Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
J Fish Biol ; 104(5): 1401-1410, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38346402

RESUMO

Invasive species pose serious threats to ecosystems. To reduce ecological and economic consequences of invasions, efforts are made to control invaders and evaluating the effects of such efforts is paramount. Lionfishes (Pterois volitans and Pterois miles) are native to the Indo-Pacific Ocean and pose a major threat to local ecosystems in the invaded Atlantic and Mediterranean. Culling via spearfishing is a widespread measure to limit lionfish population size in invaded ranges. However, like most hunted fishes, lionfish alter their behavior after repeated culling, potentially decreasing the effectiveness of future culls. Previous studies on lionfish in the Caribbean have shown that lionfish are less bold after repeated culling. However, the impact of culling on lionfish in their newest invasive range, the Mediterranean, remains enigmatic. To determine the behavioral changes in response to culling in this second area of invasion, we tested for effects of culling on the behavior of lionfish in Cyprus, a region heavily impacted by the lionfish invasion in the Mediterranean. We compared the response of lionfish to an approaching free diver holding a metal pole (imitating a spear fisher) between protected areas where spearfishing is restricted and areas where culls are frequently conducted. We also assessed whether activity, hiding pattern, and site fidelity differed between these culled and unculled sites. Overall, we found limited effects of culling on the traits measured, indicating surprising resistance to culling-induced behavioral changes in Mediterranean lionfish. Future studies should monitor invasive lionfish population densities and the effects of culling in more detail to tailor management plans and reduce the negative effects of these fish in specific invaded ranges.


Assuntos
Espécies Introduzidas , Perciformes , Animais , Perciformes/fisiologia , Mar Mediterrâneo , Comportamento Animal , Chipre , Densidade Demográfica , Conservação dos Recursos Naturais
2.
J Fish Biol ; 102(2): 532-536, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36416762

RESUMO

Indo-Pacific lionfishes generally exhibit cryptic behaviours and so can be missed when conducting non-targeted surveys. Here, the authors report the results from targeted surveys of lionfish at Moorea, French Polynesia. Lionfish from three species (Pterois antennata, Pterois radiata, Dendrochirus biocellatus) were observed at a mean density of 267 individuals ha-1 . This is substantially higher than previous estimates from the same area (Moorea) and represents the highest reported density of lionfishes from their Pacific range. Overall, this study highlights the importance of targeted survey techniques for detecting cryptic species on coral reefs.


Assuntos
Censos , Perciformes , Animais , Espécies Introduzidas , Recifes de Corais , Comportamento Predatório
3.
J Environ Manage ; 340: 117954, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37119623

RESUMO

After successful invasions in the Caribbean and Mediterranean, lionfish (Pterois spp.) have recently invaded another important biogeographical region -the Brazilian Province. In this article, we discuss this new invasion, focusing on a roadmap for urgent mitigation of the problem, as well as focused research and management strategies. The invasion in Brazil is already in the consolidation stage, with 352 individuals recorded so far (2020-2023) along 2766 km of coastline. This includes both juveniles and adults, including egg-bearing females, ranging in length from 9.1 to 38.5 cm. Until now, most of the records in the Brazilian coast occurred in the equatorial southwestern Atlantic (99%), mainly on the Amazon mesophotic reefs (15% of the records), northeastern coast of Brazil (45%), and the Fernando de Noronha Archipelago (41%; an UNESCO World Heritage Site with high endemism rate). These records cover a broad depth range (1-110 m depth), twelve protected areas, eight Brazilian states (Amapá, Pará, Maranhão, Piauí, Ceará, Rio Grande do Norte, Paraíba, and Pernambuco) and multiple habitats (i.e., mangrove estuaries, shallow-water and mesophotic reefs, seagrass beds, artificial reefs, and sandbanks), indicating a rapid and successful invasion process in Brazilian waters. In addition, the lack of local knowledge of rare and/or cryptic native species that are potentially vulnerable to lionfish predation raises concerns regarding the potential overlooked ecological impacts. Thus, we call for an urgent integrated approach with multiple stakeholders and solution-based ecological research, real-time inventories, update of environmental and fishery legislation, participatory monitoring supported by citizen science, and a national and unified plan aimed at decreasing the impact of lionfish invasion. The experience acquired by understanding the invasion process in the Caribbean and Mediterranean will help to establish and prioritize goals for Brazil.


