Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 160
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Mol Biol Rep ; 51(1): 55, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38165476

RESUMO

BACKGROUND: Reverse transcription quantitative polymerase chain reaction (RT-qPCR) can accurately detect relative gene expression levels in biological samples. However, widely used reference genes exhibit unstable expression under certain conditions. METHODS AND RESULTS: Here, we compared the expression stability of eight reference genes (RPLP0, RPS18, RPL13, EEF1A1, ß-actin, GAPDH, HPRT1, and TUBB) commonly used in liproxstatin-1 (Lip-1)-treated K562 cells using RNA-sequencing and RT-qPCR. The expression of EEF1A1, ACTB, GAPDH, HPRT1, and TUBB was considerably lower in cells treated with 20 µM Lip-1 than in the control, and GAPDH also showed significant downregulation in the 10 µM Lip-1 group. Meanwhile, when we used geNorm, NormFinder, and BestKeeper to compare expression stability, we found that GAPDH and HPRT1 were the most unstable reference genes among all those tested. Stability analysis yielded very similar results when geNorm or BestKeeper was used but not when NormFinder was used. Specifically, geNorm and BestKeeper identified RPL13 and RPLP0 as the most stable genes under 20 µM Lip-1 treatment, whereas RPL13, EEF1A1, and TUBB were the most stable under 10 µM Lip-1 treatment. TUBB and EEF1A1 were the most stable genes in both treatment groups according to the results obtained using NormFinder. An assumed most stable gene was incorporated into each software to validate the accuracy. The results suggest that NormFinder is not an appropriate algorithm for this study. CONCLUSIONS: Stable reference genes were recognized using geNorm and BestKeeper but not NormFinder. Overall, RPL13 and RPLP0 were the most stable reference genes under 20 µM Lip-1 treatment, whereas RPL13, EEF1A1, and TUBB were the most stable genes under 10 µM Lip-1 treatment.


Assuntos
Actinas , Leucemia , Humanos , Células K562 , Sequência de Bases , Análise de Sequência de RNA , Hipoxantina Fosforribosiltransferase , Proteínas de Neoplasias , Proteínas Ribossômicas
2.
Int J Mol Sci ; 25(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38542061

RESUMO

Naphthylisoquinoline (NIQ) alkaloids are rising as a promising class of secondary metabolites with pharmaceutical potential. NF-κB has already been recognized as a significant modulator of cancer proliferation and drug resistance. We have previously reported the mechanisms behind the cytotoxic effect of dioncophylline A, an NIQ monomer, in leukemia cells. In the current study, we have investigated the cytotoxic effect of jozimine A2, an NIQ dimer, on leukemia cells in comparison to a second, structurally unsymmetric dimer, michellamine B. To this end, molecular docking was applied to predict the binding affinity of the dimers towards NF-κB, which was then validated through microscale thermophoresis. Next, cytotoxicity assays were performed on CCRF-CEM cells and multidrug-resistant CEM/ADR5000 cells following treatment. Transcriptome analysis uncovered the molecular networks affected by jozimine A2 and identified the cell cycle as one of the major affected processes. Cell death modes were evaluated through flow cytometry, while angiogenesis was measured with the endothelial cell tube formation assay on human umbilical vein endothelial cells (HUVECs). The results indicated that jozimine A2 bound to NF-κB, inhibited its activity and prevented its translocation to the nucleus. In addition, jozimine A2 induced cell death through apoptosis and prevented angiogenesis. Our study describes the cytotoxic effect of jozimine A2 on leukemia cells and explains the interactions with the NF-κB signaling pathway and the anticancer activity.


Assuntos
Alcaloides , Antineoplásicos , Leucemia , Humanos , Alcaloides/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Células Endoteliais , Leucemia/tratamento farmacológico , Simulação de Acoplamento Molecular , NF-kappa B/farmacologia
3.
Biochem Biophys Res Commun ; 687: 149187, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-37944472

