética , Fabaceae/microbiologia , Mesorhizobium/genética , Sinorhizobium meliloti/genética , Agrobacterium tumefaciens/fisiologia , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , China , Medicago/crescimento & desenvolvimento , Medicago/microbiologia , Mesorhizobium/fisiologia , Metais Pesados/metabolismo , Dados de Sequência Molecular , Filogenia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Estrutura Terciária de Proteína , Robinia/crescimento & desenvolvimento , Robinia/microbiologia , Sinorhizobium meliloti/fisiologia , Poluentes do Solo/metabolismo
14.
J Integr Plant Biol ; 56(12): 1118-24, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24975457

RESUMO

Split-root system (SRS) approaches allow the differential treatment of separate and independent root systems, while sharing a common aerial part. As such, SRS is a useful tool for the discrimination of systemic (shoot origin) versus local (root/nodule origin) regulation mechanisms. This type of approach is particularly useful when studying the complex regulatory mechanisms governing the symbiosis established between legumes and Rhizobium bacteria. The current work provides an overview of the main insights gained from the application of SRS approaches to understand how nodule number (nodulation autoregulation) and nitrogen fixation are controlled both under non-stressful conditions and in response to a variety of stresses. Nodule number appears to be mainly controlled at the systemic level through a signal which is produced by nodule/root tissue, translocated to the shoot, and transmitted back to the root system, involving shoot Leu-rich repeat receptor-like kinases. In contrast, both local and systemic mechanisms have been shown to operate for the regulation of nitrogenase activity in nodules. Under drought and heavy metal stress, the regulation is mostly local, whereas the application of exogenous nitrogen seems to exert a regulation of nitrogen fixation both at the local and systemic levels.


Assuntos
Fabaceae/microbiologia , Rhizobium/fisiologia , Simbiose/fisiologia , Raízes de Plantas/microbiologia , Simbiose/genética
15.
Plant Sci ; 332: 111696, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37019339

RESUMO

The establishment of the Legume-Rhizobia symbiosis is generally dependent on the production of rhizobial lipochitooligosaccharidic Nod factors (NFs) and their perception by plant Lysin Motif Receptor-Like Kinases (LysM-RLKs). In this study, we characterized a cluster of LysM-RLK genes implicated in strain-specific recognition in two highly divergent and widely-studied Medicago truncatula genotypes, A17 and R108. We then used reverse genetic approaches and biochemical analyses to study the function of selected genes in the clusters and the ability of their encoded proteins to bind NFs. Our study has revealed that the LYK cluster exhibits a high degree of variability among M. truncatula genotypes, which in A17 and R108 includes recent recombination events within the cluster and a transposon insertion in A17. The essential role of LYK3 in nodulation in A17 is not conserved in R108 despite similar sequences and good nodulation expression profiles. Although, LYK2, LYK5 and LYK5bis are not essential for nodulation of the two genotypes, some evidence points to accessory roles in nodulation, but not through high-affinity NF binding. This work shows that recent evolution in the LYK cluster provides a source of variation for nodulation, and potential robustness of signaling through genetic redundancy.


Assuntos
Medicago truncatula , Medicago truncatula/genética , Medicago truncatula/metabolismo , Família Multigênica , Simbiose/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
16.
J Plant Physiol ; 268: 153561, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34801776