Assuntos
Ecossistema , Perciformes , Humanos , Animais , Brasil , Região do Caribe , Comportamento Predatório , Espécies Introduzidas
4.
Dis Aquat Organ ; 149: 97-108, 2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35678355

RESUMO

Invasive red lionfish Pterois volitans (Linnaeus, 1758) represent an ongoing ecological threat within temperate and tropical waters. Relatively little is known regarding the overall health of P. volitans and their potential for spreading pathogens in non-native regions. Lionfish collected from inshore reefs of Grenada, West Indies, in 2019 and 2021 were identified as P. volitans based on cytochrome c oxidase subunit 1 barcoding. Gross and microscopic examination of tissues revealed myxozoan plasmodia in the hearts of 24/76 (31.6%) lionfish by histopathology or wet mount cytology. Further histopathologic examination revealed severe granulomatous inflammation and myofiber necrosis associated with developing plasmodia and presporogonic life stages. Fresh myxospores were morphologically and molecularly consistent with Kudoa hypoepicardialis, being quadrate in apical view with 4 valves and 4 equal polar capsules. The spore body was 5.1-7.9 (mean: 6.0) µm long, 8.1-9.8 (8.7) µm wide, and 6.9-8.5 (7.7) µm thick. Polar capsules were 2.3-2.7 (2.5) µm long and 0.9-1.6 (1.3) µm wide. 18S small subunit rDNA sequences were 99.81-99.87% similar to sequence data from the original description of the species. Novel 28S large subunit rDNA and elongation factor 2 data, which did not match any previously reported species, were provided. This is the first account of a myxozoan parasite of P. volitans, a new host record and locality for K. hypoepicardialis, and one of few reports describing pathogen-associated lesions in invasive lionfish.


Assuntos
Myxozoa , Perciformes , Animais , Cápsulas , DNA Ribossômico , Granada , Espécies Introduzidas , Myxozoa/genética , Perciformes/parasitologia
5.
Glob Chang Biol ; 27(18): 4322-4338, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34091996

RESUMO

Predation from the invasive Indo-Pacific lionfish is likely to amplify declines in marine fishes observed in multiple ocean basins. As the invasion intensifies and expands, there is an urgent need to identify species that are most at risk for extirpation-and possible extinction-from this added threat. To address this gap and inform conservation plans, we develop and apply a quantitative framework for classifying the relative vulnerability of fishes based on morphological and behavioural traits known to influence susceptibility to lionfish predation (e.g. body shape, water column position and aggregation behaviour), habitat overlap with lionfish, and degree of geographic range restriction. Applying the framework to fishes across the invaded Caribbean Sea and ahead of the invasion front in the southwestern Atlantic revealed the identity of at least 77 fishes with relatively small ranges that are likely to be most affected by lionfish predation. Trait-based vulnerability scores significantly predict the probability of fishes appearing within the diets of lionfish across the invaded region. Spatial richness analyses reveal hotspots of vulnerable species in the Bahamas, Belize and Curaçao. Crucially, our framework identifies 29 vulnerable fishes endemic to Brazil, which has not yet been colonized by lionfish. Of these, we suggest reefs around offshore island groups occupied by a dozen highly vulnerable and range-restricted species as priorities for intervention should lionfish spread to the region. Observations of the rate of lionfish spread across the invaded range suggest that an average of 5 years (with a median of nearly 2 years) elapses from first sighting to maximum observed densities. This lag may allow managers to mobilize plans to suppress lionfish ahead of an invasion front in priority locations. Our framework also provides a method for assessing the relative vulnerability of cryptobenthic and/or deep-reef fishes, for which population-monitoring data are limited.


Assuntos
Recifes de Corais , Espécies Introduzidas , Animais , Ecossistema , Peixes , Comportamento Predatório
6.
Mar Drugs ; 19(9)2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34564152

RESUMO

Antimicrobial peptides (AMPs) participate in the immune system to avoid infection, are present in all living organisms and can be used as drugs. Fish express numerous AMP families including defensins, cathelicidins, liver-expressed antimicrobial peptides (LEAPs), histone-derived peptides, and piscidins (a fish-specific AMP family). The present study demonstrates for the first time the occurrence of several AMPs in lionfish (Pterois volitans). Using the lionfish transcriptome, we identified four transcript sequences encoding cysteine-rich AMPs and two new transcripts encoding piscidin-like peptides. These AMPs are described for the first time in a species of the Scorpaenidae family. A functional approach on new pteroicidins was carried out to determine antimicrobial sequences and potential uses, with a view to using some of these AMPs for human health or in aquaculture.


Assuntos
Antibacterianos/farmacologia , Peptídeos Antimicrobianos/genética , Proteínas de Peixes/genética , Perciformes/genética , Animais , Peptídeos Antimicrobianos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Eritrócitos/efeitos dos fármacos , Proteínas de Peixes/farmacologia , Perfilação da Expressão Gênica , Hemólise/efeitos dos fármacos , Humanos , Transcriptoma
7.
J Environ Manage ; 298: 113354, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34358939

RESUMO

Invasive species are globally on the rise due to human-induced environmental change and are often a source of harm to their new ecosystems. Tracking the spread of invaders is crucial to better manage invasive species, and citizen science is often used to collect sighting data. However, this can be unreliable due to the general public's limited expertise for accurate identification and a lack of clear absence data. Here, we introduce a refined method of citizen science by tracking the spread of the invasive lionfish (Pterois miles) in the Mediterranean Sea using dive centers' expertise on local marine wildlife. We contacted 1131 dive centers on the Mediterranean coast via email and received 216 responses reporting whether or not lionfish were present in their area and, if present, the year they were first sighted. Currently, lionfish sightings are observed in the eastern half of the Mediterranean, though the front is continuing to move west with the furthest sighting as far as Corfu, Greece (19.939423°E, 39.428017°N). In 2020, lionfish also expanded their invasive range north on the Turkish Aegean coast to Karaburun (26.520657°E, 38.637033°N), showing that the invasion is ongoing. We found that the invasive range is now exceeding previous invasion models, highlighting the need for additional research on lionfish biology to inform management efforts. Continuous monitoring of invasive fronts based on dive center reports and a better understanding of what makes lionfish so invasive is crucial to creating effective management strategies and mitigating their negative impact on native ecosystems.


Assuntos
Mergulho , Perciformes , Animais , Ecossistema , Humanos , Espécies Introduzidas , Mar Mediterrâneo
8.
J Exp Biol ; 222(Pt 6)2019 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-30814293

RESUMO

The red lionfish, Pterois volitans, an invasive species, has 18 venomous spines: 13 dorsal, three anal and one on each pelvic fin. Fish spines can have several purposes, such as defense, intimidation and anchoring into crevices. Instead of being hollow, lionfish spines have a tri-lobed cross-sectional shape with grooves that deliver the venom, tapering towards the tip. We aimed to quantify the impacts of shape (second moment of area) and tapering on the mechanical properties of the spine. We performed two-point bending at several positions along the spines of P. volitans to determine mechanical properties (Young's modulus, elastic energy storage and flexural stiffness). The short and recurved anal and pelvic spines are stiffer and resist bending more effectively than the long dorsal spines. In addition, mechanical properties differ along the length of the spines, most likely because they are tapered. We hypothesize that the highly bendable dorsal spines are used for intimidation, making the fish look larger. The stiffer and energy-absorbing anal and pelvic spines are smaller and less numerous, but they may be used for protection as they are located near important internal structures such as the swim bladder. Lastly, spine second moment of area varies across the Pterois genus. These data suggest there may be morphological and mechanical trade-offs among defense, protection and intimidation for lionfish spines. Overall, the red lionfish venomous spine shape and mechanics may offer protection and intimidate potential predators, significantly contributing to their invasion success.