RESUMO

Sodium influx carried out by ion channels is one of the main regulators of water-salt and volume balance in cells of blood origin. Previously, we described amiloride-insensitive ENaC-like channels in human myeloid leukemia K562 cells; the intracellular regulatory mechanisms of the channels are associated with actin cytoskeleton dynamics. Recently, an extracellular mechanism of ENaC-like channels activation in K562 cells by the action of serine protease trypsin has been revealed. The other extracellular pathways that modulate ENaC (epithelial Na+ channel) activity and sodium permeability in transformed blood cells are not yet fully investigated. Here, we study the action of capsazepine (CPZ), as δ-ENaC activator, on single channel activity in K562 cells in whole-cell patch clamp experiments. Addition of CPZ (2 µM) to the extracellular solution caused an activation of sodium channels with typical features; unitary conductance was 15.1 ± 0.8 pS. Amiloride derivative benzamil (50 µM) did not inhibit their activity. Unitary currents and conductance of CPZ-activated channels were higher in Na+-containing extracellular solution than in Li+, that is one of the main fingerprints of δ-ENaC. The results of RT-PCR analysis and immunofluorescence staining also confirmed the expression of δ-hENaC (as well as α-, ß-, γ-ENaC) at the mRNA and protein level. These findings allow us to speculate that CPZ activates amiloride-insensitive ENaC-like channels that contain δ-ENaC in К562 cells. Our data reveal a novel extracellular mechanism for ENaC-like activation in human leukemia cells.


Assuntos
Amilorida , Leucemia Mieloide , Humanos , Amilorida/farmacologia , Amilorida/metabolismo , Canais Epiteliais de Sódio/genética , Canais Epiteliais de Sódio/metabolismo , Leucemia Mieloide/metabolismo , Sódio/metabolismo , Oócitos/metabolismo
4.
BMC Cancer ; 23(1): 955, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37814227

RESUMO

The interruption of normal cell cycle execution acts as an important part to the development of leukemia. It was reported that microRNAs (miRNAs) were closely related to tumorigenesis and progression, and their aberrant expression had been demonstrated to play a crucial role in numerous types of cancer. Our previous study showed that miR-1246 was preferentially overexpressed in chemo-resistant leukemia cell lines, and participated in process of cell cycle progression and multidrug resistant regulation. However, the underlying mechanism remains unclear. In present study, bioinformatics prediction and dual luciferase reporter assay indicated that CADM1 was a direct target of miR-1246. Evidently decreased expression of CADM1 was observed in relapsed primary leukemia patients and chemo-resistant cell lines. Our results furtherly proved that inhibition of miR-1246 could significantly enhance drug sensitivity to Adriamycin (ADM), induce cell cycle arrest at G0/G1 phase, promote cell apoptosis, and relieve its suppression on CADM1 in K562/ADM and HL-60/RS cells. Interference with CADM1 could reduce the increased drug sensitivity induced by miR-1246 inhibition, and notably restore drug resistance by promoting cell cycle progression and cell survival via regulating CDKs/Cyclins complexes in chemo-resistant leukemia cells. Above all, our results demonstrated that CADM1 attenuated the role of miR-1246 in promoting cell cycle progression and cell survival, thus influencing multidrug resistance within chemo-resistant leukemia cells via CDKs/Cyclins. Higher expression of miR-1246 and lower expression of CADM1 might be risk factors for leukemia.


Assuntos
Leucemia , MicroRNAs , Humanos , MicroRNAs/metabolismo , Células HL-60 , Doxorrubicina/farmacologia , Ciclo Celular/genética , Leucemia/tratamento farmacológico , Leucemia/genética , Ciclinas , Proliferação de Células , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Molécula 1 de Adesão Celular/genética
5.
J Biochem Mol Toxicol ; 37(11): e23456, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37439684

RESUMO

We aim to study the inhibitory effect of alkaline serine protease (ASPNJ) on lymphocytic leukemia Jurkat cells and its related mechanism through examining the expression of membrane proteins or membrane-associated proteins. MTT assay and trypan blue staining were used to detect the inhibitory effect of ASPNJ on the proliferation and growth of Jurkat cells. Wright-Giemsa staining was used to observe the effect of ASPNJ on the morphology of Jurkat cells. The effect of ASPNJ on Jurkat cell apoptosis was detected by flow cytometry. Two-dimensional electrophoresis-mass spectrometry (2-DE-MS) was used to detect and identify the differentially expressed proteins of Jurkat cells treated with ASPNJ (4 µg/mL, 3 h), of which three were selected and verified by Western blot. ASPNJ significantly inhibited the proliferation of leukemia cells (Raji, U937, and Jurkat), caused obvious morphological changes, and induced apoptosis of Jurkat cells. ASPNJ also increased the sensitivity of Jurkat cells to vincristine (VCR). Seven differentially expressed proteins were obtained through 2DE-MS, of which Peroxiredoxin-6 (PRDX6), Calcium-binding protein (CHP1), and 40S ribosomal protein SA (RPSA) were validated. ASPNJ can cause significant toxic effects on Jurkat cells and enhance the effects of VCR. The mechanism of action of ASPNJ on Jurkat cells may be related to differentially expressed proteins such as PRDX6. This study provides a new experimental basis and direction for antileukemia research.