RESUMO

Nodulation and symbiotic nitrogen fixation are important factors that determine legume growth. A pot experiment was carried out to determine the effects of Zn-Pb contamination on nodule apoplast (cell walls and intercellular spaces) of bird's foot trefoil (Lotus corniculatus L.) that spontaneously colonized old calamine wastes. The plants were grown in pots filled with sterile calamine substrate (M, metal treated) or expanded clay (NM, untreated) and inoculated with calamine-derived Lotus-nodulating Bradyrhizobium liaoningense. Apoplast reorganization in the nodules was examined using specific dyes for cellulose, pectin and lignin detection, and immuno-histochemical techniques based on monoclonal antibodies against xyloglucan (Lm25), pectins (Jim5 and Jim7), and structural proteins (arabinogalactan protein - Lm14 and extensin - Jim12). Microscopic analysis of metal-treated nodules revealed changes in the apoplast structure and composition of nodule cortex tissues and infected cells. Wall thickening was accompanied by intensified deposition of cellulose, xyloglucan, esterified pectin, arabinogalactan protein and extensin. The metal presence redirected also lignin and suberin deposition in the walls of the nodule cortex tissues. Our results showed reorganization of the apoplast of cortex tissues and infected cells of Lotus nodules under Zn-Pb presence. These changes in the apoplast structure and composition may have created actual barriers for the toxic ions. For this reason, they can be regarded as an element of legume defense strategy against metal stress that enables effective functioning of L. corniculatus-rhizobia symbiosis on Zn-Pb polluted calamine tailings.


Assuntos
Chumbo , Lotus , Nódulos Radiculares de Plantas/crescimento & desenvolvimento , Zinco , Lignina , Lotus/efeitos dos fármacos , Fixação de Nitrogênio , Pectinas , Nódulos Radiculares de Plantas/efeitos dos fármacos , Poluentes do Solo , Simbiose
17.
Plants (Basel) ; 10(12)2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34961125

RESUMO

The interaction between legume plants and soil bacteria rhizobia results in the formation of new organs on the plant roots, symbiotic nodules, where rhizobia fix atmospheric nitrogen. Symbiotic nodules represent a perfect model to trace how the pre-existing regulatory pathways have been recruited and modified to control the development of evolutionary "new" organs. In particular, genes involved in the early stages of lateral root development have been co-opted to regulate nodule development. Other regulatory pathways, including the players of the KNOX-cytokinin module, the homologues of the miR172-AP2 module, and the players of the systemic response to nutrient availability, have also been recruited to a unique regulatory program effectively governing symbiotic nodule development. The role of the NIN transcription factor in the recruitment of such regulatory modules to nodulation is discussed in more details.

18.
Genes (Basel) ; 11(5)2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32392829

RESUMO

On legume crops, formation of developmentally mature nodules is a prerequisite to efficient nitrogen fixation by populations of rhizobial bacteroids established inside nodule cells. Development of root nodules and concomitant microbial colonisation of plant cells are constrained by sets of recognition signals exchanged by infecting rhizobia and their legume hosts, with much of the specificity of symbiotic interactions being determined by the flavonoid cocktails released by legume roots and the strain-specific nodulation factors (NFs) secreted by rhizobia. Hence, much of Sinorhizobium fredii strain NGR234 symbiotic promiscuity was thought to stem from a family of >80 structurally diverse NFs and associated nodulation keys in the form of secreted effector proteins and rhamnose-rich surface polysaccharides. Here, we show instead that a mini-symbiotic plasmid (pMiniSym2) carrying only the nodABCIJ, nodS and nodD1 genes of NGR234 conferred promiscuous nodulation to ANU265, a derivative strain cured of the large symbiotic plasmid pNGR234a. The ANU265::pMiniSym2 transconjugant triggered nodulation responses on 12 of the 22 legumes we tested. On roots of Macroptilium atropurpureum, Leucaena leucocephala and Vigna unguiculata, ANU265::pMiniSym2 formed mature-like nodule and successfully infected nodule cells. While cowpea and siratro responded to nodule colonisation with defence responses that eventually eliminated bacteria, L. leucocephala formed leghemoglobin-containing mature-like nodules inside which the pMiniSym2 transconjugant established persistent intracellular colonies. This data shows seven nodulation genes of NGR234 suffice to trigger nodule formation on roots of many hosts and to establish chronic infections in Leucaena cells.


Assuntos
Fabaceae/microbiologia , Genes Bacterianos , Fixação de Nitrogênio/genética , Nodulação/genética , Rhizobium/genética , Nódulos Radiculares de Plantas/microbiologia , Simbiose/genética , Conjugação Genética , Fabaceae/imunologia , Dosagem de Genes , Especificidade de Hospedeiro , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Plasmídeos/genética , Replicon , Rhizobium/metabolismo , Especificidade da Espécie
19.
FEMS Microbiol Ecol ; 96(12)2020 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-33016310

RESUMO

Variation in partner quality is commonly observed in diverse cooperative relationships, despite the theoretical prediction that selection favoring high-quality partners should eliminate such variation. Here, we investigated how genetic variation in partner quality could be maintained in the nitrogen-fixing mutualism between Lotus japonicus and Mesorhizobium bacteria. We reconstructed de novo assembled full-genome sequences from nine rhizobial symbionts, finding massive variation in the core genome and the similar symbiotic islands, indicating recent horizontal gene transfer (HGT) of the symbiosis islands into diverse Mesorhizobium lineages. A cross-inoculation experiment using 9 sequenced rhizobial symbionts and 15 L. japonicus accessions revealed extensive quality variation represented by plant growth phenotypes, including genotype-by-genotype interactions. Variation in quality was not associated with the presence/absence variation in known symbiosis-related genes in the symbiosis island; rather, it showed significant correlation with the core genome variation. Given the recurrent HGT of the symbiosis islands into diverse Mesorhizobium strains, local Mesorhizobium communities could serve as a major source of variation for core genomes, which might prevent variation in partner quality from fixing, even in the presence of selection favoring high-quality partners. These findings highlight the novel role of HGT of symbiosis islands in maintaining partner quality variation in the legume-rhizobia symbiosis.


Assuntos
Lotus , Mesorhizobium , Rhizobium , Genômica , Mesorhizobium/genética , Rhizobium/genética , Simbiose
20.
Syst Appl Microbiol ; 41(6): 619-628, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29776720

RESUMO

In this study, the genetic diversity and identification of Bradyrhizobium symbionts of Crotalaria zanzibarica, the most widely-distributed invasive legume in Taiwan, and other sympatric legume species growing along riverbanks of Taiwan were evaluated for the first time. In total, 59 and 54 Bradyrhizobium isolates were obtained from C. zanzibarica and its coexisting legume species, respectively. Based on the multilocus sequence analysis (MLSA) of concatenated four housekeeping genes (dnaK-glnII-recA-rpoB gene sequences, 1901bp), the 113 isolates displayed 53 unique haplotypes and grouped into 21 clades. Of these clades, 11 were found to be congruent to already defined Bradyrhizobium species, while the other 10 clades were found to not be congruent to any defined species. In particular, the C. zanzibarica isolates belong to 14 MLSA clades, six of which overlapped with the isolates of coexisting legumes. According to the nodA gene sequences (555bp) obtained from the 105 isolates, these isolates were classified into three known nodA clades, III.2, III.3 and VII and were further clustered into 10 groups. Furthermore, the C. zanzibarica isolates were clustered into 8 nodA groups, five of which overlapped with the isolates from coexisting legumes. Additionally, the nodA genes of the isolates from native species were dominated by Asian origin, while those from C. zanzibarica were dominated by American origin. In conclusion, C. zanzibarica is a promiscuous host capable of recruiting diverse Bradyrhizobium symbionts, some of which are phylogenetically similar to the symbionts of coexisting legumes in Taiwan.


Assuntos
Bradyrhizobium/classificação , Crotalaria/microbiologia , Filogenia , Simbiose , Técnicas de Tipagem Bacteriana , Bradyrhizobium/genética , Bradyrhizobium/isolamento & purificação , DNA Bacteriano/genética , Genes Bacterianos , Variação Genética , Espécies Introduzidas , Tipagem de Sequências Multilocus , RNA Ribossômico 16S/genética , Nódulos Radiculares de Plantas/microbiologia , Análise de Sequência de DNA , Taiwan
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA