RESUMO
Studies with experimental animals have revealed a mood-regulating neural pathway linking intrinsically photosensitive retinal ganglion cells (ipRGCs) and the prefrontal cortex (PFC), involved in the pathophysiology of mood disorders. Since humans also have light-intensity-encoding ipRGCs, we asked whether a similar pathway exists in humans. Here, functional MRI was used to identify PFC regions and other areas exhibiting light-intensity-dependent signals. We report 26 human brain regions having activation that either monotonically decreases or monotonically increases with light intensity. Luxotonic-related activation occurred across the cerebral cortex, in diverse subcortical structures, and in the cerebellum, encompassing regions with functions related to visual image formation, motor control, cognition, and emotion. Light suppressed PFC activation, which monotonically decreased with increasing light intensity. The sustained time course of light-evoked PFC responses and their susceptibility to prior light exposure resembled those of ipRGCs. These findings offer a functional link between light exposure and PFC-mediated cognitive and affective phenomena.
Assuntos
Afeto , Cognição , Iluminação , Córtex Pré-Frontal , Células Ganglionares da Retina , Humanos , Imageamento por Ressonância Magnética , Estimulação LuminosaRESUMO
Triphenylamine-sensitized 8-dimethylaminoquinoline (TAQ) probes showed fair two-photon absorption and fragmentation cross sections in releasing kainate and GABA ligands. The water-soluble PEG and TEG-analogs allowed cell internalization and efficient light-gated liberation of the rhodamine reporter under UV and two-photon (NIR) irradiation conditions.
Assuntos
Fótons , Humanos , Corantes Fluorescentes/química , Rodaminas/química , Ácido gama-Aminobutírico/química , Polietilenoglicóis/química , Células HeLa , Compostos de Anilina/química , Quinolinas/química , LigantesRESUMO
The use of light-responsive proteins to control both living or synthetic cells, is at the core of the expanding fields of optogenetics and synthetic biology. It is thus apparent that a richer reaction toolbox for the preparation of such systems is of fundamental importance. Here, we provide a proof-of-principle demonstration that Morita-Baylis-Hillman adducts can be employed to perform a facile site-specific, irreversible and diastereoselective click-functionalization of a lysine residue buried into a lipophilic binding pocket and yielding an unnatural chromophore with an extended π-system. In doing so we effectively open the path to the inâ vitro preparation of a library of synthetic proteins structurally reminiscent of xanthopsin eubacterial photoreceptors. We argue that such a library, made of variable unnatural chromophores inserted in an easy-to-mutate and crystallize retinoic acid transporter, significantly expand the scope of the recently introduced rhodopsin mimics as both optogenetic and "lab-on-a-molecule" tools.
Assuntos
Receptores do Ácido Retinoico/metabolismo , Rodopsina/metabolismo , Química Click , Cristalografia por Raios X , Modelos Moleculares , Estrutura Molecular , Receptores do Ácido Retinoico/química , Rodopsina/química , EstereoisomerismoRESUMO
HBDI-like chromophores represent a novel set of biomimetic switches mimicking the fluorophore of the green fluorescent protein that are currently studied with the hope to expand the molecular switch/motor toolbox. However, until now members capable of absorbing visible light in their neutral (i. e. non-anionic) form have not been reported. In this contribution we report the preparation of an HBDI-like chromophore based on a 3-phenylbenzofulvene scaffold capable of absorbing blue light and photoisomerizing on the picosecond timescale. More specifically, we show that double-bond photoisomerization occurs in both the E-to-Z and Z-to-E directions and that these can be controlled by irradiating with blue and UV light, respectively. Finally, as a preliminary applicative result, we report the incorporation of the chromophore in an amphiphilic molecule and demonstrate the formation of a visible-light-sensitive nanoaggregated state in water.
Assuntos
Luz , Proteínas de Fluorescência Verde/químicaRESUMO
BACKGROUND AND OBJECTIVE: Optogenetics has opened new insights into biomedical research with the ability to manipulate and control cellular activity using light in combination with genetically engineered photosensitive proteins. By stimulating with light, this method provides high spatiotemporal and high specificity resolution, which is in contrast to conventional pharmacological or electrical stimulation. Optogenetics was initially introduced to control neural activities but was gradually extended to other biomedical fields. STUDY DESIGN: In this paper, firstly, we summarize the current optogenetic tools stimulated by different light sources, including lasers, light-emitting diodes, and laser diodes. Second, we outline the variety of biomedical applications of optogenetics not only for neuronal circuits but also for various kinds of cells and tissues from cardiomyocytes to ganglion cells. Furthermore, we highlight the potential of this technique for treating neurological disorders, cardiac arrhythmia, visual impairment, hearing loss, and urinary bladder diseases as well as clarify the mechanisms underlying cancer progression and control of stem cell differentiation. CONCLUSION: We sought to summarize the various types of promising applications of optogenetics to treat a broad spectrum of disorders. It is conceivable to expect that optogenetics profits a growing number of patients suffering from a range of different diseases in the near future.
Assuntos
Neoplasias , Optogenética , Humanos , Lasers , Neoplasias/metabolismo , Neurônios/metabolismo , Optogenética/métodosRESUMO
To enhance uptake of photosensitizers by epithelial tumor cells by targeting these to EGFR, pyropheophorbide derivatives were synthesized that had erlotinib attached to different positions on the macrocycle. Although the addition of erlotinib reduced cellular uptake, several compounds showed prolonged cellular retention and maintained photodynamic efficacy. The aim of this study was to identify whether erlotinib moiety assists in tumor targeting through interaction with EGFR and whether this interaction inhibits EGFR kinase activity. The activity of the conjugates was analyzed in primary cultures of human head and neck tumor cells with high-level expression of EGFR, and in human carcinomas grown as xenografts in mice. Uptake of erlotinib conjugates did not correlate with cellular expression of EGFR and none of the compounds exerted EGFR-inhibitory activity. One derivative with erlotinib at position 3, PS-10, displayed enhanced tumor cell-specific retention in mitochondria/ER and improved PDT efficacy in a subset of tumor cases. Moreover, upon treatment of the conjugates with therapeutic light, EGFR-inhibitory activity was recovered that attenuated EGFR signal-dependent tumor cell proliferation. This finding suggests that tumor cell-specific deposition of erlotinib-pyropheophorbides, followed by light triggered release of EGFR-inhibitory activity, may improve photodynamic therapy by attenuating tumor growth that is dependent on EGFR-derived signals.
Assuntos
Fotoquimioterapia , Fármacos Fotossensibilizantes , Animais , Linhagem Celular Tumoral , Receptores ErbB/metabolismo , Cloridrato de Erlotinib/farmacologia , Cloridrato de Erlotinib/uso terapêutico , Humanos , Camundongos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Transdução de SinaisRESUMO
Electrochemical energy storage has been regarded as one of the most promising strategies for next-generation energy consumption. To meet the increasing demands of urban electric vehicles, development of green and efficient charging technologies by exploitation of solar energy should be considered for outdoor charging in the future. Herein, a light-sensitive material (copper foam-supported copper oxide/nickel copper oxides nanosheets arrays, namely CF@CuOx @NiCuOx NAs) with hierarchical nanostructures to promote electrochemical charge storage is specifically fabricated. The as-fabricated NAs have demonstrated a high areal specific capacity of 1.452 C cm-2 under light irradiation with a light power of 1.76 W, which is 44.8% higher than the capacity obtained without light. Such areal specific capacity (1.452 C cm-2 ) is much higher than that of the conventional supercapacitor structure using a similar active redox component reported recently (NiO nanosheets array@Co3 O4 -NiO FTNs: maximum areal capacity of 623.5 mF cm-2 at 2 mA cm-2 ). This photo-enhancement for charge storage can be attributed to the combination of photo-sensitive Cu2 O and pseudo-active NiO components. Hence, this work may provide new possibilities for direct utilization of sustainable solar energy to realize enhanced capability for energy storage devices.
RESUMO
This research study utilized a light-sensitive drug, nifedipine (NFD), to understand the impact of processing parameters and formulation composition on drug degradation, crystallinity, and quality attributes (dimensions, hardness, disintegration time) of selective laser sintering (SLS)-based three-dimensional (3D)-printed dosage forms. Visible lasers with a wavelength around 455 nm are one of the laser sources used for selective laser sintering (SLS) processes, and some drugs such as nifedipine tend to absorb radiation at varying intensities around this wavelength. This phenomenon may lead to chemical degradation and solid-state transformation, which was assessed for nifedipine in formulations with varying amounts of vinyl pyrrolidone-vinyl acetate copolymer (Kollidon VA 64) and potassium aluminum silicate-based pearlescent pigment (Candurin) processed under different SLS conditions in the presented work. After preliminary screening, Candurin, surface temperature (ST), and laser speed (LS) were identified as the significant independent variables. Further, using the identified independent variables, a 17-run, randomized, Box-Behnken design was developed to understand the correlation trends and quantify the impact on degradation (%), crystallinity, and quality attributes (dimensions, hardness, disintegration time) employing qualitative and quantitative analytical tools. The design of experiments (DoEs) and statistical analysis observed that LS and Candurin (wt %) had a strong negative correlation on drug degradation, hardness, and weight, whereas ST had a strong positive correlation with drug degradation, amorphous conversion, and hardness of the 3D-printed dosage form. From this study, it can be concluded that formulation and processing parameters have a critical impact on stability and performance; hence, these parameters should be evaluated and optimized before exposing light-sensitive drugs to the SLS processes.
Assuntos
Composição de Medicamentos/métodos , Nifedipino/química , Impressão Tridimensional , Varredura Diferencial de Calorimetria , Cromatografia Líquida de Alta Pressão , Estabilidade de Medicamentos , Dureza , Lasers , Nifedipino/análise , Nifedipino/síntese química , Nifedipino/efeitos da radiação , Fotólise , Impressão Tridimensional/normas , ComprimidosRESUMO
Human eye is affected by the different eye diseases including choroidal neovascularization (CNV), diabetic macular edema (DME) and age-related macular degeneration (AMD). This work aims to design an artificial intelligence (AI) based clinical decision support system for eye disease detection and classification to assist the ophthalmologists more effectively detecting and classifying CNV, DME and drusen by using the Optical Coherence Tomography (OCT) images depicting different tissues. The methodology used for designing this system involves different deep learning convolutional neural network (CNN) models and long short-term memory networks (LSTM). The best image captioning model is selected after performance analysis by comparing nine different image captioning systems for assisting ophthalmologists to detect and classify eye diseases. The quantitative data analysis results obtained for the image captioning models designed using DenseNet201 with LSTM have superior performance in terms of overall accuracy of 0.969, positive predictive value of 0.972 and true-positive rate of 0.969using OCT images enhanced by the generative adversarial network (GAN). The corresponding performance values for the Xception with LSTM image captioning models are 0.969, 0.969 and 0.938, respectively. Thus, these two models yield superior performance and have potential to assist ophthalmologists in making optimal diagnostic decision.
Assuntos
Interpretação de Imagem Assistida por Computador/métodos , Doenças Retinianas/classificação , Doenças Retinianas/diagnóstico por imagem , Tomografia de Coerência Óptica/métodos , Neovascularização de Coroide/classificação , Neovascularização de Coroide/diagnóstico por imagem , Humanos , Redes Neurais de Computação , Oftalmologistas , Retina/diagnóstico por imagemRESUMO
Characteristic aroma formation in tea (Camellia sinensis) leaves during the oolong tea manufacturing process might result from the defense responses of tea leaves against these various stresses, which involves upregulation of the upstream signal phytohormones related to leaf chloroplasts, such as jasmonic acid (JA). Whether chloroplast changes affect the formation of JA and characteristic aroma compounds in tea leaves exposed to stresses is unknown. In tea germplasms, albino-induced yellow tea leaves have defects in chloroplast ultrastructure and composition. Herein, we have compared the differential responses of phytohormone and characteristic aroma compound formation in normal green and albino-induced yellow tea leaves exposed to continuous wounding stress, which is the main stress in oolong tea manufacture. In contrast to single wounding stress (from picking, as a control), continuous wounding stress can upregulate the expression of CsMYC2, a key transcription factor of JA signaling, and activate the synthesis of JA and characteristic aroma compounds in both normal tea leaves (normal chloroplasts) and albino tea leaves (chloroplast defects). Chloroplast defects had no significant effect on the expression levels of CsMYC2 and JA synthesis-related genes in response to continuous wounding stress, but reduced the increase in JA content in response to continuous wounding stress. Furthermore, chloroplast defects reduced the increase in volatile fatty acid derivatives, including jasmine lactone and green leaf volatile contents, in response to continuous wounding stress. Overall, the formation of metabolites derived from fatty acids, such as JA, jasmine lactone, and green leaf volatiles in tea leaves, in response to continuous wounding stress, was affected by chloroplast defects. This information will improve understanding of the relationship of the stress responses of JA and aroma compound formation with chloroplast changes in tea.
Assuntos
Camellia sinensis/química , Cloroplastos/metabolismo , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Folhas de Planta/química , Folhas de Planta/fisiologia , Estresse Fisiológico , Compostos Orgânicos Voláteis/análise , Camellia sinensis/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Reguladores de Crescimento de Plantas/metabolismoRESUMO
Tea (Camellia sinensis) cultivars with green leaves are the most widely used for making tea. Recently, tea mutants with white or yellow young shoots have attracted increasing interest as raw materials for making "high-quality" tea products. Albino teas are generallycharacterized as having metabolites of relatively high amino acid content and lower catechin content. However, little is known about aroma compounds in albino tea leaves. Herein, we compared original normal leaves (green) and light-sensitive albino leaves (yellow) of cv. Yinghong No. 9. GC-MS was employed to analyze endogenous tea aroma compounds and related precursors. Quantitative real time PCR was used to measure expression levels of genes involved in biosyntheses of tea aromas.The total contents of most endogenous free tea aromas, including aroma fatty acid derivatives, aroma terpenes, and aroma phenylpropanoids/benzenoids, and their glycosidically bound aroma compounds, were lower in yellow leaves than in green leaves. The content of the key precursor geranyl diphosphate (GDP) and expression levels of key synthetic genes involved in the formation of linalool, a major aroma compound in cv. Yinghong No. 9, were investigated. Linalool content was lower in albino-induced yellow leaves, which was due to the lower GDP content compared with normal green leaves.
Assuntos
Camellia sinensis/química , Folhas de Planta/química , Brotos de Planta/química , Compostos Orgânicos Voláteis/química , Aminoácidos/química , Camellia sinensis/genética , Catequina/química , Cor , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Mutação , Folhas de Planta/genética , Brotos de Planta/genética , Chá/químicaRESUMO
BACKGROUND: As the predominant secondary metabolic pathway in tea plants, flavonoid biosynthesis increases with increasing temperature and illumination. However, the concentration of most flavonoids decreases greatly in light-sensitive tea leaves when they are exposed to light, which further improves tea quality. To reveal the metabolism and potential functions of flavonoids in tea leaves, a natural light-sensitive tea mutant (Huangjinya) cultivated under different light conditions was subjected to metabolomics analysis. RESULTS: The results showed that chlorotic tea leaves accumulated large amounts of flavonoids with ortho-dihydroxylated B-rings (e.g., catechin gallate, quercetin and its glycosides etc.), whereas total flavonoids (e.g., myricetrin glycoside, epigallocatechin gallate etc.) were considerably reduced, suggesting that the flavonoid components generated from different metabolic branches played different roles in tea leaves. Furthermore, the intracellular localization of flavonoids and the expression pattern of genes involved in secondary metabolic pathways indicate a potential photoprotective function of dihydroxylated flavonoids in light-sensitive tea leaves. CONCLUSIONS: Our results suggest that reactive oxygen species (ROS) scavenging and the antioxidation effects of flavonoids help chlorotic tea plants survive under high light stress, providing new evidence to clarify the functional roles of flavonoids, which accumulate to high levels in tea plants. Moreover, flavonoids with ortho-dihydroxylated B-rings played a greater role in photo-protection to improve the acclimatization of tea plants.
Assuntos
Camellia sinensis/metabolismo , Flavonoides/metabolismo , Luz , Metabolômica , Folhas de Planta/metabolismo , Camellia sinensis/efeitos da radiação , Catequina/análogos & derivados , Catequina/metabolismo , Glicosídeos/metabolismo , Redes e Vias Metabólicas/efeitos da radiação , Espécies Reativas de Oxigênio/metabolismoRESUMO
Remote and selective spatiotemporal control of the activity of neurons to regulate behavior and physiological functions has been a long-sought goal in system neuroscience. Identification and subsequent bioengineering of light-sensitive ion channels (e.g., channelrhodopsins, halorhodopsin, and archaerhodopsins) from the bacteria have made it possible to use light to artificially modulate neuronal activity, namely optogenetics. Recent advance in genetics has also allowed development of novel pharmacological tools to selectively and remotely control neuronal activity using engineered G protein-coupled receptors, which can be activated by otherwise inert drug-like small molecules such as the designer receptors exclusively activated by designer drug, a form of chemogenetics. The cutting-edge optogenetics and pharmacogenetics are powerful tools in neuroscience that allow selective and bidirectional modulation of the activity of defined populations of neurons with unprecedented specificity. These novel toolboxes are enabling significant advances in deciphering how the nervous system works and its influence on various physiological processes in health and disease. Here, we discuss the fundamental elements of optogenetics and chemogenetics approaches and some of the applications that yielded significant advances in various areas of neuroscience and beyond.
Assuntos
Canais Iônicos , Neurônios , Neurociências/métodos , Optogenética/métodos , Farmacogenética/métodos , Receptores Acoplados a Proteínas G , Transdução de Sinais , Animais , Humanos , Canais Iônicos/efeitos dos fármacos , Canais Iônicos/genética , Canais Iônicos/metabolismo , Canais Iônicos/efeitos da radiação , Luz , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/efeitos da radiação , Receptores Acoplados a Proteínas G/efeitos dos fármacos , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/efeitos da radiação , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transdução de Sinais/efeitos da radiaçãoRESUMO
Photobiomodulation (PBM) also known as low-level laser (or light) therapy (LLLT), has been known for almost 50 years but still has not gained widespread acceptance, largely due to uncertainty about the molecular, cellular, and tissular mechanisms of action. However, in recent years, much knowledge has been gained in this area, which will be summarized in this review. One of the most important chromophores is cytochrome c oxidase (unit IV in the mitochondrial respiratory chain), which contains both heme and copper centers and absorbs light into the near-infra-red region. The leading hypothesis is that the photons dissociate inhibitory nitric oxide from the enzyme, leading to an increase in electron transport, mitochondrial membrane potential and ATP production. Another hypothesis concerns light-sensitive ion channels that can be activated allowing calcium to enter the cell. After the initial photon absorption events, numerous signaling pathways are activated via reactive oxygen species, cyclic AMP, NO and Ca2+, leading to activation of transcription factors. These transcription factors can lead to increased expression of genes related to protein synthesis, cell migration and proliferation, anti-inflammatory signaling, anti-apoptotic proteins, antioxidant enzymes. Stem cells and progenitor cells appear to be particularly susceptible to LLLT.
RESUMO
Zebrafish possess two isoforms of vertebrate ancient long (VAL)-opsin, val-opsinA (valopa) and val-opsinB (valopb), which probably mediate non-visual responses to light. To understand the diurnal and light-sensitive regulation of the valop genes in different cell groups, the current study used real-time quantitative PCR to examine the diurnal changes of valopa and b mRNA levels in different brain areas of adult male zebrafish. Furthermore, effects of the extended exposure to light or dark condition, luminous levels and the treatment with a melatonin receptor agonist or antagonist on valop transcription were examined. In the thalamus, valop mRNA levels showed significant diurnal changes; valopa peaked in the evening, while valopb peaked in the morning. The diurnal change of valopa mRNA levels occurred independent of light conditions, whereas that of valopb mRNA levels were regulated by light. A melatonin receptor agonist or antagonist did not affect the changes of valop mRNA levels. In contrast, the midbrain and hindbrain showed arrhythmic valop mRNA levels under light and dark cycles. The differential diurnal regulation of the valopa and b genes in the thalamus and the arrhythmic expression in the midbrain and hindbrain suggest involvement of deep brain VAL-opsin in time- and light-dependent physiology. We show diurnal expression changes of vertebrate ancient long (VAL) opsin genes (valopa and valopb), depending on brain area, time of day and light condition, in the adult male zebrafish. Differential regulation of the valop genes in the thalamus and arrhythmic expression in the midbrain and hindbrain suggest their involvement in time- and light-dependent physiology to adjust to environmental changes.
