RESUMO
Colorectal cancer (CRC) is one of the most common human malignancies due to its invasiveness and metastasis. Recent studies revealed the pivotal roles of long noncoding RNAs (lncRNAs) in tumorigenesis and progressions of various tumors. However, the biological roles and molecular mechanisms of long intergenic noncoding RNA 00174 (LINC00174) in human CRC remain unclear. Here, we report that LINC00174 expression was higher in human CRC tissues and cell lines than in adjacent normal tissues and a colon epithelial cell line (FHC). High expression of LINC00174 was positively correlated with poor overall and disease-free survival in patients with CRC. Loss- and gain-of-function of LINC00174 demonstrated its critical roles in promoting cell proliferation, apoptosis resistance, migration, and invasion of CRC cells in vitro. Moreover, overexpression of LINC00174 enhanced tumor growth in vivo. Mechanistic experiments revealed that LINC00174 could bind to microRNA (miR)-2467-3p and augment the expression and function of ubiquitin-specific peptidase 21 (USP21). Rescue assays found that miR-2467-3p inhibition can offset the actions of LINC00174 or USP21 knockdown in CRC cells. Additionally, transcriptional factor c-JUN transcriptionally activated LINC00174 expression and mediated LINC00174-induced malignant phenotypes of CRC cell lines. Totally, our findings shed light on a new therapeutic strategy in modulating LINC00174/miR-2467-3p, which may interfere with the expression of USP21, and revealed that LINC00174 could be a new therapeutic target or prognostic marker in CRC.
Assuntos
Neoplasias Colorretais , MicroRNAs , RNA Longo não Codificante , Humanos , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Neoplasias Colorretais/metabolismo , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo , Regulação para CimaRESUMO
BACKGROUND: Kidney renal clear cell carcinoma (KIRC) is the most common pathological subtype of kidney tumor. Reportedly, LINC00174 is a key regulator in cancer progression. This study aims to clarify the role and molecular mechanism of LINC00174 in the progression of KIRC. METHODS: LINC00174 expression in KIRC and its prognostic value were analyzed by bioinformatics. LINC00174, miR-612 and FOXM1 mRNA expression levels in KIRC clinical samples and cell lines were detected by qRT-PCR. After LINC00174 was overexpressed or knocked down, CCK-8, BrdU and Transwell assays were adopted to evaluate the proliferation and metastatic potential of KIRC cells. Bioinformatics and dual luciferase reporter assays were employed to validate the targeting relationship between miR-612 and LINC00174 or FOXM1 mRNA, respectively. Western blot assay was performed to detect FOXM1 protein expression in KIRC cells. RESULTS: LINC00174 expression and FOXM1 expression were up-regulated in 42 cases of KIRC tissues (p < 0.001), while miR-612 expression was down-regulated (p < .001). LINC00174 overexpression or miR-612 inhibitor promoted the viability and proliferation of KIRC cells (p < .01). Migration and invasion of KIRC cells were promoted when the cells were transfected with LINC00174 overexpression or miR-612 inhibitor (p < .05). LINC00174 can competitively bind with miR-612 to repress the expression of miR-612, in turn up-regulate the expression of FOXM1 mRNA. CONCLUSION: LINC00174 facilitates the proliferation and metastatic potential of KIRC cells via regulating the miR-612/FOXM1 axis.