Assuntos
Venenos de Peixe/fisiologia , Peixes/fisiologia , Animais , Fenômenos Biomecânicos , Feminino , Espécies Introduzidas , Masculino
9.
J Food Sci Technol ; 56(4): 2167-2174, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30996450

RESUMO

Lionfish (Pterois volitans) is an invasive and predatory species whose proliferation over the Caribbean Sea threatens to cause great damage to coral reefs by negatively affecting the balance of the ecosystem. Control strategies have been the most effective way to reduce the negative impact of the lionfish. The development of diversified food products based on lionfish could support these strategies. The objective of the present study was to investigate the influence of ultrasound and the addition of binders in different concentrations: Egg white liquid (EWL) and corn starch (ST) on texture, microstructure and sensory evaluation properties of patties made of lionfish surimi. Each set of binders was added up to 3% varying proportions. The texture profile, water holding capacity, sensory qualities and fractal dimension of scanning electron microscopy images were analyzed to evaluate the quality of the product based on surimi gel. Results showed that the application of ultrasound and the use of binders enhanced the properties of patties made of lionfish surimi. The addition of EWL (3%) improved the water holding capacity and hardness of the final product. However, the fractal dimension of the images was higher in samples processed using ultrasound and without binder addition.

10.
Ecology ; 99(4): 792-800, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29490107

RESUMO

The importance of competition and predation in structuring ecological communities is typically examined separately such that interactions between these processes are seldom understood. By causing large reductions in native prey, invasive predators may modify native species interactions. I conducted a manipulative field experiment in The Bahamas to investigate the possibility that the invasive Pacific red lionfish (Pterois volitans) alters competition between planktivorous fairy and blackcap basslets (Gramma loreto and Gramma melacara, respectively). Competition between these coral-reef fishes is known to have symmetrical effects on the juveniles of both species, whereby the feeding positions under reef ledges and growth rates of these individuals are hindered. Following baseline censuses of local populations of competing basslets, I simultaneously manipulated the abundance of lionfish on entire reefs, and the abundance of basslets in local populations under isolated ledges within each reef, resulting in three treatments: unmanipulated control populations of both basslets, reduced abundance of fairy basslet, and reduced abundance of blackcap basslet. For eight weeks, I measured the change in biomass and feeding position of 2-5 cm size classes of each basslet species and calculated the growth rates of ~2 cm individuals using a standard mark-and-recapture method. Experimental populations were filmed at dusk using automated video cameras to quantify the behavior of lionfish overlapping with basslets. Video playback revealed lionfish hunted across all ledge positions, regardless of which basslet species were present, yet lionfish differentially reduced the biomass of only juvenile (2 cm) fairy basslet. Predation reduced the effects of interspecific competition on juvenile blackcap basslet as evidenced by corresponding shifts in feeding position toward coveted front edges of ledges and increases in growth rates that were comparable to the response of these fish in populations where competition was experimentally reduced. Thus, an invasive marine predator altered the outcome of interspecific competition via differential predation, which tipped the balance of competition between native prey species from symmetrical to asymmetrical effects on juveniles. This study reveals a newly demonstrated context in which predation can indirectly facilitate prey, further broadening our understanding of the interactive effects of predation and competition in the context of invasive species.


Assuntos
Antozoários , Recifes de Corais , Animais , Bahamas , Peixes , Comportamento Predatório
11.
Wilderness Environ Med ; 29(3): 343-356, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29954662

RESUMO

INTRODUCTION: Recent analyses of data show a warming trend in global average air and sea surface ocean temperatures. The atmosphere and ocean have warmed, the amounts of snow and ice have diminished, the sea level has risen, and the concentrations of greenhouse gases have increased. This article will focus on climate change and projected effects on venomous marine and amphibious creatures with the potential impact on human health. METHODS: Retrospective analysis of environmental, ecological, and medical literature with a focus on climate change, toxinology, and future modeling specific to venomous aquatic and amphibious creatures. Species included venomous jellyfish, poisonous fish, crown-of-thorns starfish, sea snakes, and toxic frogs. RESULTS: In several projected scenarios, rising temperatures, weather extremes, and shifts in seasons will increase poisonous population numbers, particularly with certain marine creatures like jellyfish and crown-of-thorns starfish. Habitat expansions by lionfish and sea snakes are projected to occur. These phenomena, along with increases in human populations and coastal development will likely increase human-animal encounters. Other species, particularly amphibious toxic frogs, are declining rapidly due to their sensitivity to any temperature change or subtle alterations in the stability of their environment. If temperatures continue to rise to record levels over the next decades, it is predicted that the populations of these once plentiful and critically important animals to the aquatic ecosystem will decline and their geographic distributions will shrink. CONCLUSION: Review of the literature investigating the effect and forecasts of climate change on venomous marine and amphibious creatures has demonstrated that temperature extremes and changes to climatic norms will likely have a dramatic effect on these toxicological organisms. The effects of climate change on these species through temperature alteration and rising coastal waters will influence each species differently and in turn potentially affect commercial industries, travel, tourism, and human health.


Assuntos
Anfíbios , Mudança Climática , Peixes Venenosos , Hydrophiidae , Venenos de Anfíbios , Anfíbios/fisiologia , Animais , Cnidários/fisiologia , Ecologia , Venenos Elapídicos , Meio Ambiente , Peixes Venenosos/fisiologia , Humanos , Hydrophiidae/fisiologia , Peçonhas , Meio Selvagem
12.
J Fish Biol ; 90(6): 2488-2495, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28470766

RESUMO

Through the analysis of acoustic recordings of captive Pterois spp., this study has confirmed anecdotal evidence that Pterois spp. are soniferous. This report of sound production in Pterois spp. provides the foundation for future research into their specific acoustic capabilities including sound production mechanisms, the role of social behaviour and applied techniques for controlling and monitoring invasive Pterois spp. in the tropical and temperate western Atlantic Ocean.


Assuntos
Comunicação Animal , Perciformes/fisiologia , Acústica , Animais , Oceano Atlântico , Espectrografia do Som
13.
Ecology ; 97(10): 2729-2739, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27859117

RESUMO

Cross-habitat foraging movements of predators can have widespread implications for predator and prey populations, community structure, nutrient transfer, and ecosystem function. Although central-place foraging models and other aspects of optimal foraging theory focus on individual predator behavior, they also provide useful frameworks for understanding the effects of predators on prey populations across multiple habitats. However, few studies have examined both the foraging behavior and ecological effects of nonnative predators across multiple habitats, and none has tested whether nonnative predators deplete prey in a manner predicted by these foraging models. I conducted behavioral observations of invasive lionfish (Pterois volitans) to determine whether they exhibit foraging movements similar to other central-place consumers. Then, I used a manipulative field experiment to test whether their effects on prey populations are consistent with three qualitative predictions from optimal foraging models. Specifically, I predicted that the effects of invasive lionfish on native prey will (1) occur at central sites first and then in surrounding habitats, (2) decrease with increasing distance away from their shelter site, and (3) extend to greater distances when prey patches are spaced closer together. Approximately 40% of lionfish exhibited short-term crepuscular foraging movements into surrounding habitats from the coral patch reefs where they shelter during daylight hours. Over the course of 7 weeks, lionfish depleted native fish populations on the coral patch reefs where they reside, and subsequently on small structures in the surrounding habitat. However, their effects did not decrease with increasing distance from the central shelter site and the influence of patch spacing was opposite the prediction. Instead, lionfish always had the greatest effects in areas with the highest prey densities. The differences between the predicted and observed effects of lionfish foraging are likely due to different constraints faced by invasive predators compared to native predators, namely that lionfish do not face increased predation risk with increased movement away from shelter sites. By foraging at greater distances from patch reefs than native predators, lionfish eliminated a spatial refuge from predation used by juveniles of many commercially and ecologically important reef fishes.


Assuntos
Recifes de Corais , Ecossistema , Animais , Ecologia , Peixes , Comportamento Predatório
14.
Glob Chang Biol ; 21(6): 2249-60, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25620639

RESUMO

In this study, we demonstrate how perturbations to the Florida Current caused by hurricanes are relevant to the spread of invasive lionfish from Florida to the Bahamas. Without such perturbations, this current represents a potential barrier to the transport of planktonic lionfish eggs and larvae across the Straits of Florida. We further show that once lionfish became established in the Bahamas, hurricanes significantly hastened their spread through the island chain. We gain these insights through: (1) an analysis of the direction and velocity of simulated ocean currents during the passage of hurricanes through the Florida Straits and (2) the development of a biophysical model that incorporates the tolerances of lionfish to ocean climate, their reproductive strategy, and duration that the larvae remain viable in the water column. On the basis of this work, we identify 23 occasions between the years 1992 and 2006 in which lionfish were provided the opportunity to breach the Florida Current. We also find that hurricanes during this period increased the rate of spread of lionfish through the Bahamas by more than 45% and magnified its population by at least 15%. Beyond invasive lionfish, we suggest that extreme weather events such as hurricanes likely help to homogenize the gene pool for all Caribbean marine species susceptible to transport.


Assuntos
Tempestades Ciclônicas , Peixes , Espécies Introduzidas , Movimentos da Água , Animais , Bahamas , Simulação por Computador , Florida , Larva/fisiologia , Oceanos e Mares , Dinâmica Populacional
15.
J Phycol ; 50(3): 493-505, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26988322

RESUMO

Macroalgal phase shifts on Caribbean reefs have been reported with increasing frequency, and recent reports of these changes on mesophotic coral reefs have raised questions regarding the mechanistic processes behind algal population expansions to deeper depths. The brown alga Lobophora variegata is a dominant species on many shallow and deep coral reefs of the Caribbean and Pacific, and it increased in percent cover (>50%) up to 61 m on Bahamian reefs following the invasion of the lionfish Pterois volitans. We examined the physiological and ecological constraints contributing to the spread of Lobophora on Bahamian reefs across a mesophotic depth gradient from 30 to 61 m, pre- and post-lionfish invasion. Results indicate that there were no physiological limitations to the depth distribution of Lobophora within this range prior to the lionfish invasion. Herbivory by acanthurids and scarids in algal recruitment plots at mesophotic depths was higher prior to the lionfish invasion, and Lobophora chemical defenses were ineffective against an omnivorous fish species. In contrast, Lobophora exhibited significant allelopathic activity against the coral Montastraea cavernosa and the sponge Agelas clathrodes in laboratory assays. These data indicate that when lionfish predation on herbivorous fish released Lobophora from grazing pressure at depth, Lobophora expanded its benthic cover to a depth of 61 m, where it replaced the dominant coral and sponge species. Our results suggest that this chemically defended alga may out-compete these species in situ, and that mesophotic reefs may be further impacted in the near future as Lobophora continues to expand to its compensation point.

16.
Pain Rep ; 8(5): e1090, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38225957

RESUMO

Introduction: Stings from the lionfish (Pterois volitans) constitute one of the most painful wounds in the ocean. This species has invaded the Atlantic coast of the United States, Gulf of Mexico, Caribbean, and Mediterranean Sea. In addition to its ecological impact on local fish populations, stings from the lionfish pose a medical problem because of the debilitating nature of the pain they produce. However, there are no studies examining the human pain experience of lionfish stings. Objective: To characterize the various aspects of the pain experience following a lionfish sting. Methods: We developed a pain questionnaire that includes validated scales used with patients having acute or chronic pain to understand the pain variability, as well as the use of health care resources and treatments. Results: We provide the first study of the pain experience from lionfish stings. Here, we show that the pain is intense from the start and peaks approximately 1 hour later, resolving itself in 7 days for most victims. Furthermore, pain intensity can be influenced by several factors, including (1) age of the victim, where older victims experience significantly higher pain intensities, (2) the number of spines involved, (3) and whether infection occurred at the injury site. However, pain intensity was not different between male and female participants. Conclusion: These findings will inform the medical community on the pain experience and can be used by local authorities to better appreciate the impact of lionfish envenomations to develop programs aimed at curtailing the expansion of the lionfish.

17.
R Soc Open Sci ; 10(2): 220834, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36816843

RESUMO

Decision rules underlying cooperative hunting can range from very simple to very complex. As lionfishes are naturally solitary hunters, an experimental study documenting active recruitment, coordination and alternating (potentially reciprocal) striking in dwarf lionfish Dendrochirus zebra received major attention. A hypothesis was that sophisticated coordinated hunting may also contribute to the successful invasion of another lionfish species, Pterois miles, in the Caribbean. However, we did not find recruitment signalling in P. miles in parts of its native range, the Red Sea. Here, we expand on these results, testing for coordinated movements and for alternation in strikes. We exposed subject pairs to inaccessible prey in three transparent housings. The two lionfish did not aggregate at the same prey housing or even share larger space units in the presence of prey. In a second experiment, we found that some alternation can be induced if prey items become alternately accessible at two corners, with each lionfish tending to monopolize one corner each. When the movement of prey is slow or even absent, we observed less alternation than expected by chance. In conclusion, P. miles in the Red Sea does not use any coordination to hunt prey.

18.
Bioinspir Biomim ; 18(4)2023 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-37339652

RESUMO

This paper investigates a pursuit-evasion game with a single pursuer and evader in a bounded environment, inspired by observations of predation attempts by lionfish (Pterois sp.). The pursuer tracks the evader with a pure pursuit strategy while using an additional bioinspired tactic to trap the evader, i.e. minimize the evader's escape routes. Specifically, the pursuer employs symmetric appendages inspired by the large pectoral fins of lionfish, but this expansion increases its drag and therefore its work to capture the evader. The evader employs a bioinspired randomly-directed escape strategy to avoid capture and collisions with the boundary. Here we investigate the trade-off between minimizing the work to capture the evader and minimizing the evader's escape routes. By using the pursuer's expected work to capture as a cost function, we determine when the pursuer should expand its appendages as a function of the relative distance to the evader and the evader's proximity to the boundary. Visualizing the pursuer's expected work to capture everywhere in the bounded domain, yields additional insights about optimal pursuit trajectories and illustrates the role of the boundary in predator-prey interactions.


Assuntos
Perciformes , Comportamento Predatório , Animais
19.
PeerJ ; 10: e14250, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36389413

RESUMO

Cuba's shelf has been invaded by lionfish (Pterois volitans/Pterois miles), which have become established over the archipelago, including areas of natural importance. The present study aims to evaluate morphometric features of lionfish and to explore the relationship between lionfish size and diet composition in different habitats in the Punta Frances National Park, Cuba. In total 620 lionfish were captured at 29 sites between 2013 and 2016. Lionfish stomachs were removed and their contents were analyzed using frequency and numerical methods. The length-weight allomentric relationship was obtained, and a decrease in lionfish sizes was shown over time, likely due to the extractions carried out. The diet was composed by fishes, crustaceans, mollusks and phytobenthos, with a predominance of fishes. Lionfish caught in seagrass beds tended to be smaller in size and consumed fewer fishes and more crustaceans than those captured in coral reefs. A positive correlation was observed between lionfish body size and gape size; however, no significant correlation was detected between lionfish body size and prey size. Larger lionfish tended to consume more fishes, while crustaceans were more significant in the diet of juvenile lionfish. This is the first study that examines the feeding habits of lionfish in the Punta Frances MPA, and provides valuable information on lionfish inhabiting this MPA across four years of sampling. Furthermore, this research may serve as a baseline for subsequent evaluations of lionfish impact and management actions in the area.


Assuntos
Espécies Introduzidas , Perciformes , Animais , Cuba , Comportamento Predatório , Peixes , Dieta , França
20.
R Soc Open Sci ; 8(9): 210828, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34540260

RESUMO

Lionfish are common piscivores in the Indo-Pacific and invasive in the Caribbean. A fin flaring pattern, involving a rapid undulation of the caudal fin and sequential turning of both pectoral fins, was described in zebra lionfish as a signal to initiate cooperative hunting, and it was hypothesized that such hunting tactics may also exist in other lionfish species and contribute to their successful invasion in the Caribbean. Here, we investigated one of those invasive species, Pterois miles, in its natural range in the Red Sea. We did not observe evidence for cooperative hunting in the field. We complemented field observations with a laboratory experiment aimed at inducing subjects to recruit partners for cooperative hunts, exposing subjects to inaccessible prey in transparent housing as well as to a potential partner. We regularly observed the fin flaring pattern, but importantly, it was not directed at the partner. Thus, rather than being a signal, the fin flaring movement pattern seems to be a swimming mode in a confined environment. Furthermore, the two lionfish did not aggregate at the prey housing, reinforcing the field results that this species in the Red Sea does not depend on cooperation to hunt fish.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA