Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Mol Med ; 28(13): e18527, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38984969

RESUMO

Infected bone defects (IBDs) are the common condition in the clinical practice of orthopaedics. Although surgery and anti-infective medicine are the firstly chosen treatments, in many cases, patients experience a prolonged bone union process after anti-infective treatment. Epimedium-Curculigo herb pair (ECP) has been proved to be effective for bone repair. However, the mechanisms of ECP in IBDs are insufficiency. In this study, Effect of ECP in IBDs was verified by micro-CT and histological examination. Qualitative and quantitative analysis of the main components in ECP containing medicated serum (ECP-CS) were performed. The network pharmacological approaches were then applied to predict potential pathways for ECP associated with bone repair. In addition, the mechanism of ECP regulating LncRNA MALAT1/miRNA-34a-5p/SMAD2 signalling axis was evaluated by molecular biology experiments. In vivo experiments indicated that ECP could significantly promote bone repair. The results of the chemical components analysis and the pathway identification revealed that TGF-ß signalling pathway was related to ECP. The results of in vitro experiments indicated that ECP-CS could reverse the damage caused by LPS through inhibiting the expressions of LncRNA MALAT1 and SMAD2, and improving the expressions of miR-34a-5p, ALP, RUNX2 and Collagen type І in osteoblasts significantly. This research showed that ECP could regulate the TGF-ß/SMADs signalling pathway to promote bone repair. Meanwhile, ECP could alleviate LPS-induced bone loss by modulating the signalling axis of LncRNA MALAT1/miRNA-34a-5p/ SMAD2 in IBDs.


Assuntos
Epimedium , MicroRNAs , Osteoblastos , RNA Longo não Codificante , Transdução de Sinais , Proteína Smad2 , MicroRNAs/genética , MicroRNAs/metabolismo , Osteoblastos/metabolismo , Osteoblastos/efeitos dos fármacos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Animais , Proteína Smad2/metabolismo , Proteína Smad2/genética , Camundongos , Epimedium/química , Transdução de Sinais/efeitos dos fármacos , Masculino , Regeneração Óssea/efeitos dos fármacos , Humanos , Regulação da Expressão Gênica/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Osteogênese/genética
2.
BMC Endocr Disord ; 24(1): 28, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38439031

RESUMO

OBJECTIVE: This study aimed to examine the diagnostic predictive value of long non-coding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript 1(MALAT1) and NOD-like receptor protein 3(NLRP3) expression in patients with type 2 diabetes mellitus(T2DM) and lower extremity atherosclerosis disease (LEAD). METHODS: A total of 162 T2DM patients were divided into T2DM with LEAD group (T2DM + LEAD group) and T2DM alone group (T2DM group). The lncRNA MALAT1 and NLRP3 expression levels were measured in peripheral blood, and their correlation was examined. Least absolute shrinkage and selection operator (LASSO) regression model was used to screen for the best predictors of LEAD, and multivariate logistic regression was used to establish a predictive model and construct the nomogram. The effectiveness of the nomogram was assessed using the receiver operating characteristic (ROC) curve, area under the curve (AUC), calibration curve, and decision curve analysis (DCA). RESULTS: The levels of the lncRNA MALAT1 and NLRP3 in the T2DM + LEAD group were significantly greater than those in the T2DM group (P <0.001), and the level of the lncRNA MALAT1 was positively correlated with that of NLRP3 (r = 0.453, P<0.001). The results of the LASSO combined with the logistic regression analysis showed that age, smoking, systolic blood pressure (SBP), NLRP3, and MALAT1 were the influencing factors of T2DM with LEAD(P<0.05). ROC curve analysis comparison: The discriminatory ability of the model (AUC = 0.898), MALAT1 (AUC = 0.804), and NLRP3 (AUC = 0.794) was greater than that of the other indicators, and the predictive value of the model was the greatest. Calibration curve: The nomogram model was consistent in predicting the occurrence of LEAD in patients with T2DM (Cindex = 0.898). Decision curve: The net benefit rates obtained from using the predictive models for clinical intervention decision-making were greater than those obtained from using the individual factors within the model. CONCLUSION: MALAT1 and NLRP3 expression increased significantly in T2DM patients with LEAD, while revealing the correlation between MALAT1 and NLRP3. The lncRNA MALAT1 was found as a potential biomarker for T2DM with LEAD.