Assuntos
Carcinoma , MicroRNAs , Bromodesoxiuridina , Carcinoma/genética , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células/genética , Proteína Forkhead Box M1/genética , Proteína Forkhead Box M1/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro , SincalidaRESUMO
Diabetic retinopathy (DR) has been regarded as a sight-threatening vascular complication of diabetes mellitus. Accumulating evidence has identified the involvement of long non-coding RNAs (lncRNAs) in DR pathogenesis. We aim to investigate the role and underlying mechanism of linc00174 in the DR process. Samples of human vitreous humour from proliferative DR and non-diabetic individuals were collected to examine the levels of linc00174. Human retinal microvascular endothelial cells (HRMECs) exposed with high glucose (HG) were employed to simulate the pathological statues of DR. Short hairpin RNA specifically targeting linc00174 was applied. CCK-8, transwell, and matrigel tube formation were performed to evaluate cell proliferation, migration, and angiogenesis. Bioinformatics analysis and luciferase reporter assay were conducted to verify the linc00174/miR-150-5p/vascular endothelial growth factor A (VEGFA) regulatory network. Western blotting was employed to determine the expression of VEGFA. Linc00174 was significantly elevated in patients with DR, as well as HG-stimulated HRMECs, of which knockdown repressed HG-induced proliferation, migration, and angiogenesis. miR-150-5p was identified as a downstream effector to be involved in linc00174-mediated protective effects. miR-150-5p directly bound to the 3' untranslated region of VEGFA. The linc00174/miR-150-5p/VEGFA axis was confirmed in retinal vascular dysfunction. The linc00174 deteriorates diabetic retinal microangiopathy via regulating miR-150-5p/VEGFA pathway, indicating a novel therapeutic target for DR treatment.
Assuntos
Retinopatia Diabética/genética , Retinopatia Diabética/patologia , Regulação da Expressão Gênica no Desenvolvimento/genética , MicroRNAs/metabolismo , MicroRNAs/fisiologia , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , RNA Longo não Codificante/metabolismo , RNA Longo não Codificante/fisiologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/fisiologia , Regiões 3' não Traduzidas , Idoso , Movimento Celular/genética , Proliferação de Células/genética , Células Cultivadas , Retinopatia Diabética/terapia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Terapia de Alvo MolecularRESUMO
BACKGROUND: We aimed to explore the roles of basic leucine zipper and W2 domains (BZW) 2 in the human papillomavirus-infected laryngeal papillomatosis. METHODS: In the present study, BZW 2 knockdown and overexpressed cell lines were constructed. CCK-8 and colony formation assays were used to determine cell proliferation. Caspase-3 activity and nucleosomes fragmentation assays were used to determine cell apoptosis. qRT-PCR and Western blot were employed to evaluate the mRNA and protein levels of target genes, respectively. Luciferase and biotin-coupled miRNA pulldown assays were used to examine the interactions between mRNA and mRNA. RESULTS: We observed the levels of BZW2 were up-regulated in the laryngeal papilloma (LP) tissues as compared with adjacent tissues. The knockdown of BZW2 significantly inhibited cell proliferation and promoted cell apoptosis in the LP cells. Additionally, we identified the expressions of BZW2 negatively regulated by miR-4500. Luciferase and biotin-coupled miRNA pulldown assays demonstrated that LINC00174 competed with the BZW2 for binding with miR-4500. Moreover, the results showed that LINC00174/miR-4500/BZW2 axis regulated cell proliferation and apoptosis. CONCLUSION: Our results demonstrated that the regulation of LINC00174/miR-4500/BZW2 axis might be used as an effective strategy for treatment of human papillomavirus-infected laryngeal papillomatosis.
RESUMO
Hepatocellular carcinoma (HCC) is one of the deadliest cancers. Multiple long non-coding RNAs (lncRNAs) are recently identified as crucial oncogenic factors or tumour suppressors. In this study, we explored the effects of LINC00174 on the progression of HCC. Expression levels of LINC00174 and microRNA-320 (miR-320) in HCC tissue samples were measured using quantitative real-time polymerase chain reaction (qRT-PCR). The association between pathological indices and LINC00174 was also analysed. Human HCC cell lines Hep3B and Huh7 were used as cell models. CCK-8 and bromodeoxyuridine (BrdU) assays were used to assess the effect of LINC00174 on HCC cell line proliferation. Flow cytometry was used to study the effect of LINC00174 on HCC apoptosis. Transwell assay was conducted to detect the effect of LINC00174 on migration and invasion. Furthermore, luciferase reporter assay and RNA immunoprecipitation (RIP) assay were used to confirm the binding relationship between miR-320 and LINC00174. Additionally, western blot was used to detect the regulatory function of LINC00174 on oncogene S100 calcium binding protein A10 (S100A10). We demonstrated that LINC00174 expression in HCC clinical samples was significantly increased and this was correlated with higher T stage. Its overexpression remarkably accelerated proliferation and metastasis of HCC cells while reduced apoptosis. Accordingly, knockdown of it suppressed the malignant phenotypes of HCC cells. Overexpression of LINC00174 significantly reduced the expression of miR-320 by sponging it, in turn enhanced the expression of S100A10. In conclusion, LINC00174 is a sponge of tumour suppressor miR-320, enhances the expression of S100A10 indirectly and functions as an oncogenic lncRNA in HCC. SIGNIFICANCE OF THE STUDY: LINC00174 is a novel lncRNA, whose function is rarely investigated. It is reported that it is oncogenic in colorectal cancer, while its role in HCC remains unclear. Herein, we report that LINC00174 is significantly up-regulated in HCC tissues and promotes the malignant phenotypes. We demonstrate that LINC00174 functions as a sponge for miR-320, increases the expression level of oncogene S100A10 in HCC. This study helps clarify the mechanism of HCC tumorigenesis and progression, and uncover the role of LINC00174 in human disease.