Assuntos
Serina Proteases , Serina , Humanos , Células Jurkat , Serina Proteases/farmacologia , Proteínas de Membrana , Proliferação de Células , Vincristina/farmacologia , Apoptose , Serina Endopeptidases
6.
Int J Mol Sci ; 24(3)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36768603

RESUMO

To explore the molecular mechanisms of action underlying the antileukemia activities of darinaparsin, an organic arsenical approved for the treatment of peripheral T-cell lymphoma in Japan, cytotoxicity of darinaparsin was evaluated in leukemia cell lines NB4, U-937, MOLT-4 and HL-60. Darinaparsin was a more potent cytotoxic than sodium arsenite, and induced apoptosis/necrosis in NB4 and HL-60 cells. In NB4 cells exhibiting the highest susceptibility to darinaparsin, apoptosis induction was accompanied by the activation of caspase-8/-9/-3, a substantial decrease in Bid expression, and was suppressed by Boc-D-FMK, a pancaspase inhibitor, suggesting that darinaparsin triggered a convergence of the extrinsic and intrinsic pathways of apoptosis via Bid truncation. A dramatic increase in the expression level of γH2AX, a DNA damage marker, occurred in parallel with G2/M arrest. Activation of p53 and the inhibition of cdc25C/cyclin B1/cdc2 were concomitantly observed in treated cells. Downregulation of c-Myc, along with inactivation of E2F1 associated with the activation of Rb, was observed, suggesting the critical roles of p53 and c-Myc in darinaparsin-mediated G2/M arrest. Trolox, an antioxidative reagent, suppressed the apoptosis induction but failed to correct G2/M arrest, suggesting that oxidative stress primarily contributed to apoptosis induction. Suppression of Notch1 signaling was also confirmed. Our findings provide novel insights into molecular mechanisms underlying the cytotoxicity of darinaparsin and strong rationale for its new clinical application for patients with different types of cancer.


Assuntos
Antineoplásicos , Arsenicais , Leucemia , Humanos , Proteína Supressora de Tumor p53 , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Arsenicais/farmacologia , Leucemia/tratamento farmacológico , Apoptose , Linhagem Celular Tumoral
7.
Molecules ; 28(16)2023 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-37630388

RESUMO

The aim of this study was to explore the mechanism of antitumor effect of (E)-6-morpholino-9-(styrylsulfonyl)-9H-purine (6-Morpholino-SPD) and (E)-6-amino-9-(styrylsulfonyl)-9H-purine (6-Amino-SPD). The effects on apoptosis induction, mitochondrial potential, and accumulation of ROS in treated K562 cells were determined by flow cytometry. The RT-PCR method was used to measure the expression of Akt, CA IX, caspase 3, and cytochrome c genes, as well as selected miRNAs. Western blot analysis was used to determine the expression of Akt, cytochrome c, and caspase 3. The results demonstrate the potential of the tested derivatives as effective antitumor agents with apoptotic-inducing properties. In leukemic cells treated with 6-Amino-SPD, increased expression of caspase 3 and cytochrome c genes was observed, indicating involvement of the intrinsic mitochondrial pathway in the induction of apoptosis. Conversely, leukemic cells treated with 6-Morpholino-SPD showed reduced expression of these genes. The observed downregulation of miR-21 by 6-Morpholino-SPD may contribute to the induction of apoptosis and disruption of mitochondrial function. In addition, both derivatives exhibited increased expression of Akt and CA IX genes, suggesting activation of the Akt/HIF pathway. However, the exact mechanism and its relations to the observed overexpression of miR-210 need further investigation. The acceptable absorption and distribution properties predicted by ADMET analysis suggest favorable pharmacokinetic properties for these derivatives.