Assuntos
Aterosclerose , Diabetes Mellitus Tipo 2 , RNA Longo não Codificante , Humanos , Aterosclerose/diagnóstico , Aterosclerose/genética , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Extremidade Inferior , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , RNA Longo não Codificante/genética
3.
Exp Cell Res ; 429(1): 113650, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37209990

RESUMO

The retina may undergo structural and functional damage as a result of hypoxia, which could lead to permanent blindness. As competing endogenous RNAs (ceRNAs), lncRNAs are essential in eye disorders. The biological function of lncRNA MALAT 1 and its potential mechanisms in hypoxic-ischemic retinal diseases are still unknown. MALAT 1 and miR-625-3p expression alterations in hypoxia-treated RPE cells were examined using qRT-PCR. The target binding relationships between MALAT 1 and miR-625-3p, as well as between miR-625-3p and HIF-1α, were identified utilizing bioinformatics analysis and dual luciferase reporter assay. We observed that si-MALAT 1 and miR-625-3p mimic both reduced apoptosis and epithelial-mesenchymal transition (EMT) in hypoxic RPE cells, whereas si-MALAT 1 was reversed by miR-625-3p inhibitor. Further, we carried out a mechanistic investigation, and rescue assays demonstrated that MALAT 1 sponging miR-625-3p influenced HIF-1α expression and consequently took part in the NF-κB/Snail signaling pathway, which regulated apoptosis and EMT. In conclusion, our research had shown that the MALAT 1/miR-625-3p/HIF-1α axis drove the progression of hypoxic-ischemic retinal disorders and may serve as a promising predictive biomarker for their therapeutic and diagnostic targets.


Assuntos
MicroRNAs , RNA Longo não Codificante , Humanos , NF-kappa B/genética , NF-kappa B/metabolismo , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , Transição Epitelial-Mesenquimal/genética , Movimento Celular/genética , Transdução de Sinais/genética , Hipóxia , Proliferação de Células/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo
4.
Clin Oral Investig ; 28(4): 219, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38492123

RESUMO

OBJECTIVES: This study aimed to investigate the regulatory roles of lncRNA MALAT1, miR-124-3p, and IGF2BP1 in osteogenic differentiation of periodontal ligament stem cells (PDLSCs). MATERIALS AND METHODS: We characterized PDLSCs by employing quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot analyses to evaluate the expression of key osteogenic markers including ALPL, SPP1, and RUNX2. Manipulation of lncRNA MALAT1 and miR-124-3p expression levels was achieved through transfection techniques. In addition, early osteogenic differentiation was assessed via Alkaline phosphatase (ALP) staining, and mineral deposition was quantified using Alizarin Red S (ARS) staining. Cellular localization of lncRNA MALAT1 was determined through Fluorescence In Situ Hybridization (FISH). To elucidate the intricate regulatory network, we conducted dual-luciferase reporter assays to decipher the binding interactions between lncRNA MALAT1 and miR-124-3P as well as between miR-124-3P and IGF2BP1. RESULTS: Overexpression of lncRNA MALAT1 robustly promoted osteogenesis in PDLSCs, while its knockdown significantly inhibited the process. We confirmed the direct interaction between miR-124-3p and lncRNA MALAT1, underscoring its role in impeding osteogenic differentiation. Notably, IGF2BP1 was identified as a direct binding partner of lncRNA MALAT1, highlighting its pivotal role within this intricate network. Moreover, we determined the optimal IGF2BP1 concentration (50 ng/ml) as a potent enhancer of osteogenesis, effectively countering the inhibition induced by si-MALAT1. Furthermore, in vivo experiments utilizing rat calvarial defects provided compelling evidence, solidifying lncRNA MALAT1's crucial role in bone formation. CONCLUSIONS: Our study reveals the regulatory network involving lncRNA MALAT1, miR-124-3p, and IGF2BP1 in PDLSCs' osteogenic differentiation. CLINICAL RELEVANCE: These findings enhance our understanding of lncRNA-mediated osteogenesis, offering potential therapeutic implications for periodontal tissue regeneration and the treatment of bone defects.


Assuntos
MicroRNAs , RNA Longo não Codificante , Ratos , Animais , Osteogênese/fisiologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Ligamento Periodontal , Hibridização in Situ Fluorescente , MicroRNAs/genética , MicroRNAs/metabolismo , Diferenciação Celular/genética , Células-Tronco , Células Cultivadas
5.
Int Ophthalmol ; 44(1): 363, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39227412

RESUMO

PURPOSE: Epithelial-mesenchymal transition (EMT) is a crucial pathological process that contributes to proliferative vitreoretinopathy (PVR), and research indicates that factors present in the vitreous that target cells play pivotal roles in regulating EMT. Experimental studies have confirmed that rabbit vitreous (RV) promotes EMT in human retinal pigment epithelial (RPE) cells. The long noncoding RNA (lncRNA) MALAT1 has been implicated in EMT in various diseases. Thus, this study aimed to investigate the involvement of lncRNA MALAT1 in vitreous-induced EMT in RPE cells. METHODS: MALAT1 was knocked down in ARPE-19 cells by short hairpin RNA (shRNA) transfection. Reverse transcription PCR (RT‒PCR) was used to evaluate MALAT1 expression, and Western blotting analysis was used to measure the expression of EMT-related proteins. Wound-healing, Transwell, and cell contraction assays were conducted to assess cell migration, invasion, and contraction, respectively. Additionally, cell proliferation was assessed using the CCK-8 assay, and cytoskeletal changes were examined by immunofluorescence. RESULTS: MALAT1 expression was significantly increased in ARPE-19 cells cultured with RV. Silencing MALAT1 effectively suppressed EMT and downregulated the associated factors snail1 and E-cadherin. Furthermore, silencing MALAT1 inhibited the RV-induced migration, invasion, proliferation, and contraction of ARPE-19 cells. Silencing MALAT1 also decreased RV-induced AKT and P53 phosphorylation. CONCLUSIONS: In conclusion, lncRNA MALAT1 participates in regulating vitreous-induced EMT in human RPE cells; these results provide new insight into the pathogenesis of PVR and offer a potential direction for the development of antiproliferative drugs.


Assuntos
Movimento Celular , Proliferação de Células , Transição Epitelial-Mesenquimal , Proteínas Proto-Oncogênicas c-akt , RNA Longo não Codificante , Epitélio Pigmentado da Retina , RNA Longo não Codificante/genética , Transição Epitelial-Mesenquimal/genética , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Corpo Vítreo/metabolismo , Corpo Vítreo/patologia , Coelhos , Animais , Células Cultivadas , Vitreorretinopatia Proliferativa/genética , Vitreorretinopatia Proliferativa/metabolismo , Vitreorretinopatia Proliferativa/patologia , Transdução de Sinais , Regulação da Expressão Gênica , Western Blotting
6.
Neurochem Res ; 48(11): 3457-3471, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37470906

RESUMO

The objective of this research was to investigate the role of lncRNA MALAT1 and HSP90 in the regulation of neuronal necroptosis in mice with cerebral ischemia-reperfusion (CIR). We used male C57BL/6J mice to establish a middle cerebral artery occlusion (MCAO) model and conducted in vitro experiments using the HT-22 mouse hippocampal neuron cell line. The cellular localization of NeuN and MLKL, as well as the expression levels of neuronal necroptosis factors, MALAT1, and HSP90 were analyzed. Cell viability and necroptosis were assessed, and we also investigated the relationship between MALAT1 and HSP90. The results showed that MALAT1 expression increased after MCAO and oxygen-glucose deprivation/re-oxygenation (OGD/R) treatment in both cerebral tissues and cells compared with the control group. The levels of neuronal necroptosis factors and the co-localization of NeuN and MLKL were also increased in MCAO mice compared with the Sham group. MALAT1 was found to interact with HSP90, and inhibition of HSP90 expression led to decreased phosphorylation levels of neuronal necroptosis factors. Inhibition of MALAT1 expression resulted in decreased co-localization levels of NeuN and MLKL, decreased phosphorylation levels of neuronal necroptosis factors, and reduced necroptosis rate in cerebral tissues. Furthermore, inhibiting MALAT1 expression also led to a shorter half-life of HSP90, increased ubiquitination level, and decreased phosphorylation levels of neuronal necroptosis factors in cells. In conclusion, this study demonstrated that lncRNA MALAT1 promotes neuronal necroptosis in CIR mice by stabilizing HSP90.


Assuntos
Isquemia Encefálica , Proteínas de Choque Térmico HSP90 , RNA Longo não Codificante , Traumatismo por Reperfusão , Animais , Masculino , Camundongos , Apoptose/genética , Isquemia Encefálica/metabolismo , Glucose/metabolismo , Infarto da Artéria Cerebral Média/metabolismo , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Necroptose , Neurônios/metabolismo , Reperfusão , Traumatismo por Reperfusão/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo
7.
J Nanobiotechnology ; 21(1): 451, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38012570

RESUMO

Spinal cord injury (SCI) is a traumatic condition of the central nervous system that causes paralysis of the limbs. Micro electric fields (EF) have been implicated in a novel therapeutic approach for nerve injury repair and regeneration, but the effects of human umbilical cord mesenchymal stem cell-derived small extracellular vesicles that are induced by micro electric fields (EF-sEVs) stimulation on SCI remain unknown. The aim of the present study was to investigate whether EF-sEVs have therapeutic effects a rat model of SCI. EF-sEVs and normally conditioned human umbilical cord mesenchymal stem cells-derived small extracellular vesicles (CON-sEVs) were collected and injected intralesionally into SCI model rats to evaluate the therapeutic effects. We detect the expression of candidate long noncoding RNA metastasis-associated lung adenocarcinoma transcript 1 (lncRNA-MALAT1) in EF-sEVs and CON-sEVs. The targets and downstream effectors of lncRNA-MALAT1 were investigated using luciferase reporter assays. Using both in vivo and in vitro experiments, we demonstrated that EF-sEVs increased autophagy and decreased apoptosis after SCI, which promoted the recovery of motor function. We further confirmed that the neuroprotective effects of EF-sEVs in vitro and in vivo correlated with the presence of encapsulated lncRNA-MALAT1 in sEVs. lncRNA-MALAT1 targeted miR-22-3p via sponging, reducing miR-22-3p's suppressive effects on its target, SIRT1, and this translated into AMPK phosphorylation and increased levels of the antiapoptotic protein Bcl-2. Collectively, the present study identified that the lncRNA-MALAT1 in EF-sEVs plays a neuroprotective role via the miRNA-22-3p/SIRT1/AMPK axis and offers a fresh perspective and a potential therapeutic approach using sEVs to improve SCI.


Assuntos
Neoplasias Pulmonares , MicroRNAs , RNA Longo não Codificante , Traumatismos da Medula Espinal , Ratos , Humanos , Animais , RNA Longo não Codificante/metabolismo , Proteínas Quinases Ativadas por AMP , Sirtuína 1/genética , Sirtuína 1/metabolismo , Apoptose , Traumatismos da Medula Espinal/metabolismo , MicroRNAs/metabolismo , Autofagia
8.
Oral Dis ; 29(5): 2012-2026, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35467063

RESUMO

OBJECTIVES: Methyltransferase-like 14 (METTL14) plays an epigenetic role in various cancer through N6-methyladenosine (m6A) modification. This study sought to analyze the mechanism of METTL14 in oral squamous cell carcinoma (OSCC) cell proliferation. METHODS: Expression levels of METTL14, lncRNA metastasis associated with lung adenocarcinoma transcript 1 (lncRNA MALAT1), microRNA (miR)-224-5p, and histone lysine demethylase 2A (KDM2A) in OSCC tissues (N = 40), and cell lines (FaDu, SCC-25, CAL-27, and SCC-15) were detected. Cell viability and colony formation capacity were assessed. m6A level, stability, and subcellular localization of lncRNA MALAT1 were determined. Nude mouse xenograft tumor assay was performed to confirm the role of METTL14 in vivo. RESULTS: METTL14 and lncRNA MALAT1 were upregulated, and miR-224-5p was downregulated in OSCC tissues and cells. Silencing METTL14 repressed OSCC cell viability and colony formation. Overexpression of MALAT1 and KDM2A or miR-224-5p downregulation reversed the inhibition of silencing METTL14 on OSCC cell proliferation. METTL14 induced m6A modification of MALAT1 to upregulate MALAT1. MALAT1 is comparatively bound to miR-224-5p to promote KDM2A transcription. In vivo, METTL14 promoted tumor growth via regulating MALAT1/miR-224-5p/ KDM2A. CONCLUSIONS: Overall, our findings verified the therapeutic role of silencing METTL14 in OSCC treatment through the MALAT1/miR-224-5p/KDM2A axis.


Assuntos
Carcinoma de Células Escamosas , Proteínas F-Box , Neoplasias de Cabeça e Pescoço , MicroRNAs , Neoplasias Bucais , RNA Longo não Codificante , Camundongos , Animais , Humanos , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , Neoplasias Bucais/genética , Neoplasias Bucais/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Neoplasias de Cabeça e Pescoço/genética , Regulação Neoplásica da Expressão Gênica , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Metiltransferases/genética
9.
Int J Neurosci ; 133(7): 740-753, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34461809

RESUMO

PURPOSE: To investigate the regulation and related mechanisms of MALAT1 in cerebral ischemia- reperfusion (CI/R) injury. MATERIALS AND METHODS: 72 mice were divided into sham group (n=24), MCAO group (n=24), MCAO+pcDNA-NC group (n=12) and MCAO+MALAT1 group (n=12). At 12 h, 24 h and 48 h after reperfusion, 6 mice were randomly selected from the sham group and the MCAO group to detect the expression of MALAT1, miR-142-3p and SIRT1 in brain tissue. All mice were scored for neurobehavioral after 48 h of reperfusion. After the completion of the scoring, 6 mice were randomly selected from each group and brain tissue was obtained for TTC analysis. The remaining mice of each group were kept on the Morris water maze test after 3 days of feeding. TTC staining and cerebral infarct volume determination. The infarct size of each brain slice was calculated using Image J image analysis software. OGD/R model PC12 cells were prepared according to simulating CI/R injury in vitro. MALAT1 was cloned into the pcDNA3.1 to construct a MALAT1 overexpression vector with the empty vector NC as a control. Plasmid or oligonuceotides were transfected into PC12 cells. The content of TNF-α, IL-1ß, IL-6, the content of reactive oxygen species (ROS), malondialdehyde (MDA) in brain tissue was detected. The activity of superoxide dismutase (SOD), catalase (CAT) activity was measured. RESULTS: MALAT1 was down-regulated in a time-dependent manner in CI/R-damaged mouse cerebral cortex and OGD/R-induced PC12 cells, accompanied by an increase in the expression of miR-142-3p and a decrease in sirtuin 1 (SIRT1) expression. Overexpression of MALAT1 inhibited OGD/R-induced cell necrosis and apoptosis and promoted cell proliferation. Overexpression of MALAT1 reduced the levels of TNF-α, IL-6, IL-1ß, ROS and MDA and increased the activities of SOD and CAT in OGD/R-injured PC12 cells. MALAT1 negatively regulated the expression of miR-142-3p, and SIRT1 was a target gene of miR-142-3p. The expression of SIRT1 induced by MALAT1 overexpression was obviously abolished by the introduction of miR-142-3p mimic. MALAT1 overexpression can exert its role by regulating the miR-142-3p/SIRT1 axis. Besides, overexpression of MALAT1 improved cerebral infarction, neurological impairment and cognitive dysfunction in CI/R mice. CONCLUSION: MALAT1 mediates SIRT1 expression by acting as a ceRNA of miR-142-3p to improve CI/R injury.Abbreviations: CAT: catalase; CI/R: cerebral ischemia-reperfusion; IL-1ß: interleukin-1ß; IL-6: interleukin-6; lncRNA: long-chain non-coding RNA; MALAT1: metastasis-associated lung adenocarcinoma transcript1; MCAO: middle cerebral artery occlusion; MDA: malondialdehyde; OGD/R: oxygen-glucose deprivation and reoxygenation; ROS: reactive oxygen species; SIRT1: sirtuin 1; SOD: superoxide dismutase; TNF-α: tumour necrosis factor-alpha.


Assuntos
Isquemia Encefálica , Disfunção Cognitiva , MicroRNAs , RNA Longo não Codificante , Traumatismo por Reperfusão , Ratos , Camundongos , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Regulação para Cima , Catalase/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Fator de Necrose Tumoral alfa/genética , Interleucina-6/metabolismo , Traumatismo por Reperfusão/metabolismo , Isquemia Encefálica/genética , Isquemia Encefálica/metabolismo , Infarto da Artéria Cerebral Média/metabolismo , Disfunção Cognitiva/genética , Apoptose
10.
Molecules ; 28(5)2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36903369

RESUMO

LncRNAs are a group of non-coding RNA transcripts with lengths of over 200 nucleotides and can interact with DNA, RNA, and proteins to regulate gene expression of malignant tumors in human tissues. LncRNAs participate in vital processes, such as chromosomal nuclear transport in the cancerous site of human tissue, activation, and the regulation of proto-oncogenes, the differentiation of immune cells, and the regulation of the cellular immune system. The lncRNA metastasis-associated lung cancer transcript 1 (MALAT1) is reportedly involved in the occurrence and development of many cancers and serves as a biomarker and therapeutic target. These findings highlight its promising role in cancer treatment. In this article, we comprehensively summarized the structure and functions of lncRNA, notably the discoveries of lncRNA-MALAT1 in different cancers, the action mechanisms, and the ongoing research on new drug development. We believe our review would serve as a basis for further research on the pathological mechanism of lncRNA-MALAT1 in cancer and provide evidence and novel insights into its application in clinical diagnoses and treatments.


Assuntos
Neoplasias , RNA Longo não Codificante , Humanos , Linhagem Celular Tumoral , RNA Longo não Codificante/genética , Neoplasias/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA