RESUMO
Globally, burns are a significant cause of injury that can cause substantial acute trauma as well as lead to increased incidence of chronic comorbidity and disease. To date, research has primarily focused on the systemic response to severe injury, with little in the literature reported on the impact of nonsevere injuries (<15% total burn surface area; TBSA). To elucidate the metabolic consequences of a nonsevere burn injury, longitudinal plasma was collected from adults (n = 35) who presented at hospital with a nonsevere burn injury at admission, and at 6 week follow up. A cross-sectional baseline sample was also collected from nonburn control participants (n = 14). Samples underwent multiplatform metabolic phenotyping using 1H nuclear magnetic resonance spectroscopy and liquid chromatography-mass spectrometry to quantify 112 lipoprotein and glycoprotein signatures and 852 lipid species from across 20 subclasses. Multivariate data modeling (orthogonal projections to latent structures-discriminate analysis; OPLS-DA) revealed alterations in lipoprotein and lipid metabolism when comparing the baseline control to hospital admission samples, with the phenotypic signature found to be sustained at follow up. Univariate (Mann-Whitney U) testing and OPLS-DA indicated specific increases in GlycB (p-value < 1.0e-4), low density lipoprotein-2 subfractions (variable importance in projection score; VIP > 6.83e-1) and monoacyglyceride (20:4) (p-value < 1.0e-4) and decreases in circulating anti-inflammatory high-density lipoprotein-4 subfractions (VIP > 7.75e-1), phosphatidylcholines, phosphatidylglycerols, phosphatidylinositols, and phosphatidylserines. The results indicate a persistent systemic metabolic phenotype that occurs even in cases of a nonsevere burn injury. The phenotype is indicative of an acute inflammatory profile that continues to be sustained postinjury, suggesting an impact on systems health beyond the site of injury. The phenotypes contained metabolic signatures consistent with chronic inflammatory states reported to have an elevated incidence postburn injury. Such phenotypic signatures may provide patient stratification opportunities, to identify individual responses to injury, personalize intervention strategies, and improve acute care, reducing the risk of chronic comorbidity.
Assuntos
Queimaduras , Inflamação , Fenótipo , Humanos , Queimaduras/complicações , Queimaduras/sangue , Queimaduras/metabolismo , Masculino , Adulto , Feminino , Pessoa de Meia-Idade , Inflamação/sangue , Inflamação/metabolismo , Estudos Transversais , Lipoproteínas/sangue , Metabolismo dos Lipídeos , Metabolômica/métodos , Estudos Longitudinais , Espectrometria de Massas , Cromatografia Líquida , Espectroscopia de Ressonância MagnéticaRESUMO
Proteins usually execute their biological functions through interactions with other proteins and by forming macromolecular complexes, but global profiling of protein complexes directly from human tissue samples has been limited. In this study, we utilized cofractionation mass spectrometry (CF-MS) to map protein complexes within the postmortem human brain with experimental replicates. First, we used concatenated anion and cation Ion Exchange Chromatography (IEX) to separate native protein complexes in 192 fractions and then proceeded with Data-Independent Acquisition (DIA) mass spectrometry to analyze the proteins in each fraction, quantifying a total of 4,804 proteins with 3,260 overlapping in both replicates. We improved the DIA's quantitative accuracy by implementing a constant amount of bovine serum albumin (BSA) in each fraction as an internal standard. Next, advanced computational pipelines, which integrate both a database-based complex analysis and an unbiased protein-protein interaction (PPI) search, were applied to identify protein complexes and construct protein-protein interaction networks in the human brain. Our study led to the identification of 486 protein complexes and 10054 binary protein-protein interactions, which represents the first global profiling of human brain PPIs using CF-MS. Overall, this study offers a resource and tool for a wide range of human brain research, including the identification of disease-specific protein complexes in the future.
Assuntos
Proteínas , Espectrometria de Massas em Tandem , Humanos , Espectrometria de Massas em Tandem/métodos , Proteínas/química , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia por Troca Iônica/métodos , Encéfalo , Proteoma/análiseRESUMO
Inositol pyrophosphates regulate diverse physiological processes; to better understand their functional roles, assessing their tissue-specific distribution is important. Here, we profiled inositol pyrophosphate levels in mammalian organs using an originally designed liquid chromatography-mass spectrometry (LC-MS) protocol and discovered that the gastrointestinal tract (GIT) contained the highest levels of diphosphoinositol pentakisphosphate (IP7) and its precursor inositol hexakisphosphate (IP6). Although their absolute levels in the GIT are diet dependent, elevated IP7 metabolism still exists under dietary regimens devoid of exogenous IP7. Of the major GIT cells, enteric neurons selectively express the IP7-synthesizing enzyme IP6K2. We found that IP6K2-knockout mice exhibited significantly impaired IP7 metabolism in the various organs including the proximal GIT. In addition, our LC-MS analysis displayed that genetic ablation of IP6K2 significantly impaired IP7 metabolism in the gut and duodenal muscularis externa containing myenteric plexus. Whole transcriptome analysis of duodenal muscularis externa further suggested that IP6K2 inhibition significantly altered expression levels of the gene sets associated with mature neurons, neural progenitor/stem cells, and glial cells, as well as of certain genes modulating neuronal differentiation and functioning, implying critical roles of the IP6K2-IP7 axis in developmental and functional regulation of the enteric nervous system. These results collectively reveal an unexpected role of mammalian IP7-a highly active IP6K2-IP7 pathway is conducive to the enteric nervous system.