Assuntos
Leucemia , MicroRNAs , Humanos , Caspase 3/genética , Morfolinos , Citocromos c , Proteínas Proto-Oncogênicas c-akt , Leucemia/tratamento farmacológico , Leucemia/genética , MicroRNAs/genética
8.
Biochem Biophys Res Commun ; 587: 78-84, 2022 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-34872003

RESUMO

An interaction between acute myeloid leukemia (AML) cells and endothelial cells in the bone marrow seems to play a critical role in chemosensitivity on leukemia treatment. The endothelial niche reportedly enhances the paracrine action of the soluble secretory proteins responsible for chemoresistance in a vascular endothelial growth factor A (VEGF-A)/VEGF receptor 2 (VEGFR-2) signaling pathway-dependent manner. To further investigate the contribution of VEGF-A/VEGFR-2 signaling to the chemoresistance of AML cells, a biochemical assay system in which the AML cells were cocultured with human endothelial EA.hy926 cells in a monolayer was developed. By coculture with EA.hy926 cells, this study revealed that the AML cells resisted apoptosis induced by the anticancer drug cytarabine. SU4312, a VEGFR-2 inhibitor, attenuated VEGFR-2 phosphorylation and VEGF-A/VEGFR-2 signaling-dependent endothelial cell migration; thus, this inhibitor was observed to block VEGF-A/VEGFR-2 signaling. Interestingly, this inhibitor did not reverse the chemoresistance. When VEGFR-2 was knocked out in EA.hy926 cells using the CRISPR-Cas9 system, the cytarabine-induced apoptosis of AML cells did not significantly change compared with that of wild-type cells. Thus, coculture-induced chemoresistance appears to be independent of VEGF-A/VEGFR-2 signaling. When the transwell, a coculturing device, separated the AML cells from the EA.hy926 cells in a monolayer, the coculture-induced chemoresistance was inhibited. Given that the migration of VEGF-A/VEGFR-2 signaling-dependent endothelial cells is necessary for the endothelial niche formation in the bone marrow, VEGF-A/VEGFR-2 signaling contributes to chemoresistance by mediating the niche formation process, but not to the chemoresistance of AML cells in the niche.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Citarabina/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Fator A de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Inibidores da Angiogênese/farmacologia , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Técnicas de Cocultura , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Regulação Leucêmica da Expressão Gênica , Técnicas de Inativação de Genes , Células HL-60 , Humanos , Indóis/farmacologia , Células Jurkat , Células K562 , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Modelos Biológicos , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Neovascularização Patológica/prevenção & controle , Fosforilação , Transdução de Sinais , Células U937 , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/deficiência
9.
J Recept Signal Transduct Res ; 42(2): 169-172, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33615977

RESUMO

PURPOSE: Hedgehog (Hh) signaling pathway regulates a variety of tumors-related diseases including leukemia. Whether inhibition of TGF-ß1 on Gli2 expression is promoted by TNF-α in primary leukemia cells remains to be determined. METHODS: Primary leukemia cells were treated with TGF-ß1, TNF-α or SIS3 at different concentrations. Gli2 expression was detected by quantitative real-time PCR and western blot analyses. RESULTS: We found that TGF-ß significantly decreased Gli2 expression, and co-treatment with TNF-αfurther decreased Gli2 expression in primary leukemia cells. TNF-α can increased TGF-ßRI and TGF-ßRII protein expression in primary leukemia cells, while SIS3 inhibited the effect of TGF-ß. CONCLUSION: Our results suggest that Gli2 expression in primary leukemia cells is induced by TGF-ß in a Smad3-dependent manner, and independent of Hh receptor signaling.


Assuntos
Leucemia , Fator de Crescimento Transformador beta1 , Fator de Necrose Tumoral alfa , Proteína Gli2 com Dedos de Zinco , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Humanos , Proteínas Nucleares/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Fator de Necrose Tumoral alfa/farmacologia , Proteína Gli2 com Dedos de Zinco/genética , Proteína Gli2 com Dedos de Zinco/metabolismo
10.
Exp Cell Res ; 398(1): 112371, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33188849