Assuntos
Anexina A2/metabolismo , MicroRNAs/metabolismo , RNA Longo não Codificante/metabolismo , Proteínas S100/metabolismo , Anexina A2/química , Anexina A2/genética , Antagomirs/metabolismo , Sequência de Bases , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular , Movimento Celular , Proliferação de Células , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Interferência de RNA , RNA Longo não Codificante/antagonistas & inibidores , RNA Longo não Codificante/genética , RNA Interferente Pequeno/metabolismo , Proteínas S100/química , Proteínas S100/genética , Alinhamento de SequênciaRESUMO
LINC00174 is an example of long intergenic non-coding RNAs with important functions in the development of human cancers. The gene encoding this lincRNA is located on 7q11.21. LINC00174 has been demonstrated to play an oncogenic role in a variety of cancers, including colorectal carcinoma, thymic carcinoma, glioma, glioblastoma, hepatocellular carcinoma, kidney renal clear cell carcinoma, breast cancer and non-functioning pituitary adenoma. In lung cancer, there is an obvious discrepancy between different studies regarding the role of this lincRNA. This lincRNA is also involved in the determination of prognosis of different cancers, particularly colorectal cancer. In the current review, we discuss the role of this lincRNA in human carcinogenesis based on the available data in the literature and bioinformatics tools.
Assuntos
Carcinoma Hepatocelular , Carcinoma de Células Renais , Neoplasias Renais , Neoplasias Hepáticas , RNA Longo não Codificante , Neoplasias do Timo , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma de Células Renais/genética , Biologia Computacional , Neoplasias Hepáticas/genética , Neoplasias Renais/genética , Regulação Neoplásica da Expressão GênicaRESUMO
OBJECTIVE: To explore the biological function of LINC00174 in multiple myeloma (MM). METHODS: Real-time quantitative polymerase chain reaction (RT-qPCR) was used to detect the expressions of LINC00174 and miR-150 in peripheral blood of MM patients and MM cell lines. EdU staining and flow cytometry were used to detect the effects of LINC00174 and miR-150 on the proliferation and apoptosis of MM cells. Western blot was used to detect the expressions of proliferation marker nuclear-related antigen Ki67, apoptosis-related protein cleaved caspase-3 and transcription factor forkhead box protein P1 (FOXP1). Bioinformatics and dual-luciferase reporter assay were used to verify the targeting relationship between LINC00174 and miR-150 and the targeting relationship between miR-150 and FOXP1. RESULTS: The level of LINC00174 was significantly increased in peripheral blood of MM patients and MM cell lines (P <0.05). Compared with NC-siRNA group, the expression of LINC00174 was significantly reduced in LINC00174-siRNA group, the proliferation of U266 cells was reduced, the apoptosis rate was significantly increased, the level of Ki67 protein was reduced, and the level of cleaved caspase-3 protein was increased (all P <0.05). LINC00174 targeted regulation of the expression of miR-150. Compared with LINC00174-siRNA+NC inhibitor group, the expression of miR-150 in U266 cells in LINC00174-siRNA+miR-150 inhibitor group was significantly reduced, the cell proliferation was enhanced, the apoptosis rate was reduced, the level of Ki67 protein was increased, and the level of cleaved caspase-3 was decreased (all P <0.05). FOXP1 is the target gene of miR-150. Compared with NC mimic group, the expression of FOXP1 protein in miR-150 mimic group was significantly reduced, the cell proliferation was reduced, the apoptosis rate was significantly increased, Ki67 protein level was decreased, and the level of cleaved caspase-3 was increased. Compared with miR-150 mimic + vector group, the expression of FOXP1 protein in miR-150 mimic + pcDNA-FOXP1 group was significantly increased, the cell proliferation was enhanced, the apoptosis rate was reduced, the level of Ki67 protein was increased, and the level of cleaved caspase-3 was decreased (all P <0.05). CONCLUSION: LINC00174 promotes the proliferation of MM cells and inhibits cell apoptosis by regulating the miR-150/ FOXP1 axis.