Assuntos
Sistema Nervoso Entérico , Fosfatos de Inositol , Transcriptoma , Animais , Camundongos , Difosfatos/análise , Difosfatos/metabolismo , Sistema Nervoso Entérico/crescimento & desenvolvimento , Sistema Nervoso Entérico/metabolismo , Fosfatos de Inositol/análise , Fosfatos de Inositol/metabolismo , Camundongos Knockout , Neurônios/enzimologia , Fosfotransferases (Aceptor do Grupo Fosfato)/genética , Fosfotransferases (Aceptor do Grupo Fosfato)/metabolismo , Ácido Fítico/metabolismo , Trato Gastrointestinal/metabolismoRESUMO
BACKGROUND: Canavan disease is a devastating neurometabolic disorder caused by accumulation of N acetylaspartate in brain and body fluids due to genetic defects in the aspartoacylase gene (ASPA). New gene therapies are on the horizon but will require early presymptomatic diagnosis to be fully effective. METHODS: We therefore developed a fast and highly sensitive liquid chromatography mass spectrometry (LC-MS/MS)-based method for quantification of N-acetylaspartate in dried blood spots and established reference ranges for neonates and older controls. With this test, we investigated 45 samples of 25 Canavan patients including 8 with a neonatal sample. RESULTS: Measuring N-acetylaspartate concentration in dried blood with this novel test, all Canavan patients (with variable severity) were well separated from the control group (median; range: 5.7; 1.6-13.6 µmol/L [n = 45] vs 0.44; 0.24-0.99 µmol/L [n = 59] (p < 0.05)). There was also no overlap when comparing neonatal samples of Canavan patients (7.3; 5.1-9.9 µmol/L [n = 8]) and neonatal controls (0.93; 0.4-1.8 µmol/L [n = 784]) (p < 0.05). CONCLUSIONS: We have developed a new LC-MS/MS-based screening test for early postnatal diagnosis of Canavan disease that should be further evaluated in a population-based study once a promising treatment becomes available. The method meets the general requirements of newborn screening and should be appropriate for multiplexing with other screening approaches that combine chromatographic and mass spectrometry techniques.
Assuntos
Ácido Aspártico , Doença de Canavan , Teste em Amostras de Sangue Seco , Triagem Neonatal , Espectrometria de Massas em Tandem , Humanos , Doença de Canavan/diagnóstico , Doença de Canavan/sangue , Doença de Canavan/genética , Recém-Nascido , Triagem Neonatal/métodos , Teste em Amostras de Sangue Seco/métodos , Espectrometria de Massas em Tandem/métodos , Ácido Aspártico/análogos & derivados , Ácido Aspártico/sangue , Cromatografia Líquida , Feminino , Masculino , Lactente , Pré-Escolar , Espectrometria de Massa com Cromatografia Líquida , AmidoidrolasesRESUMO
BACKGROUND: Matrix effects are a known problem with immunoassays measuring serum 25-hydroxyvitamin D [25(OH)D]. OBJECTIVES: To determine if the inverse association between serum 25(OH)D and serum cholesterol concentrations is a function of assay method: Diasorin Liaison 25(OH) Vitamin D Total Assay (Liaison Total Assay), an immunoassay, compared with liquid chromatography tandem mass spectrometry (LC-MS/MS). METHODS: Canadian Health Measures Survey data and biobank serum (White males aged 20-79 y, n = 392) were evaluated for bias in serum 25(OH)D using Bland-Altman plots. Differences in serum 25(OH)D (Liaison Total Assay - LC-MS/MS) were compared among non-HDL-cholesterol <4.2 (n = 295) compared with ≥4.2 (n = 97) mmol/L and total cholesterol groups <5.2 (n = 256) compared with ≥5.2 (n = 136) mmol/L, and associations tested between 25(OH)D and non-HDL-cholesterol or total cholesterol concentrations, using regression. RESULTS: Serum 25(OH)D measured using Liaison Total Assay ranged from 10.7 to 137.0 nmol/L and 14.4 to 137.9 nmol/L by LC-MS/MS. Liaison Total Assay - LC-MS/MS showed a negative bias of 5.5 (95% limits of agreement -23.8, 12.7) nmol/L. Differences in 25(OH)D were -4.0 ± 9.0 (±SD) nmol/L if non-HDL-cholesterol was <4.2 mmol/L and -10.2 ± 8.7 nmol/L if ≥4.2 mmol/L (P < 0.0001). Differences in 25(OH)D, if total cholesterol was <5.2 mmol/L, were -3.4 ± 8.6 nmol/L and -9.6 ± 9.3 nmol/L if ≥5.2 mmol/L (P < 0.0001). Serum non-HDL-cholesterol (beta -3.17, P = 0.0014) and total cholesterol (beta -2.77, P = 0.0046) were inversely associated with Liaison Total Assay 25(OH)D (adjusted for age, fasting, and body mass index), but not with LC-MS/MS measured 25(OH)D. Interference by these lipoproteins was not eliminated by standardization of the Liaison Total Assay. Similar associations were observed with triglycerides as for the lipoproteins. CONCLUSIONS: Total cholesterol inversely associates with 25(OH)D, which is likely due to elevated non-HDL-cholesterol lipoprotein or triglyceride interference with the Liaison Total Assay. This is important as elevated cholesterol is common, and an underestimation of vitamin D status could be an unnecessary cause for concern.
Assuntos
Colesterol , Espectrometria de Massas em Tandem , Vitamina D , Humanos , Masculino , Pessoa de Meia-Idade , Vitamina D/sangue , Vitamina D/análogos & derivados , Adulto , Canadá , Idoso , Colesterol/sangue , Adulto Jovem , Cromatografia Líquida , Imunoensaio , Inquéritos Epidemiológicos , Bancos de Espécimes Biológicos , Estado Nutricional , Deficiência de Vitamina D/sangue , Deficiência de Vitamina D/epidemiologiaRESUMO
AIMS: Postpartum haemorrhage (PPH) is the leading cause of maternal mortality worldwide. To prevent PPH, the WHO recommends administration of oxytocin (OT) immediately after birth, i.e. during the third stage of labour (TSL). Previous studies demonstrate that methods to quantify OT in biological matrices, e.g. enzyme-linked immunosorbent assays (ELISA), radioimmunoassays (RIA) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) lack the specificity and/or sensitivity to accurately quantify OT in plasma from women administered OT during TSL. This is due to increased metabolic clearance of OT in late-stage pregnancy and at the time of childbirth, resulting in extremely low OT plasma concentrations. This study describes the development of an ultra-sensitive bioanalytical method that overcomes the issues previously reported and enables accurate pharmacokinetic analyses of exogenously administered OT in TSL. METHODS: A selective and sensitive assay to quantify OT in TSL plasma was developed. Immunoprecipitation (IP) was applied to selectively extract OT from the TSL plasma, thereby generating clean extracts compatible with nanoflow LC (nLC). nLC-MS/MS was chosen for its high sensitivity and ability to differentiate between OT and potentially co-captured OT-like immunoreactive products. RESULTS: The presented methodology is accurate and precise, with a good linear fit between 100-10 000 fg mL-1 OT. TSL plasma samples from a clinical phase 1 study (NCT02999100) were analysed successfully, enabling OT quantification down to 100 fg mL-1. CONCLUSIONS: The presented IP-nLC-MS/MS method succeeded in overcoming the sensitivity challenge related to the assay of OT in TSL plasma and thereby revealing the PK profiles of OT in TSL plasma clinical study samples.
Assuntos
Ocitócicos , Ocitocina , Hemorragia Pós-Parto , Espectrometria de Massas em Tandem , Humanos , Ocitocina/sangue , Ocitocina/farmacocinética , Feminino , Espectrometria de Massas em Tandem/métodos , Gravidez , Cromatografia Líquida/métodos , Ocitócicos/sangue , Ocitócicos/administração & dosagem , Ocitócicos/farmacocinética , Hemorragia Pós-Parto/sangue , Adulto , Sensibilidade e Especificidade , Espectrometria de Massa com Cromatografia LíquidaRESUMO
OBJECTIVES: To identify molecular pathways and prognostic- and diagnostic plasma-protein biomarkers for diabetic retinopathy at various stages. METHODS: This exploratory, cross-sectional proteomics study involved plasma from 68 adults, including 15 healthy controls and 53 diabetes patients for various stages of diabetic retinopathy: non-diabetic retinopathy, non-proliferative diabetic retinopathy, proliferative diabetic retinopathy and diabetic macular edema. Plasma was incubated with peptide library beads and eluted proteins were tryptic digested, analyzed by liquid chromatography-tandem mass-spectrometry followed by bioinformatics. RESULTS: In the 68 samples, 248 of the 731 identified plasma-proteins were present in all samples. Analysis of variance showed differential expression of 58 proteins across the five disease subgroups. Protein-Protein Interaction network (STRING) showed enrichment of various pathways during the diabetic stages. In addition, stage-specific driver proteins were detected for early and advanced diabetic retinopathy. Hierarchical clustering showed distinct protein profiles according to disease severity and disease type. CONCLUSIONS: Molecular pathways in the cholesterol metabolism, complement system, and coagulation cascade were enriched in patients at various stages of diabetic retinopathy. The peroxisome proliferator-activated receptor signaling pathway and systemic lupus erythematosus pathways were enriched in early diabetic retinopathy. Stage-specific proteins for early - and advanced diabetic retinopathy as determined herein could be 'key' players in driving disease development and potential 'target' proteins for future therapies. For type 1 and 2 diabetes mellitus, the proteomic profiles were especially distinct during the early disease stage. Validation studies should aim to clarify the role of the detected molecular pathways, potential biomarkers, and potential 'target' proteins for future therapies in diabetic retinopathy.
Assuntos
Biomarcadores , Proteínas Sanguíneas , Retinopatia Diabética , Proteômica , Humanos , Retinopatia Diabética/diagnóstico , Retinopatia Diabética/sangue , Retinopatia Diabética/metabolismo , Biomarcadores/sangue , Proteômica/métodos , Masculino , Feminino , Pessoa de Meia-Idade , Proteínas Sanguíneas/análise , Proteínas Sanguíneas/metabolismo , Prognóstico , Adulto , Estudos Transversais , Espectrometria de Massas em Tandem , Idoso , Mapas de Interação de ProteínasRESUMO
OBJECTIVES: Phenobarbital serves as an antiepileptic drug (AED) and finds application in the treatment of epilepsy either as monotherapy or adjunctive therapy. This drug exhibits various pharmacodynamic properties that account for its beneficial effects as well as potential side effects. Accurate measurement of its concentration is critical for optimizing AED therapy through appropriate dose adjustments. Therefore, our objective was to develop and validate a new reference measurement procedure (RMP) for the accurate quantification of phenobarbital levels in human serum and plasma. METHODS: A sample preparation protocol based on protein precipitation followed by a high dilution step was established in combination with a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method using a C8 column to separate target analytes from known and unknown interferences. Assay validation and determination of measurement uncertainty were performed based on current guidelines. Selectivity and Specificity were assessed using spiked serum and plasma samples; to investigate possible matrix effects (MEs) a post-column infusion experiment and a comparison of standard line slopes was performed. Precision and accuracy were determined within a multiday precision experiment. RESULTS: The RMP was shown to be highly selective and specific, with no evidence of matrix interferences. It can be used to quantify phenobarbital in the range of 1.92 to 72.0⯵g/mL. Intermediate precision was less than 3.2â¯%, and repeatability coefficient of variation (CV) ranged from 1.3 to 2.0â¯% across all concentration levels. The relative mean bias ranged from -3.0 to -0.7â¯% for native serum levels, and from -2.8 to 0.8â¯% for Li-heparin plasma levels. The measurement uncertainties (k=1) for single measurements and target value assignment were 1.9 to 3.3â¯% and 0.9 to 1.6â¯%, respectively. CONCLUSIONS: A novel LC-MS/MS-based candidate RMP for the quantification of phenobarbital in human serum and plasma is presented which can be used for the standardization of routine assays and the evaluation of clinically relevant samples.
Assuntos
Fenobarbital , Espectrometria de Massas em Tandem , Humanos , Fenobarbital/sangue , Espectrometria de Massas em Tandem/métodos , Espectrometria de Massas em Tandem/normas , Cromatografia Líquida/métodos , Cromatografia Líquida/normas , Anticonvulsivantes/sangue , Padrões de Referência , Análise Química do Sangue/métodos , Análise Química do Sangue/normas , Técnicas de Diluição do Indicador , Espectrometria de Massa com Cromatografia LíquidaRESUMO
OBJECTIVES: Primidone is an anticonvulsive drug used in the treatment of epilepsy and essential tremor. It offers beneficial effects in controlling seizures, but its usage is also associated with possible side effects. To ensure optimal therapy, it is crucial to measure its concentration through accurate quantification methods. Therefore, our main goal was to develop and validate a new reference measurement procedure (RMP) for accurately measuring primidone levels in human serum and plasma. METHODS: In our study, we focused on the separation of primidone from both known and unknown interferences using a C18 column. To achieve accurate sample preparation, we developed a protocol involving protein precipitation followed by a high dilution step. The validation of the assay and determination of measurement uncertainty were carried out following guidelines from organizations such as the Clinical and Laboratory Standards Institute, the International Conference on Harmonization, and the Guide to the Expression of Uncertainty in Measurement. These rigorous validation processes ensure the reliability and accuracy of our method for quantifying primidone levels in human serum and plasma samples. RESULTS: The RMP was shown to be highly selective and specific, with no evidence of matrix interference. It can be used to quantify primidone in the range of 0.150-30.0⯵g/mL. Intermediate precision was less than 4.0â¯%, and repeatability CV ranged from 1.0 to 3.3â¯% across all concentration levels. The relative mean bias ranged from 0.1 to 3.9â¯% for native serum levels, and from -2.6 to 2.8â¯% for lithium-heparin plasma levels. The measurement uncertainties for single measurements and target value assignment were 1.5-4.1â¯% and 0.9-1.0â¯%, respectively. CONCLUSIONS: In this study, we introduce an innovative LC-MS/MS-based candidate RMP specifically designed for primidone in human serum and plasma. Our RMP offers a traceable platform, facilitating the standardization of routine assays and enabling the evaluation of clinically relevant samples. With this novel approach, we aim to enhance the accuracy and reliability of primidone measurements, ultimately benefiting the field of clinical research and patient care.
Assuntos
Primidona , Espectrometria de Massas em Tandem , Humanos , Espectrometria de Massas em Tandem/métodos , Espectrometria de Massas em Tandem/normas , Primidona/sangue , Cromatografia Líquida/métodos , Cromatografia Líquida/normas , Padrões de Referência , Reprodutibilidade dos Testes , Técnicas de Diluição do Indicador , Limite de Detecção , Anticonvulsivantes/sangue , Espectrometria de Massa com Cromatografia LíquidaRESUMO
OBJECTIVES: Current liquid chromatography-tandem mass spectrometry (LC-MS/MS) applications for circulating androgen measurements are technically diverse. Previously, variable results have been reported for testosterone. Data are scarce for androstenedione and absent for dehydroepiandrosterone sulfate (DHEAS). We assessed the agreement of androstenedione, DHEAS and testosterone LC-MS/MS measurements among nine European centers and explored benefits of calibration system unification. METHODS: Androgens were measured twice by laboratory-specific procedures in 78 patient samples and in EQA materials. Results were obtained by in-house and external calibration. Intra- and inter-laboratory performances were valued. RESULTS: Intra-laboratory CVs ranged between 4.2-13.2â¯% for androstenedione, 1.6-10.8â¯% for DHEAS, and 4.3-8.7â¯% and 2.6-7.1â¯% for female and male testosterone, respectively. Bias and trueness in EQA materials were within ±20â¯%. Median inter-laboratory CV with in-house vs. external calibration were 12.0 vs. 9.6â¯% for androstenedione (p<0.001), 7.2 vs. 4.9â¯% for DHEAS (p<0.001), 6.4 vs. 7.6â¯% for female testosterone (p<0.001) and 6.8 and 7.4â¯% for male testosterone (p=0.111). Median bias vs. all laboratory median with in-house and external calibration were -13.3 to 20.5â¯% and -4.9 to 18.7â¯% for androstenedione, -10.9 to 4.8â¯% and -3.4 to 3.5â¯% for DHEAS, -2.7 to 6.5 % and -11.3 to 6.6â¯% for testosterone in females, and -7.0 to 8.5â¯% and -7.5 to 11.8â¯% for testosterone in males, respectively. CONCLUSIONS: Methods showed high intra-laboratory precision but variable bias and trueness. Inter-laboratory agreement was remarkably good. Calibration system unification improved agreement in androstenedione and DHEAS, but not in testosterone measurements. Multiple components, such as commutability of calibrators and EQA materials and internal standard choices, likely contribute to inter-laboratory variability.
Assuntos
Androstenodiona , Sulfato de Desidroepiandrosterona , Testosterona , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Androstenodiona/sangue , Androstenodiona/análise , Calibragem , Sulfato de Desidroepiandrosterona/sangue , Sulfato de Desidroepiandrosterona/análise , Sulfato de Desidroepiandrosterona/normas , Espectrometria de Massa com Cromatografia Líquida/métodos , Espectrometria de Massa com Cromatografia Líquida/normas , Espectrometria de Massas em Tandem/normas , Espectrometria de Massas em Tandem/métodos , Testosterona/sangue , Testosterona/análise , Testosterona/normasRESUMO
OBJECTIVES: Xylazine is a potent sedative used in veterinary medicine. Recently, recreational drugs such as fentanyl have been found to contain xylazine, increasing the risk of respiratory depression and death. Despite a similar presentation to opioid overdose, patients who ingest xylazine do not respond to treatment with Narcan. Therefore, rapid detection of xylazine could improve patient management and prevent adverse outcomes. METHODS: We evaluated the XYL500 one-step xylazine drug of abuse test for its ability to detect xylazine in 152 urine samples from patients on chronic opioid therapy for pain management or in treatment for substance use disorder. Results were compared to LC-MS/MS as the reference method. Precision, cross-reactivity, interference and stability studies were performed. RESULTS: Pooled patient samples were consistently negative or positive when tested five times on the same day and over three days of testing. The diagnostic sensitivity, specificity and accuracy of the XYL500 assay were 74, 98, and 82â¯% respectively, as compared with LC-MS/MS. XYL500 detected 77 of the 104 LC-MS/MS positive samples identified in our initial evaluation, including some that contained low levels of xylazine (n=8), <10â¯ng/mL. Minimal cross-reactivity with other opioid analgesics and commonly encountered drugs was seen with only one false positive result. Interferences by common urine contaminants were negligible. Specimens were stable up to 160â¯days refrigerated and up to 80â¯days at room temperature. CONCLUSIONS: XYL500 allows for rapid detection of xylazine, illustrating its utility in monitoring patients who ingested recreational drugs containing the additive, xylazine, and its potential to improve patient management.
RESUMO
OBJECTIVES: To describe and validate an isotope dilution-liquid chromatograph-tandem mass spectrometry (ID-LC-MS/MS) based reference measurement procedure (RMP) for zonisamide to accurately measure serum and plasma concentrations. METHODS: Quantitative nuclear magnetic resonance (qNMR) spectroscopy was employed to determine the absolute content of the reference material used in order to establish traceability to SI units. Separation of zonisamide from known or unknown interferences was performed on a C8 column. For sample preparation a protocol based on protein precipitation in combination with a high dilution step was established. Assay validation and determination of measurement uncertainty were performed based on guidelines from the Clinical and Laboratory Standards Institute, the International Conference on Harmonization, and the Guide to the expression of uncertainty in measurement. RESULTS: The RMP was proven to be highly selective and specific with no evidence of a matrix effect, allowing for quantification of zonisamide within the range of 1.50-60.0⯵g/mL. Intermediate precision was <1.4â¯% and repeatability CV ranged from 0.7 to 1.2â¯% over all concentration levels. The relative mean bias ranged from 0.0 to 0.8â¯% for native serum levels and from 0.2 to 2.0â¯% for Li-heparin plasma levels. The measurement uncertainties for single measurements and target value assignment ranged from 1.1 to 1.4â¯% and 0.8-1.0â¯%, respectively. CONCLUSIONS: We present a novel LC-MS/MS-based candidate RMP for zonisamide in human serum and plasma which provides a traceable and reliable platform for the standardization of routine assays and evaluation of clinically relevant samples.
Assuntos
Isoxazóis , Espectrometria de Massas em Tandem , Zonisamida , Humanos , Espectrometria de Massas em Tandem/métodos , Espectrometria de Massas em Tandem/normas , Zonisamida/sangue , Cromatografia Líquida/métodos , Cromatografia Líquida/normas , Isoxazóis/sangue , Padrões de Referência , Técnicas de Diluição do Indicador , Análise Química do Sangue/métodos , Análise Química do Sangue/normas , Espectrometria de Massa com Cromatografia LíquidaRESUMO
OBJECTIVES: A reference measurement procedure (RMP) using isotope dilution liquid chromatography-tandem mass spectrometry (ID-LC-MS/MS) was developed and validated with the aim of accurately measuring carbamazepine-10,11-epoxide concentrations in human serum and plasma. METHODS: To establish traceability to SI units, the absolute content of the reference material was determined using quantitative nuclear magnetic resonance (qNMR) spectroscopy. As sample preparation a protein precipitation protocol followed by a high dilution step was established. Chromatographic separation from carbamazepine and potential metabolites was achieved using a C18 stationary phase. Selectivity, specificity, matrix effects, precision and accuracy, inter-laboratory equivalence, and uncertainty of measurement were evaluated based on guidelines from the Clinical and Laboratory Standards Institute, the International Conference on Harmonization, and the Guide to the Expression of Uncertainty in Measurement. RESULTS: The RMP demonstrated very good selectivity and specificity, showing no evidence of a matrix effect. This enabled accurate quantification of carbamazepine-epoxide in the concentration range of 0.0400-12.0⯵g/mL. The intermediate precision was found to be less than 2.1â¯%, and the repeatability coefficient of variation (CV) ranged from 1.2 to 1.8â¯% across all concentration levels. Regarding accuracy, the relative mean bias varied from 1.4 to 2.5â¯% for native serum levels and from 1.4 to 3.5â¯% for Li-heparin plasma levels. The measurement uncertainty for single measurements ranged from 1.6 to 2.1â¯%. CONCLUSIONS: In this study, we introduce a new LC-MS/MS-based candidate RMP for accurately measuring carbamazepine-10,11-epoxide in human serum and plasma. This novel method offers a traceable and dependable platform, making it suitable for standardizing routine assays and assessing clinically relevant samples.
Assuntos
Carbamazepina , Espectrometria de Massas em Tandem , Humanos , Espectrometria de Massas em Tandem/métodos , Espectrometria de Massas em Tandem/normas , Carbamazepina/sangue , Carbamazepina/análogos & derivados , Cromatografia Líquida/métodos , Cromatografia Líquida/normas , Padrões de Referência , Técnicas de Diluição do Indicador , Espectrometria de Massa com Cromatografia LíquidaRESUMO
OBJECTIVES: Numerous studies have proven the potential of cytokeratin 19 fragment 21-1 (CYFRA 21-1) detection in the (early) diagnosis and treatment monitoring of non-small cell lung cancer (NSCLC). Conventional immunoassays for CYFRA 21-1 quantification are however prone to interferences and lack diagnostic sensitivity and standardization. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) is an emerging approach based on a different, often superior, detection principle, which may improve the clinical applicability of CYFRA 21-1 in cancer diagnostics. Therefore, we developed and validated a protein precipitation, immunoaffinity (IA) LC-MS/MS assay for quantitative analysis of serum CYFRA 21-1. METHODS: Selective sample preparation was performed using ammonium sulfate (AS) precipitation, IA purification, tryptic digestion and LC-MS/MS quantification using a signature peptide and isotopically labeled internal standard. The workflow was optimized and validated according to EMA guidelines and results were compared to a conventional immunoassay. RESULTS: Significant interference effects were seen during IA purification, which were sufficiently solved by performing AS precipitation prior to IA purification. A linear calibration curve was obtained in the range of 1.0-100â¯ng/mL (R2=0.98). Accuracy and precision were well within acceptance criteria. In sera of patients suspected of lung cancer, the method showed good correlation with the immunoassay. CONCLUSIONS: A robust AS precipitation-IA LC-MS/MS assay for the quantification of serum CYFRA 21-1 was developed. With this assay, the clinically added value of LC-MS/MS-based detection over immunoassays can be further explored.
Assuntos
Antígenos de Neoplasias , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Cromatografia Líquida/métodos , Queratina-19 , Espectrometria de Massas em Tandem/métodos , Neoplasias Pulmonares/diagnóstico , Biomarcadores Tumorais , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Espectrometria de Massa com Cromatografia LíquidaRESUMO
Organophosphate flame retardants (OPFRs) are widely used as substitutes for traditional brominated flame retardants, necessitating a reliable and sensitive method for biomonitoring their urinary metabolites to assess human exposure. This study conducted biomonitoring of 10 metabolites of OPFRs in 152 adults and assessed their association with oxidative stress biomarkers 8-hydroxydeoxyguanosine and 8-hydroxyguanosine. Urinary metabolites of OPFRs were released via enzymatic deconjugation. The addition of sodium chloride to the urine samples increases the ionic strength, inducing a salting-out effect that reduces the solubility of these compounds, thereby facilitating their extraction with a mixture of ethyl acetate and acetonitrile. Then, the metabolites of OPFRs were quantified by ultra-high performance liquid chromatography-tandem mass spectrometry, and we validated the method for linear range, precision, matrix effect, and method detection limit. The detection limit of the metabolites of OPFRs ranged from 0.01 to 0.2 µg/L, and these metabolites were detected with high frequencies ranging from 25.0 to 98.68% in the urine samples. The concentration of bis (2-chloroethyl) phosphate was significantly higher in males than in females, with the geometric mean concentration of 0.88 µg/L for males and 0.53 µg/L for females, respectively. Spearman correlation analysis revealed weak but statistically significant positive correlations among the urinary metabolites. Bayesian kernel machine regression analysis showed a significant positive association between elevated urinary concentrations of metabolites of OPFRs and increased oxidative stress levels. Di-n-butyl phosphate was identified as the metabolite that significantly contributed to the elevated level of 8-hydroxyguanosine.
Assuntos
Monitoramento Biológico , Retardadores de Chama , Limite de Detecção , Extração Líquido-Líquido , Compostos Organofosforados , Estresse Oxidativo , Espectrometria de Massas em Tandem , Humanos , Retardadores de Chama/análise , Retardadores de Chama/metabolismo , Espectrometria de Massas em Tandem/métodos , Feminino , Masculino , Cromatografia Líquida de Alta Pressão/métodos , Adulto , Monitoramento Biológico/métodos , Compostos Organofosforados/urina , Extração Líquido-Líquido/métodos , Pessoa de Meia-Idade , Biomarcadores/urina , Adulto JovemRESUMO
17α-Hydroxyprogesterone (17α-OHP) quantification in dried blood spots (DBS) is essential for newborn screening for congenital adrenal hyperplasia (CAH), which is challenging due to its low physiological concentration. The high false-positive rates of immunoassays necessitate the development of more accurate methods. Liquid chromatography tandem mass spectrometry (LC-MS/MS) offers increased specificity and sensitivity, yet standardized procedures for 17α-OHP measurement are required for clinical application. A candidate reference measurement procedure (cRMP) using isotope dilution LC-MS/MS was developed for 17α-OHP quantification in DBS. By utilizing stable isotope-labeled D8-17α-OHP as an internal standard, the cRMP was optimized, covering sample preparation, calibration, and LC-MS/MS analysis. The method performance was validated across several parameters, including precision, accuracy, specificity, detection limits, and matrix effects. Clinical applicability was further assessed through the establishment of reference intervals for healthy newborns. The developed cRMP exhibited a linear range of 1.00 to 80.00 ng/mL for 17α-OHP, with detection and quantification limits of 0.14 ng/mL and 0.52 ng/mL, respectively. Inter- and intraday precision demonstrated coefficients of variation within 1.27 to 5.69%. The recovery rates and matrix effects were well within acceptable limits, ensuring method reliability. Clinical application showed distinct reference intervals for healthy newborns that were unaffected by sex but influenced by weight and gestational age. This method significantly enhances CAH diagnostic accuracy in newborns, providing a valuable tool for clinical laboratories and improving newborn screening program standardization and traceability.
Assuntos
17-alfa-Hidroxiprogesterona , Teste em Amostras de Sangue Seco , Espectrometria de Massas em Tandem , Humanos , Espectrometria de Massas em Tandem/métodos , Teste em Amostras de Sangue Seco/métodos , 17-alfa-Hidroxiprogesterona/sangue , Recém-Nascido , Cromatografia Líquida/métodos , Limite de Detecção , Padrões de Referência , Hiperplasia Suprarrenal Congênita/sangue , Hiperplasia Suprarrenal Congênita/diagnóstico , Triagem Neonatal/métodos , Reprodutibilidade dos Testes , Técnicas de Diluição do Indicador , Feminino , Valores de ReferênciaRESUMO
Accurate measurement of serum glycocholic acid (GCA) is crucial for evaluating the activity of chronic hepatitis. Moreover, GCA is a novel identified biomarker for hepatocellular carcinoma. Although some laboratories have used the liquid chromatography-tandem mass spectrometry (LC-MS/MS) method to measure GCA in recent years, the problem of potential interference of GCA analogues has not been solved well yet. Neither reference measurement procedures nor reference materials for GCA have been listed in the Joint Committee for Traceability in Laboratory Medicine (JCTLM) database. For standardization of GCA, it is urgent to establish a candidate measurement procedure for GCA. In this study, a candidate reference measurement procedure for the quantification of GCA in human serum based on isotope dilution liquid chromatography-tandem mass spectrometry (ID-LC-MS/MS) by a two-step sample pretreatment of protein precipitation and MAX solid-phase extraction was developed and validated. GCA can be completely separated from its structural analogues with gradient elution in 9 min compared with short time gradients published in previous literature by Huang's group. Method validation indicated perfect quantitation precision with intra-day and inter-day values that were ≤1.30% and ≤1.80%, respectively. The method showed excellent linearity with high regression coefficients (R2 > 0.999) over a range of 0.92 ng/g-38.38 µg/g and perfect recoveries at three spiked levels (99.87-100.43%). No interference, matrix effect, and carryover were observed. Moreover, the cRMP was successfully applied to measure GCA in serum samples and compared with two immunoassays in a clinical laboratory. As a candidate reference method, this method can promote a GCA standardization program.
Assuntos
Ácido Glicocólico , Espectrometria de Massas em Tandem , Humanos , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida/métodos , Ácido Glicocólico/sangue , Padrões de Referência , Limite de Detecção , Reprodutibilidade dos Testes , Técnicas de Diluição do Indicador , Extração em Fase Sólida/métodosRESUMO
OBJECTIVE: To assess the diagnostic value of combining plasma steroid profiling with machine learning (ML) in differentiating between mild autonomous cortisol secretion (MACS) and nonfunctioning adenoma (NFA) in patients with adrenal incidentalomas. METHODS: The plasma steroid profiles data in the laboratory information system were screened from January 2021 to December 2023. EXtreme Gradient Boosting was applied to establish diagnostic models using plasma 24-steroid panels and/or clinical characteristics of the subjects. The SHapley Additive exPlanation (SHAP) method was used for explaining the model. RESULTS: Seventy-six patients with MACS and 86 patients with NFA were included in the development and internal validation cohort while the external validation cohort consisted of 27 MACS and 21 NFA cases. Among 5 ML models evaluated, eXtreme Gradient Boosting demonstrated superior performance with an area under the curve of 0.77 using 24 steroid hormones. The SHAP method identified 5 steroids that exhibited optimal performance in distinguishing MACS from NFA, namely dehydroepiandrosterone, 11-deoxycortisol, 11ß-hydroxytestosterone, testosterone, and dehydroepiandrosteronesulfate. Upon incorporating clinical features into the model, the area under the curve increased to 0.88, with a sensitivity of 0.77 and specificity of 0.82. Furthermore, the results obtained through SHAP revealed that lower levels of testosterone, dehydroepiandrosterone, low-density lipoprotein cholesterol, body mass index, and adrenocorticotropic hormone along with higher level of 11-deoxycortisol significantly contributed to the identification of MACS in the model. CONCLUSIONS: We have elucidated the utilization of ML-based steroid profiling to discriminate between MACS and NFA in patients with adrenal incidentalomas. This approach holds promise for distinguishing these 2 entities through a single blood collection.
Assuntos
Neoplasias das Glândulas Suprarrenais , Hidrocortisona , Aprendizado de Máquina , Humanos , Hidrocortisona/sangue , Neoplasias das Glândulas Suprarrenais/diagnóstico , Neoplasias das Glândulas Suprarrenais/sangue , Masculino , Feminino , Pessoa de Meia-Idade , Diagnóstico Diferencial , Idoso , Adenoma/diagnóstico , Adenoma/sangue , Esteroides/sangue , AdultoRESUMO
Hemp-based materials have gained interest as alternative feed ingredients for livestock. However, safety concerns arise regarding the transfer of cannabinoids from the plant to the animals. Addressing these concerns requires the use of methods capable of detecting and quantifying cannabinoids in livestock. In this study, a fast and sensitive method was developed for quantification of cannabinoids and cannabinoid metabolites in cattle plasma using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The extraction of cannabinoids from the plasma matrix was achieved by combining the Captiva Enhanced Matrix Removal-Lipid clean-up and salting-out assisted liquid-liquid extraction procedure. The developed method underwent validation using various analytical parameters, and the results demonstrated good accuracy, precision, specificity, and high sensitivity. The method was applied to real plasma samples obtained from cattle fed hemp for 2 weeks, and successfully detected various cannabinoids, including delta-9-tetrahydrocannabinol. Furthermore, the study revealed that 7-carboxy cannabidiol, a metabolite of cannabidiol, was the predominant cannabinoid present in the cattle plasma throughout the feeding period, which could remain detectable for weeks after the hemp feeding had ended.
Assuntos
Canabidiol , Canabinoides , Cannabis , Bovinos , Animais , Canabinoides/análise , Canabidiol/análise , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Espectrometria de Massa com Cromatografia Líquida , Dronabinol/análiseRESUMO
Folic acid (FA) is easily photodegraded to yield 6-formylpterin and pterin-6-carboxylic acid, which can generate reactive oxygen species and result in the formation of oxidized guanine derivatives such as 8-hydroxy-2'-deoxyguanosine and 8-hydroxy-guanosine. In this study, we developed a simple, rapid, and sensitive liquid chromatography-tandem mass spectrometry strategy for the simultaneous determination of FA photolysis products and oxidized guanine derivatives in plasma samples. Chromatographic separation was performed on a Waters HSS T3 column (2.1 × 100 mm, 5.0 µm) with gradient elution at a flow rate of 0.25 mL/min. Plasma samples were first pretreated with 1% formic acid, followed by protein precipitation with methanol. The developed method showed good linear relationships between 1 and 2000 ng/mL (r2 > 0.99). The intra- and inter-day precisions ranged from 2.6% to 7.5% and from 2.5% to 6.5%, respectively. Recoveries of the analytes were between 75.4% and 112.4% with the relative standard deviation < 9.1%. Finally, the method was applied to quantify FA photolysis products and oxidized guanine derivatives in rats with light and non-light conditions.