RESUMO

B-cell chronic lymphocytic leukemia (CLL) is a disease caused by gradual accumulation of functionally incompetent lymphocytes. The majority of CLL cases are accompanied by chemoresistance. Early B cell factor 1 (EBF1) is a crucial contributor to B-cell lymphopoiesis. This study is to explore the effect of EBF1 on CLL cell progression and its involvement in regulating the signal transducers and activators of transcription 5 (STAT5) pathway. We conducted a correlation analysis between EBF1 and the clinical characteristics of CLL patients. Subsequently, EBF1 was overexpressed by transfection with EBF1 overexpression plasmid and the STAT5 pathway was also blocked by treatment with SH-4-54 in isolated CD20+ B lymphocytes to investigate their roles in the regulation of cellular functions. STAT5, Janus kinase 2 (JAK2) expression and their phosphorylation levels were determined by quantitative PCR and Western blot analyses. The in vivo effects of EBF1 on tumor growth were evaluated using a xenotransplant model. Downregulation of EBF1 was observed in CD20+ B lymphocytes of CLL patients. EBF1 overexpression disrupted the activation of STAT5 pathway, as evidenced by decreased expression and phosphorylation levels of STAT5 and JAK2. Furthermore, overexpression of EBF1 repressed viability and cell cycle entry, and increased apoptosis of CD20+ B lymphocytes by inhibiting the STAT5 pathway. Finally, EBF1 exerted antitumor effects in nude mice. Overall, our study elucidates the inhibitory role of EBF1 in CLL through inactivation of the STAT5 pathway, which may provide new targets for CLL treatment.


Assuntos
Leucemia Linfocítica Crônica de Células B/metabolismo , Fator de Transcrição STAT5/metabolismo , Transativadores/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Feminino , Humanos , Leucemia Linfocítica Crônica de Células B/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Transativadores/genética
11.
J Nanobiotechnology ; 20(1): 273, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35701846

RESUMO

BACKGROUND: Acute myeloid leukemia (AML) showed limited clinical therapeutic efficiency with chemotherapy for its multi-distributed lesions and hard-to-kill leukemia cells deep in the bone marrow. RESULTS: Here, a biomimetic nanosystem (DR@PLip) based on platelet membrane (PM) coating and doxorubicin (DOX)/ginsenoside (Rg3) co-loading was developed to potentiate the local-to-systemic chemoimmunotherapy for AML. The PM was designed for long-term circulation and better leukemia cells targeting. The participation of Rg3 was proved to enhance the tumor sensitivity to DOX, thus initiating the anti-tumor immune activation and effectively combating the leukemia cells hiding in the bone marrow. CONCLUSIONS: In conclusion, the strategy that combining immediate chemotherapy with long-term immunotherapy achieved improved therapeutic efficiency and prolonged survival, which provided a new perspective for the clinical treatment of AML.


Assuntos
Ginsenosídeos , Leucemia Mieloide Aguda , Biomimética , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Ginsenosídeos/farmacologia , Ginsenosídeos/uso terapêutico , Humanos , Imunoterapia , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/patologia
12.
Chem Biodivers ; 19(2): e202100451, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34871465

RESUMO

This article described the synthesis and biological investigation of a series of symmetric diarylpentanoids, characterized by a dienone moiety and by a different pattern of substitution on the two phenyl rings. The series of compounds 1a-p were tested against drug-sensitive CCRF-CEM and multidrug-resistant CEM/ADR5000 cells to evaluate their cytotoxic profile, and all the diarypentanoids revealed to be active against both the leukemia cell lines, with the best activity shown by compound 1o that showed a submicromolar activity against both CCRF-CEM and CEM/ADR5000 cell lines (EC50 =0.54 and 0.25 µM, respectively).


Assuntos
Antineoplásicos Fitogênicos , Antineoplásicos , Leucemia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos Fitogênicos/farmacologia , Linhagem Celular Tumoral , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Humanos , Leucemia/tratamento farmacológico
13.
Int J Mol Sci ; 23(9)2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35563111

RESUMO

Many quinazoline derivatives with pharmacological properties, such as anticancer activity, have been synthesized. Fourteen quinazoline derivatives bearing a substituted sulfonamide moiety (4a-n) were previously synthesized and fully characterized. These compounds exerted antiproliferative activity against cell lines derived from solid tumors. Herein, the antileukemic activities of these compounds (4a-n) against two different leukemia cell lines (Jurkat acute T cell and THP-1 acute monocytic) were investigated. Our investigation included examining their activity in vivo in a zebrafish embryo model. Remarkably, compounds 4a and 4d were the most potent in suppressing cell proliferation, with an IC50 value range of 4-6.5 µM. Flow cytometry analysis indicated that both compounds halted cell progression at the G2/M phase and induced apoptosis in a dose-dependent manner. RT-PCR and Western blot analyses also showed that both compounds effectively induced apoptosis by upregulating the expression of proapoptotic factors while downregulating that of antiapoptotic factors. In vivo animal toxicity assays performed in zebrafish embryos indicated that compound 4d was more toxic than compound 4a, with compound 4d inducing multiple levels of teratogenic phenotypes in zebrafish embryos at a sublethal concentration. Moreover, both compounds perturbed the hematopoiesis process in developing zebrafish embryos. Collectively, our data suggest that compounds 4a and 4d have the potential to be used as antileukemic agents.


Assuntos
Antineoplásicos , Leucemia , Animais , Antineoplásicos/farmacologia , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Hematopoese , Humanos , Estrutura Molecular , Quinazolinas/farmacologia , Relação Estrutura-Atividade , Sulfonamidas/farmacologia , Peixe-Zebra
14.
Int J Mol Sci ; 23(13)2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35806065

RESUMO

Hydroxytyrosol (HT), the main representative of polyphenols of olive oil, has been described as one of the most powerful natural antioxidants, also showing anti-inflammatory, antimicrobial, cardioprotective and anticancer activity in different type of cancers, but has been little studied in hematological neoplasms. The objective of this work was to evaluate the anticancer potential of HT in acute human leukemia T cells (Jurkat and HL60) and the anti-inflammatory potential in murine macrophages (Raw264.7). For this, cytotoxicity tests were performed for HT, showing IC50 values, at 24 h, for Jurkat, HL60 and Raw264.7 cells, of 27.3 µg·mL-1, 109.8 µg·mL-1 and 45.7 µg·mL-1, respectively. At the same time, HT caused cell arrest in G0/G1 phase in both Jurkat and HL60 cells by increasing G0/G1 phase and significantly decreasing S phase. Apoptosis and cell cycle assays revealed an antiproliferative effect of HT, decreasing the percentage of dividing cells and increasing apoptosis. Furthermore, HT inhibited the PI3K signaling pathway and, consequently, the MAPK pathway was activated. Inflammation tests revealed that HT acts as an anti-inflammatory agent, reducing NO levels in Raw264.7 cells previously stimulated by lipopolysaccharide (LPS). These processes were confirmed by the changes in the expression of the main markers of inflammation and cancer. In conclusion, HT has an anticancer and anti-inflammatory effect in the cell lines studied, which were Raw264.7, Jurkat, and HL60, and could be used as a natural drug in the treatment of liquid cancers, leukemias, myelomas and lymphomas.


Assuntos
Chaperonina 60/metabolismo , Olea , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Apoptose , Humanos , Inflamação/tratamento farmacológico , Camundongos , Álcool Feniletílico/análogos & derivados , Fosfatidilinositol 3-Quinases , Polifenóis/farmacologia , Polifenóis/uso terapêutico , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais
15.
Molecules ; 27(5)2022 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-35268803

RESUMO

Silibinin is the main biologically active component of silymarin extract and consists of a mixture 1:1 of two diastereoisomeric flavonolignans, namely silybin A (1a) and silybin B (1b), which we call here silybins. Despite the high interest in the activity of this flavonolignan, there are still few studies that give due attention to the role of its stereochemistry and, there is still today a strong need to investigate in this area. In this regard, here we report a study concerning the radical scavenger ability and the antiproliferative activity on different cell lines, both of silybins and phosphodiester-linked silybin dimers. An efficient synthetic strategy to obtain silybin dimers in an optical pure form (6aa, 6ab and 6bb) starting from a suitable building block of silybin A and silybin B, obtained by us from natural extract silibinin, was proposed. New dimers show strong antioxidant properties, determined through hydroxyl radical (HO●) scavenging ability, comparable to the value reported for known potent antioxidants such as quercetin. A preliminary screening was performed by treating cells with 10 and 50 µM concentrations for 48 h to identify the most sensitive cell lines. The results show that silibinin compounds were active on Jurkat, A375, WM266, and HeLa, but at the tested concentrations, they did not interfere with the growth of PANC, MCF-7, HDF or U87. In particular, both monomers (1a and 1b) and dimers (6aa, 6ab and 6bb) present selective anti-proliferative activity towards leukemia cells in the mid-micromolar range and are poorly active on normal cells. They exhibit different mechanisms of action in fact all the cells treated with the 1a and 1b go completely into apoptosis, whereas only part of the cells treated with 6aa and 6ab were found to be in apoptosis.


Assuntos
Neoplasias , Silimarina , Antioxidantes/química , Antioxidantes/farmacologia , Linhagem Celular , Quercetina , Silibina/farmacologia , Silimarina/química , Silimarina/farmacologia
16.
Mol Biol Rep ; 48(6): 5327-5334, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34156605

RESUMO

Myricitrin, a naturally occurring flavonoid in Madhuca longifolia, possesses several medicinal properties. Even though our earlier work revealed its role against the proliferation of acute myelogenous leukemia cells (HL-60), its molecular mechanisms have not yet been revealed. The current study aims to explore the molecular mechanisms of myricitrin (isolated from an ethnomedicinal drug Madhuca longifolia) to induce apoptosis in HL-60 cells. Treatment with IC-50 dose of myricitrin (353 µM) caused cellular shrinkage and cell wall damage in HL-60 cells compared to untreated control cells. Myricitrin treatment reduced the mitochondrial membrane potential (22.95%), increased DNA fragmentation (90.4%), inhibited the cell survival proteins (RAS, B-RAF, & BCL-2) and also induced pro-apoptotic proteins (p38, pro-caspase-3, pro-caspase-9 and caspase-3) in the HL-60 cells. The present study provides scientific evidence for the apoptosis caused by myricitrin in HL-60 leukemia cells. Hence, the phytochemical myricitrin could be considered as a potential candidate to develop an anticancer drug after checking its efficacy through suitable pre-clinical and clinical studies.


Assuntos
Flavonoides/farmacologia , Leucemia/metabolismo , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Caspase 3/metabolismo , Caspase 9/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Fragmentação do DNA/efeitos dos fármacos , Flavonoides/metabolismo , Células HL-60 , Humanos , Leucemia/tratamento farmacológico , Madhuca/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Extratos Vegetais/farmacologia , Folhas de Planta/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteína X Associada a bcl-2/metabolismo
17.
Int J Mol Sci ; 22(9)2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-34066632

RESUMO

Ethanol has been shown to exhibit therapeutic properties as an ablative agent alone and in combination with thermal ablation. Ethanol may also increase sensitivity of cancer cells to certain physical and chemical antitumoral agents. The aim of our study was to assess the potential influence of nontoxic concentrations of ethanol on hyperthermia therapy, an antitumoral modality that is continuously growing and that can be combined with classical chemotherapy and radiotherapy to improve their efficiency. Human leukemia cells were included as a model in the study. The results indicated that ethanol augments the cytotoxicity of hyperthermia against U937 and HL60 cells. The therapeutic benefit of the hyperthermia/ethanol combination was associated with an increase in the percentage of apoptotic cells and activation of caspases-3, -8 and -9. Apoptosis triggered either by hyperthermia or hyperthermia/ethanol was almost completely abolished by a caspase-8 specific inhibitor, indicating that this caspase plays a main role in both conditions. The role of caspase-9 in hyperthermia treated cells acquired significance whether ethanol was present during hyperthermia since the alcohol enhanced Bid cleavage, translocation of Bax from cytosol to mitochondria, release of mitochondrial apoptogenic factors, and decreased of the levels of the anti-apoptotic factor myeloid cell leukemia-1 (Mcl-1). The enhancement effect of ethanol on hyperthermia-activated cell death was associated with a reduction in the expression of HSP70, a protein known to interfere in the activation of apoptosis at different stages. Collectively, our findings suggest that ethanol could be useful as an adjuvant in hyperthermia therapy for cancer.


Assuntos
Etanol/farmacologia , Hipertermia Induzida , Leucemia Mieloide/patologia , Apoptose/efeitos dos fármacos , Caspases/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Proteínas de Choque Térmico HSP70/metabolismo , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Modelos Biológicos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Células U937
18.
Int J Mol Sci ; 22(15)2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34360605

RESUMO

Piezo1/2 are mechanosensitive calcium-permeable channels that can be activated by various modes of membrane deformation. The identification of the small molecule Yoda1, a synthetic Piezo1 agonist, revealed the possibility of chemical activation of the channel. Stimulating effects of Yoda1 on Piezo1 have been mainly documented using over-expressing cellular systems or channel proteins incorporated in artificial lipid bilayers. However, the activating effect of Yoda1 on native Piezo1 channels in the plasma membrane of living cells remains generally undefined, despite the increasing number of studies in which the agonist is utilized as a functional tool to reveal the contribution of Piezo1 to cellular reactions. In the current study, we used the human myeloid leukemia K562 cell line as a suitable model to examine chemically induced Piezo1 activity with the use of the patch-clamp technique in various specific modes. The functional expression of Piezo1 in leukemia cells was evidenced using a combinative approach, including single channel patch-clamp measurements. Utilizing our established single-current whole-cell assay on K562 cells, we have shown, for the first time, the selective real-time chemical activation of endogenously expressed Piezo1. Extracellular application of 0.5-1 µM Yoda1 effectively stimulated single Piezo1 currents in the cell membrane.