Assuntos
Encéfalo/metabolismo , Ritmo Circadiano/fisiologia , Regulação da Expressão Gênica/efeitos da radiação , Opsinas/metabolismo , Estimulação Luminosa , Animais , Encéfalo/anatomia & histologia , Olho/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Dados de Sequência Molecular , Opsinas/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/metabolismo , Receptores de Melatonina/antagonistas & inibidores , Receptores de Melatonina/metabolismo , Triptaminas/farmacologia , Peixe-ZebraRESUMO
The light-sensitive protein Opsin 3 (Opn3) is present throughout the mammalian brain; however, the role of Opn3 in this organ remains unknown. Since Opn3 encoded mRNA is modulated in the supraoptic and paraventricular nucleus of the hypothalamus in response to osmotic stimuli, we have explored by in situ hybridization the expression of Opn3 in these nuclei. We have demonstrated that Opn3 is present in the male rat magnocellular neurones expressing either the arginine vasopressin or oxytocin neuropeptides and that Opn3 increases in both neuronal types in response to osmotic stimuli, suggesting that Opn3 functions in both cell types and that it might be involved in regulating water balance. Using rat hypothalamic organotypic cultures, we have demonstrated that the hypothalamus is sensitive to light and that the observed light sensitivity is mediated, at least in part, by Opn3. The data suggests that hypothalamic Opn3 can mediate a light-sensitive role to regulate circadian homeostatic processes.
Assuntos
Hipotálamo , Animais , Masculino , Ratos , Arginina Vasopressina/metabolismo , Hipotálamo/metabolismo , Hibridização In Situ , Mamíferos , Ocitocina/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Vasopressinas/metabolismoRESUMO
The lipopolyplex, a multicomponent nonviral gene carrier, generally demonstrates superior colloidal stability, reduced cytotoxicity, and high transfection efficiency. In this study, a new concept, photochemical reaction-induced transfection, using photosensitizer (PS)-loaded lipopolyplexes was applied, which led to enhanced transfection and cytotoxic effects by photoexcitation of the photosensitizer. Hypericin, a hydrophobic photosensitizer, was encapsulated in the lipid bilayer of liposomes. The preformed nanosized hypericin liposomes enclosed the linear polyethylenimine (lPEI)/pDNA polyplexes, resulting in the formation of hypericin lipopolyplexes (Hy-LPP). The diameters of Hy-LPP containing 50 nM hypericin and 0.25 µg of pDNA were 185.6 ± 7.74 nm and 230.2 ± 4.60 nm, respectively, measured by dynamic light scattering (DLS) and atomic force microscopy (AFM). Gel electrophoresis confirmed the encapsulation of hypericin and pDNA in lipopolyplexes. Furthermore, in vitro irradiation of intracellular Hy-LPP at radiant exposures of 200, 600, and 1000 mJ/cm2 was evaluated. It demonstrated 60- to 75-fold higher in vitro luciferase expression than that in nonirradiated cells. The lactate dehydrogenase (LDH) assay supported that reduced transfection was a consequence of photocytotoxicity. The developed photosensitizer-loaded lipopolyplexes improved the transfection efficiency of an exogenous gene or induced photocytotoxicity; however, the frontier lies in the applied photochemical dose. The light-triggered photoexcitation of intracellular hypericin resulted in the generation of reactive oxygen species (ROS), leading to photoselective transfection in HepG2 cells. It was concluded that the two codelivered therapeutics resulted in enhanced transfection and a photodynamic effect by tuning the applied photochemical dose.
Assuntos
Antracenos , Carcinoma Hepatocelular , Lipossomos , Neoplasias Hepáticas , Perileno , Fármacos Fotossensibilizantes , Transfecção , Perileno/química , Perileno/análogos & derivados , Perileno/farmacologia , Antracenos/química , Humanos , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Transfecção/métodos , Lipossomos/química , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/terapia , Neoplasias Hepáticas/patologia , Células Hep G2 , DNA/química , Polietilenoimina/química , Polietilenoimina/farmacologia , Plasmídeos/química , Sobrevivência Celular/efeitos dos fármacosRESUMO
Light-sensitive Ca2+-regulated photoproteins of ctenophores are single-chain polypeptide proteins of 206-208 amino acids in length comprising three canonical EF-hand Ca2+-binding sites, each of 12 contiguous residues. These photoproteins are a stable complex of apoprotein and 2-hydroperoxy adduct of coelenterazine. Addition of calcium ions to photoprotein is only required to trigger bright bioluminescence. However, in contrast to the related Ca2+-regulated photoproteins of jellyfish their capacity to bioluminescence disappears on exposure to light over the entire absorption spectral range of ctenophore photoproteins. Here, we describe protocols for expression of gene encoding ctenophore photoprotein in Escherichia coli cells, obtaining of the recombinant apoprotein of high purity and its conversion into active photoprotein with synthetic coelenterazine as well as determination of its sensitivity to calcium ions using light-sensitive Ca2+-regulated photoprotein berovin from ctenophore Beroe abyssicola as an illustrative case.
Assuntos
Cálcio , Ctenóforos , Escherichia coli , Imidazóis , Proteínas Luminescentes , Ctenóforos/genética , Ctenóforos/metabolismo , Cálcio/metabolismo , Animais , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Expressão Gênica , Clonagem Molecular/métodos , Pirazinas/metabolismoRESUMO
The functional screening of cDNA libraries (or functional cloning) enables isolation of cDNA genes encoding novel proteins with unknown amino acid sequences. This approach is the only way to identify a protein sequence in the event of shortage of biological material for obtaining pure target protein in amounts sufficient to determine its primary structure, since sensitive functional test for a target protein is only required to successfully perform functional cloning. Commonly, bioluminescent proteins from representatives belonging to different taxa significantly differ in sequences due to independent origin of bioluminescent systems during evolution. Nonetheless, these proteins are frequently similar in functions and can use even the same substrate of bioluminescence reaction, allowing the use of the same functional test for screening. The cDNA genes encoding unknown light-emitting proteins can be identified during functional screening with high sensitivity, which is provided by modern light recording equipment making possible the detection of a very small amount of a target protein. Here, we present the protocols for isolation of full-size cDNA genes for the novel bioluminescent protein family of light-sensitive Ca2+-regulated photoproteins in the absence of any sequence information by functional screening of plasmid cDNA expression library. The protocols describe all the steps from gathering animals to isolation of individual E. coli colonies carrying full-size cDNA genes using photoprotein berovin from ctenophore Beroe abyssicola as an illustrative example.
Assuntos
Clonagem Molecular , Ctenóforos , DNA Complementar , Biblioteca Gênica , Proteínas Luminescentes , Animais , Ctenóforos/genética , Ctenóforos/metabolismo , Clonagem Molecular/métodos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , DNA Complementar/genética , Escherichia coli/genética , Escherichia coli/metabolismoRESUMO
Legumes produce specialized root nodules that are distinct from lateral roots in morphology and function, with nodules intracellularly hosting nitrogen-fixing bacteria. We have previously shown that a lateral root program underpins nodule initiation, but there must be additional developmental regulators that confer nodule identity. Here, we show two members of the LIGHT-SENSITIVE SHORT HYPOCOTYL (LSH) transcription factor family, predominantly known to define shoot meristem complexity and organ boundaries, function as regulators of nodule organ identity. In parallel to the root initiation program, LSH1/LSH2 recruit a program into the root cortex that mediates the divergence into nodules, in particular with cell divisions in the mid-cortex. This includes regulation of auxin and cytokinin, promotion of NODULE ROOT1/2 and Nuclear Factor YA1, and suppression of the lateral root program. A principal outcome of LSH1/LSH2 function is the production of cells able to accommodate nitrogen-fixing bacteria, a key feature unique to nodules.