Assuntos
MicroRNAs , Mieloma Múltiplo , RNA Longo não Codificante , Humanos , Apoptose , Caspase 3 , Linhagem Celular Tumoral , Proliferação de Células , Fatores de Transcrição Forkhead , Antígeno Ki-67 , MicroRNAs/genética , Mieloma Múltiplo/patologia , Proteínas Repressoras , RNA Interferente Pequeno , RNA Longo não Codificante/genéticaRESUMO
BACKGROUND: Ovarian cancer (OC) is the most malignant tumor with the worst prognosis in female reproductive system. Mitophagy and long non-coding RNAs (lncRNAs) play pivotal roles in tumorigenesis, development, and drug resistance. The effects of mitophagy-related lncRNAs on OC prognosis and therapeutic response remain unelucidated. METHODS: We retrieved OC-related RNA sequence, copy number variation, somatic mutation, and clinicopathological information from The Cancer Genome Atlas database and mitophagy-related gene sets from the Reactome database. Pearson's correlation analysis was used to distinguish mitophagy-related lncRNAs. A prognostic lncRNA signature was constructed using UniCox, LASSO, and forward stepwise regression analysis. Individuals with a risk score above or below the median were classified as high- or low-risk groups, respectively. The risk model was analyzed using the Kaplan-Meier estimator, receiver operating characteristic curve, decision curve analysis, and Cox regression analysis and validated using an internal dataset. LINC00174 was validated in clinical samples and OC cell lines. We also reviewed reports on the role of LINC00174 in cancer. Subsequently, a nomogram model was constructed. Furthermore, the Genomics of Drug Sensitivity in Cancer database was used to explore the relationship between the risk model and anti-tumor drug sensitivity. Gene set variation analysis was performed to assess potential differences in biological functions between the two groups. Finally, a lncRNA prognostic signature-related competing endogenous RNA (ceRNA) network was constructed. RESULTS: The prognostic signature showed that patients in the high-risk group had a poorer prognosis. The nomogram exhibited satisfactory accuracy and predictive potential. LINC00174 mainly acts as an oncogene in cancer and is upregulated in OC; its knockdown inhibited the proliferation and migration, and promoted apoptosis of OC cells. High-risk patients were more insensitive to cisplatin and olaparib than low-risk patients. The ceRNA network may help explore the potential regulatory mechanisms of lncRNAs. CONCLUSION: The mitophagy-related lncRNA signature can help estimate the survival and drug sensitivity, the ceRNA network may provide novel therapeutic targets for patients with OC.
Assuntos
Neoplasias Ovarianas , RNA Longo não Codificante , Humanos , Feminino , RNA Longo não Codificante/genética , Variações do Número de Cópias de DNA , Mitofagia , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , PrognósticoRESUMO
In this study, we aim to investigate the regulation of specific long non-coding RNAs (lncRNAs) on the progression of ischemia/reperfusion (I/R) injury. We identified and characterized the exosomes derived from mouse primary aortic endothelial cells. Subsequently, we found that these exosomes expressed typical exosomal markers and high levels of LINC00174, which significantly ameliorated I/R-induced myocardial damage and suppressed the apoptosis, vacuolation, and autophagy of myocardial cells. Mechanistic approaches revealed that LINC00174 directly interacted with SRSF1 to suppress the expression of p53, thus restraining the transcription of myocardin and repressing the activation of the Akt/AMPK pathway that was crucial for autophagy initiation in I/R-induced myocardial damage. Moreover, this molecular mechanism was verified by in vivo study. In summary, exosomal LINC00174 generated from vascular endothelial cells repressed p53-mediated autophagy and apoptosis to mitigate I/R-induced myocardial damage, suggesting that targeting LINC00174 may be a novel strategy to treat I/R-induced myocardial infarction.
RESUMO
Osteosarcoma (OS), a frequent malignant tumor which mainly occurs in the bone. The roles of long noncoding RNAs (lncRNAs) have been revealed in cancers, including OS. LncRNA long intergenic non-protein coding RNA (LINC00174) has been validated as an oncogene in several cancers. However, the role of LINC00174 in OS has not been explored. In our research, loss-of-function assays were conducted to explore the function of LINC00174 in OS cells. Then, we explored the downstream pathway of LINC00174 in OS cells. Bioinformatics, RNA pull-down and RIP experiments investigated the downstream mechanism of LINC00174 in OS cells. Finally, in vivo assays clarified the effect of LINC00174 on tumorigenesis. We found that LINC00174 was upregulated in OS tissues and cells. LINC00174 knockdown repressed OS cell growth. Mechanistically, LINC00174 knockdown suppressed the TGF-ß/SMAD pathway. LINC00174 interacted with miR-378a-3p, and slingshot protein phosphatase 2 (SSH2) 3'UTR was targeted by miR-378a-3p in OS cells. Rescue assays showed that SSH2 upregulation or miR-378a-3p inhibition counteracted the inhibitory effect of LINC00174 depletion in OS cell growth. Additionally, LINC00174 depletion suppressed tumor growth in mice. In conclusion, LINC00174 promotes OS cellular malignancy and tumorigenesis via the miR-378a-3p/SSH2 axis and the TGF-ß/SMAD pathway, which might provide a novel insight for OS treatment.
RESUMO
The literature indicates that LINC00174 promotes the growth of colorectal cancer (CRC) cells, but its research needs to be enriched. We tried to explore the function and mechanism of LINC00174 in CRC cell proliferation and migration. Bioinformatics analysis predicted the binding relationship and expressions of lncRNA, miRNA and mRNA. Clinical study analyzes the relationship between LINC00174 and clinical data characteristics of CRC patients. The expressions of LINC00174, miR-3127-5p and E2F7 were verified by RT-qPCR, and the combination of the two was verified by dual luciferase analysis and RNA immunoprecipitation as needed. Western blot was used to detect the expression of EMT-related protein and E2F7 protein. Functional experiments were used to evaluate the function of the target gene on CRC cells. LINC00174 was up-regulated in CRC clinical samples and cells and was related to the clinical characteristics of CRC patients. High-expression of LINC00174, contrary to the effect of siLINC00174, promoted cell viability, proliferation, migration and invasion, up-regulated the expressions of N-Cadherin, Vimentin, E2F7, and inhibited the expression of E-Cadherin. MiR-3127-5p was one of the targeted miRNAs of LINC00174 and was down-regulated in CRC samples. In addition, miR-3127-5p mimic partially reversed the malignant phenotype of CRC cells induced by LINC00174. Besides, E2F7 was a target gene of miR-3127-5p, and LINC00174 repressed miR-3127-5p to regulate E2F7. Our research reveals that LINC00174 affected the biological characteristics of CRC cells through regulated miR-3127-5p/ E2F7 axis.
Assuntos
Movimento Celular/genética , Proliferação de Células/genética , Neoplasias Colorretais/genética , Fator de Transcrição E2F7/genética , MicroRNAs/genética , RNA Longo não Codificante/genética , Neoplasias Colorretais/patologia , Progressão da Doença , Fator de Transcrição E2F7/metabolismo , Transição Epitelial-Mesenquimal/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , PrognósticoRESUMO
OBJECTIVE: To investigate the expression pattern, prognostic value and biological functional of LINC00174 in glioma. METHODS: In total, 140 glioma samples were collected as discovery cohort. TCGA RNA sequence dataset was obtained as validation set. Kaplan-Meier survival and multivariate Cox analysis were performed to evaluate survival difference. Furthermore, the biological function of LINC00174 was analyzed by clonogenic and intracranial tumor model assays. RESULTS: Overexpressed LINC00174 was significantly correlated with tumor grade as well as the higher mortality in survival analysis both in the discovery and the validation GBM cohorts. Besides, LINC00174 served as an independent prognostic indicator in glioblastoma patients. Additionally, knock down of LINC00174 expression significantly suppressed GBM cells' proliferation both in vitro and vivo. CONCLUSION: LINC00174 acts as an oncogene in glioma and may be a new potential therapeutic target.
Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/genética , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , RNA Longo não Codificante/metabolismo , Adulto , Animais , Biomarcadores Tumorais/genética , Encéfalo/patologia , Encéfalo/cirurgia , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/cirurgia , Linhagem Celular Tumoral , Proliferação de Células/genética , Feminino , Técnicas de Silenciamento de Genes , Glioblastoma/mortalidade , Glioblastoma/patologia , Glioblastoma/cirurgia , Humanos , Estimativa de Kaplan-Meier , Masculino , Camundongos , Pessoa de Meia-Idade , Gradação de Tumores , Prognóstico , RNA Longo não Codificante/genética , Regulação para Cima , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Temozolomide (TMZ) is one of the most common drugs selected for glioma chemotherapy, but the therapeutic effect of glioma treatment is usually limited due to its resistance. Long non-coding RNA (lncRNA) is gradually found to be a vital regulator in numerous physiological and pathological processes. Lately, it was revealed that LINC00174 could promote CRC cell growth. However, the function and potential regulatory manner of LINC00174 in glioma remain unclear. Our results demonstrated that the expression level of LINC00174 was higher in glioma tissues, and LINC00174 down-regulation could remarkably prevent cell proliferation and promote cell apoptosis in both glioma cells and TMZ-resistant glioma cells. Mechanistic studies revealed that LINC00174 can sponge microRNA-138-5p (miR-138-5p) and down-regulate its expression, thereby up-regulating the protein level of miR-138-5p's target, sex-determining region Y (SRY)-box9 protein (SOX9). Additionally, in vivo experiments revealed that LINC00174 shRNA can serve as a tumor suppressor through down-regulating SOX9 in glioma. In this study, a novel established regulatory way of LINC00174/miR-138-5p/SOX9 axis was systematically studied, which may provide a new manner for glioma therapy.
Assuntos
Neoplasias Encefálicas/genética , Glioma/genética , MicroRNAs/genética , Fatores de Transcrição SOX9/genética , Temozolomida , Resistencia a Medicamentos Antineoplásicos/genética , HumanosRESUMO
Preservation of denatured dermis exerts promotive functions in wound healing and improves the appearance and function of skin. Angiogenesis is crucial for wound healing during burn injury. However, the potential molecular mechanism of angiogenesis in the recovery after burn injury remains to be elucidated. Herein, RNA chromatin immunoprecipitation (ChIP) sequencing analysis revealed upregulation of long intergenic non-coding RNA 00174 (linc00174) in the post-burn tissues. linc00174 overexpression promoted angiogenic activities of human umbilical vein endothelial cells (HUVECs) in the heat-denatured cell model, characterized by the promotion of cell proliferation, migration, and tube formation. Mechanistically, linc00174 directly bound to enhancer of zeste homolog 2 (EZH2), thus stimulating the protein level of trimethylation at lysine 27 of histone H3 (H3K27me3). Moreover, inhibition of EZH2 resulted in downregulation of ZNF24 and Runx1, as well as a decline of vascular endothelial growth factor A (VEGFA). Furthermore, EZH2 modulated epigenetic repression of ZNF24 and Runx1 through the promoter of H3K27me3. Additionally, ZNF24 and Runx1 both functioned as transcriptional inhibitors of VEGFA. Taken together, these findings uncover that linc00174 epigenetically inhibits ZNF24 and Runx1 expression through binding to EZH2, thus attenuating the suppression of VEGFA, contributing to the facilitation of angiogenesis during the recovery of heat-denatured endothelial cells.
RESUMO
BACKGROUND: Long non-coding RNA plays a crucial role in the occurrence and progression of glioma. We aimed to explore the function of LINC00174 in cell proliferation, apoptosis, migration, invasion and glycolysis of glioma cells, and investigate the molecular mechanism involved. METHODS: LINC00174 expression in glioma tissues and peritumoral brain edema (PTBE) tissues was examined by RT-qPCR and in situ hybridization. The CCK-8, TUNEL, wound healing, transwell, and ELISA assays were performed to identify the effects of LINC00174 knockdown on cell viability, apoptosis, migration, invasion, and glycolysis, respectively. RNA immunoprecipitation, dual-luciferase reporter, RNA pull down, and western blot assays were performed to explore the molecular mechanisms of LINC00174 in glioma cells. A nude mouse xenograft model was used to investigate the role of LINC00174 in xenograft glioma growth. RESULTS: LINC00174 was overexpressed in glioma tissues and cell lines. LINC00174 knockdown inhibited cell proliferation, migration, invasion and glycolysis of glioma cells, and LINC00174 exerted a tumorigenesis role. LINC00174 could interact with miR-152-3p/SLC2A1 axes. The miR-152-3p inhibitor or the SLC2A1 overexpression could rescue the anti-tumor effect of LINC00174 knockdown on glioma cells. Moreover, downregulation of LINC00174 also inhibited tumor volume and delayed the tumor growth in vivo. CONCLUSION: LINC00174 accelerated carcinogenesis of glioma via sponging miR-1523-3p and increasing the SLC2A1 expression, which could be considered as a molecular target for glioma diagnosis and therapy.
Assuntos
Glioma/genética , Glioma/metabolismo , Transportador de Glucose Tipo 1/genética , MicroRNAs/genética , RNA Longo não Codificante/genética , Animais , Apoptose/genética , Linhagem Celular Tumoral , Movimento Celular , Biologia Computacional/métodos , Modelos Animais de Doenças , Progressão da Doença , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Genes Reporter , Glioma/patologia , Glioma/terapia , Glicólise , Humanos , Masculino , Camundongos , Interferência de RNA , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
The blood-tumor barrier (BTB) limits the transport of chemotherapeutic drugs to brain tumor tissues and impacts the treatment of glioma. Long non-coding RNAs play critical roles in various biological processes of tumors; however, the function of these in BTB permeability is still unclear. In this study, we have identified that long intergenic non-protein coding RNA 174 (linc00174) was upregulated in glioma endothelial cells (GECs) from glioma tissues. Additionally, linc00174 was also upregulated in GECs from the BTB model in vitro. Knock down of linc00174 increased BTB permeability and reduced the expression of the tight junction-related proteins ZO-1, occludin, and claudin-5. Both bioinformatics data and results of luciferase reporter assays demonstrated that linc00174 regulated BTB permeability by binding to miR-138-5p and miR-150-5p. Furthermore, knock down of linc00174 inhibited FOSL2 expression via upregulating miR-138-5p and miR-150-5p. FOSL2 interacted with the promoter regions and upregulated the promoter activity of ZO-1, occludin, claudin-5, and linc00174 in GECs. In conclusion, the present study demonstrated that the linc00174/miR-138-5p (miR-150-5p)/FOSL2 feedback loop played an essential role in regulating BTB permeability.
RESUMO
Several of the thousands of human long noncoding RNAs (lncRNAs) have been functionally characterized, yet their potential involvement in colorectal carcinoma (CRC) remains poorly understood. In present study, we aim to investigate the role of lncRNA LINC00174 in CRC carcinogenesis. We observed that increased expression of LINC00174 in CRC tissues and cells in comparison to their corresponding controls. Moreover, the aberrant overexpression of LINC00174 indicated the poor prognosis of CRC patients. Silence of LINC00174 was able to repress CRC cell growth in vitro and in vivo. We first reported that transcription factor STAT1 mediated LINC00174 expression in CRC. In addition, rescue assay was performed to further confirm that LINC00174 contributed to CRC progression by regulating miR-1910-3p/TAZ signal pathway. Taken together, our study discovered the oncogenic role of LINC00174 in clinical specimens and cellular experiments, showing the potential LINC00174/miR-1910-3p/TAZ pathway. This results and findings provide a novel insight for CRC tumorigenesis.