Assuntos
Membrana Celular/metabolismo , Canais Iônicos/efeitos dos fármacos , Leucemia/tratamento farmacológico , Mecanotransdução Celular , Pirazinas/farmacologia , Análise de Célula Única/métodos , Tiadiazóis/farmacologia , Membrana Celular/efeitos dos fármacos , Humanos , Canais Iônicos/agonistas , Canais Iônicos/metabolismo , Leucemia/metabolismo , Leucemia/patologia
19.
Molecules ; 26(10)2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34070111

RESUMO

Cephalotaxine (CET) is a natural alkaloid with potent antileukemia effects. However, its underlying molecular mechanism has not been well understood. In this study, we verified that CET significantly inhibited the viability of various leukemia cells, including HL-60, NB4, Jurkat, K562, Raji and MOLT-4. RNA-sequencing and bioinformatics analysis revealed that CET causes mitochondrial function change. Mechanism research indicated that CET activated the mitochondrial apoptosis pathway by reducing the mitochondrial membrane potential, downregulating anti-apoptotic Bcl-2 protein and upregulating pro-apoptotic Bak protein. In addition, the autophagy signaling pathway was highly enriched by RNA-seq analysis. Then, we found that CET blocked the fluorescence colocation of MitoTracker Green and LysoTracker Red and upregulated the level of LC3-II and p62, which indicated that autophagy flow was impaired. Further results demonstrated that CET could impair lysosomal acidification and block autophagy flow. Finally, inhibiting autophagy flow could aggravate apoptosis of HL-60 cells induced by CET. In summary, this study demonstrated that CET exerted antileukemia effects through activation of the mitochondria-dependent pathway and by impairing autophagy flow. Our research provides new insights into the molecular mechanisms of CET in the treatment of leukemia.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Mepesuccinato de Omacetaxina/farmacologia , Leucemia/patologia , Mitocôndrias/metabolismo , Apoptose/genética , Autofagia/genética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Mepesuccinato de Omacetaxina/química , Humanos , Leucemia/genética , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/ultraestrutura , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética
20.
Mol Cell Biochem ; 474(1-2): 113-123, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32737773

RESUMO

The present study aimed to evaluate the cytotoxicity and its mechanism of five synthetic methoxy stilbenes, namely 3,4,4'-trimethoxy, 3,4,2'-trimethoxy, 3,4,2',4'-tetramethoxy, 3,4,2',6'-tetramethoxy, and 3,4,2',4',6'-pentamethoxy-trans-stilbenes (MS), in comparison with resveratrol (RSV). Human promyelocytic (HL-60) and monocytic leukemia (THP-1) cells were treated with the tested compounds for 24 h, and cytotoxicity, cell cycle distribution, and apoptosis were evaluated. Significant differences were found in the susceptibility of these cell lines to all stilbenes, including RSV. The THP-1 cells were more resistant to cytotoxic activity of these compounds than HL-60 cells. Among the tested stilbenes, 3,4,4'-tri-MS and 3,4,2',4'-tetra-MS exhibited higher cytotoxicity toward both cell lines than RSV and the other methoxy stilbenes. This activity might be related to cell cycle arrest at the G2/M phase and induction of apoptosis. In this regard, 3,4,4'-tri-MS and 3,4,2',4'-tetra-MS at highest concentrations increased the p53 protein level particularly in HL-60 cells. Moreover, treatment with these derivatives increased the ratio of the proapoptotic Bax protein to the antiapoptotic Bcl-xl protein, suggesting the induction of apoptosis through the intrinsic mitochondrial pathway in both cell lines. Further studies are required to fully elucidate the mechanism of these activities.


Assuntos
Apoptose , Pontos de Checagem do Ciclo Celular , Leucemia Mieloide/tratamento farmacológico , Resveratrol/análogos & derivados , Resveratrol/farmacologia , Estilbenos/química , Antioxidantes/farmacologia , Sobrevivência Celular , Regulação Neoplásica da Expressão Gênica , Células HL-60 , Humanos , Leucemia Mieloide/metabolismo , Leucemia Mieloide/patologia , Proteína Supressora de Tumor p53/metabolismo , Proteína X Associada a bcl-2/metabolismo , Proteína bcl-X/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA