Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Mol Cell ; 81(7): 1425-1438.e10, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33662272

RESUMO

Eukaryotic elongation factor 2 (eEF2) mediates translocation of peptidyl-tRNA from the ribosomal A site to the P site to promote translational elongation. Its phosphorylation on Thr56 by its single known kinase eEF2K inactivates it and inhibits translational elongation. Extensive studies have revealed that different signal cascades modulate eEF2K activity, but whether additional factors regulate phosphorylation of eEF2 remains unclear. Here, we find that the X chromosome-linked intellectual disability protein polyglutamine-binding protein 1 (PQBP1) specifically binds to non-phosphorylated eEF2 and suppresses eEF2K-mediated phosphorylation at Thr56. Loss of PQBP1 significantly reduces general protein synthesis by suppressing translational elongation. Moreover, we show that PQBP1 regulates hippocampal metabotropic glutamate receptor-dependent long-term depression (mGluR-LTD) and mGluR-LTD-associated behaviors by suppressing eEF2K-mediated phosphorylation. Our results identify PQBP1 as a novel regulator in translational elongation and mGluR-LTD, and this newly revealed regulator in the eEF2K/eEF2 pathway is also an excellent therapeutic target for various disease conditions, such as neural diseases, virus infection, and cancer.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Hipocampo/metabolismo , Depressão Sináptica de Longo Prazo , Elongação Traducional da Cadeia Peptídica , Fator 2 de Elongação de Peptídeos/metabolismo , Receptores de Glutamato Metabotrópico/biossíntese , Animais , Proteínas de Ligação a DNA/genética , Células HEK293 , Células HeLa , Humanos , Camundongos , Camundongos Knockout , Fator 2 de Elongação de Peptídeos/genética , Fosforilação , Receptores de Glutamato Metabotrópico/genética
2.
Proc Natl Acad Sci U S A ; 121(18): e2316819121, 2024 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-38657042

RESUMO

Posttranslational modifications regulate the properties and abundance of synaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors that mediate fast excitatory synaptic transmission and synaptic plasticity in the central nervous system. During long-term depression (LTD), protein tyrosine phosphatases (PTPs) dephosphorylate tyrosine residues in the C-terminal tail of AMPA receptor GluA2 subunit, which is essential for GluA2 endocytosis and group I metabotropic glutamate receptor (mGluR)-dependent LTD. However, as a selective downstream effector of mGluRs, the mGluR-dependent PTP responsible for GluA2 tyrosine dephosphorylation remains elusive at Schaffer collateral (SC)-CA1 synapses. In the present study, we find that mGluR5 stimulation activates Src homology 2 (SH2) domain-containing phosphatase 2 (SHP2) by increasing phospho-Y542 levels in SHP2. Under steady-state conditions, SHP2 plays a protective role in stabilizing phospho-Y869 of GluA2 by directly interacting with GluA2 phosphorylated at Y869, without affecting GluA2 phospho-Y876 levels. Upon mGluR5 stimulation, SHP2 dephosphorylates GluA2 at Y869 and Y876, resulting in GluA2 endocytosis and mGluR-LTD. Our results establish SHP2 as a downstream effector of mGluR5 and indicate a dual action of SHP2 in regulating GluA2 tyrosine phosphorylation and function. Given the implications of mGluR5 and SHP2 in synaptic pathophysiology, we propose SHP2 as a promising therapeutic target for neurodevelopmental and autism spectrum disorders.


Assuntos
Endocitose , Depressão Sináptica de Longo Prazo , Proteína Tirosina Fosfatase não Receptora Tipo 11 , Receptores de AMPA , Receptores de Glutamato Metabotrópico , Receptores de AMPA/metabolismo , Animais , Fosforilação , Endocitose/fisiologia , Depressão Sináptica de Longo Prazo/fisiologia , Receptores de Glutamato Metabotrópico/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Ratos , Tirosina/metabolismo , Receptor de Glutamato Metabotrópico 5/metabolismo , Sinapses/metabolismo , Camundongos , Humanos , Neurônios/metabolismo
3.
J Neurosci ; 42(9): 1666-1678, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35046120

RESUMO

Dendritic spines, actin-rich protrusions forming the postsynaptic sites of excitatory synapses, undergo activity-dependent molecular and structural remodeling. Activation of Group 1 metabotropic glutamate receptors (mGluR1 and mGluR5) by synaptic or pharmacological stimulation, induces LTD, but whether this is accompanied with spine elimination remains unresolved. A subset of telencephalic mushroom spines contains the spine apparatus (SA), an enigmatic organelle composed of stacks of smooth endoplasmic reticulum, whose formation depends on the expression of the actin-bundling protein Synaptopodin. Allocation of Synaptopodin to spines appears governed by cell-intrinsic mechanisms as the relative frequency of spines harboring Synaptopodin is conserved in vivo and in vitro Here we show that expression of Synaptopodin/SA in spines is required for induction of mGluR-LTD at Schaffer collateral-CA1 synapses of male mice. Post-mGluR-LTD, mushroom spines lacking Synaptopodin/SA are selectively lost, whereas spines harboring it are preserved. This process, dependent on activation of mGluR1 but not mGluR5, is conserved in mature mouse neurons and rat neurons of both sexes. Mechanistically, we find that mGluR1 supports physical retention of Synaptopodin within excitatory spine synapses during LTD while triggering lysosome-dependent degradation of the protein residing in dendritic shafts. Together, these results reveal a cellular mechanism, dependent on mGluR1, which enables selective preservation of stronger spines containing Synaptopodin/SA while eliminating weaker ones and potentially countering spurious strengthening by de novo recruitment of Synaptopodin. Overall, our results identify spines with Synaptopodin/SA as the locus of mGluR-LTD and underscore the importance of the molecular microanatomy of spines in synaptic plasticity.SIGNIFICANCE STATEMENT Long-term changes in functional synaptic strength are associated with modification of synaptic connectivity through stabilization or elimination of dendritic spines, the postsynaptic locus of excitatory synapses. How heterogeneous spine microanatomy instructs spine remodeling after long-term synaptic depression (LTD) remains unclear. Metabotropic glutamate receptors mGluR1 and mGluR5 induce a form of LTD critical to circuit function in physiological and disease conditions. Our results identify spines containing the protein Synaptopodin, which enables local assembly of a spine apparatus, as the locus of expression of mGluR-LTD and demonstrate a specific role of mGluR1 in promoting selective loss after mGluR-LTD of mature dendritic spines lacking Synaptopodin/spine apparatus. These findings highlight the fundamental contribution of spine microanatomy in selectively enabling functional and structural plasticity.


Assuntos
Actinas , Depressão Sináptica de Longo Prazo , Receptores de Glutamato Metabotrópico , Sinapses , Actinas/metabolismo , Animais , Espinhas Dendríticas/metabolismo , Feminino , Hipocampo/metabolismo , Hipocampo/fisiologia , Depressão Sináptica de Longo Prazo/fisiologia , Masculino , Camundongos , Plasticidade Neuronal/fisiologia , Ratos , Receptores de Glutamato Metabotrópico/metabolismo , Sinapses/fisiologia
4.
Cell Biol Toxicol ; 39(5): 2089-2111, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-35137321

RESUMO

Increasing evidence from animal and epidemiological studies indicates that perinatal exposure to pesticides cause developmental neurotoxicity and may increase the risk for psychiatric disorders such as autism and intellectual disability. However, the underlying pathogenic mechanisms remain largely elusive. This work was aimed at testing the hypothesis that developmental exposure to different classes of pesticides hijacks intracellular neuronal signaling contributing to synaptic and behavioral alterations associated with neurodevelopmental disorders (NDD). Low concentrations of organochlorine (dieldrin, endosulfan, and chlordane) and organophosphate (chlorpyrifos and its oxon metabolite) pesticides were chronically dosed ex vivo (organotypic rat hippocampal slices) or in vivo (perinatal exposure in rats), and then biochemical, electrophysiological, behavioral, and proteomic studies were performed. All the pesticides tested caused prolonged activation of MAPK/ERK pathway in a concentration-dependent manner. Additionally, some of them impaired metabotropic glutamate receptor-dependent long-term depression (mGluR-LTD). In the case of the pesticide chlordane, the effect was attributed to chronic modulation of MAPK/ERK signaling. These synaptic alterations were reproduced following developmental in vivo exposure to chlordane and chlorpyrifos-oxon, and were also associated with prototypical behavioral phenotypes of NDD, including impaired motor development, increased anxiety, and social and memory deficits. Lastly, proteomic analysis revealed that these pesticides differentially regulate the expression of proteins in the hippocampus with pivotal roles in brain development and synaptic signaling, some of which are associated with NDD. Based on these results, we propose a novel mechanism of synaptic dysfunction, involving chronic overactivation of MAPK and impaired mGluR-LTD, shared by different pesticides which may have important implications for NDD.


Assuntos
Clorpirifos , Transtornos do Neurodesenvolvimento , Praguicidas , Humanos , Feminino , Gravidez , Ratos , Animais , Praguicidas/toxicidade , Clorpirifos/toxicidade , Clorpirifos/metabolismo , Clordano/metabolismo , Clordano/farmacologia , Proteômica , Hipocampo/metabolismo , Plasticidade Neuronal , Transtornos do Neurodesenvolvimento/induzido quimicamente , Transtornos do Neurodesenvolvimento/metabolismo
5.
Mol Cell Proteomics ; 19(12): 1952-1968, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32912969

RESUMO

At neuronal synapses, activation of group I metabotropic glutamate receptors (mGluR1/5) triggers a form of long-term depression (mGluR-LTD) that relies on new protein synthesis and the internalization of AMPA-type glutamate receptors. Dysregulation of these processes has been implicated in the development of mental disorders such as autism spectrum disorders and therefore merit a better understanding on a molecular level. Here, to study mGluR-induced signaling pathways, we integrated quantitative phosphoproteomics with the analyses of newly synthesized proteins via bio-orthogonal amino acids (azidohomoalanine) in a pulsed labeling strategy in cultured hippocampal neurons stimulated with DHPG, a specific agonist for group I mGluRs. We identified several kinases with important roles in DHPG-induced mGluR activation, which we confirmed using small molecule kinase inhibitors. Furthermore, changes in the AMPA receptor endocytosis pathway in both protein synthesis and protein phosphorylation were identified, whereby Intersectin-1 was validated as a novel player in this pathway. This study revealed several new insights into the molecular pathways downstream of group I mGluR activation in hippocampal neurons, and provides a rich resource for further analyses.


Assuntos
Neurônios/metabolismo , Biossíntese de Proteínas , Proteômica , Receptores de Glutamato Metabotrópico/metabolismo , Sequência de Aminoácidos , Animais , Endocitose/efeitos dos fármacos , Hipocampo/metabolismo , Metoxi-Hidroxifenilglicol/análogos & derivados , Metoxi-Hidroxifenilglicol/farmacologia , Neurônios/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , Ratos , Receptores de AMPA/metabolismo , Receptores de Glutamato Metabotrópico/química , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo
6.
Eur J Neurosci ; 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33949019

RESUMO

Fragile X Syndrome is a genetic form of intellectual disability associated with autism, epilepsy and mood disorders. Electrophysiology studies in Fmr1 knockout (KO) mice, a murine model of Fragile X Syndrome, have demonstrated alterations of synaptic plasticity, with exaggerated long-term depression induced by activation of metabotropic glutamate receptors (mGluR-LTD) in Fmr1 KO hippocampus. We have previously demonstrated that activation of serotonin 5-HT7 receptors reverses mGluR-LTD in the hippocampus of wild-type and Fmr1 KO mice, thus correcting a synaptic dysfunction typically observed in this disease model. Here we show that pharmacological inhibition of cyclin-dependent kinase 5 (Cdk5, a signaling molecule recently shown to be a modulator of brain synaptic plasticity) enhanced mGluR-LTD in wild-type hippocampal neurons, which became comparable to exaggerated mGluR-LTD observed in Fmr1 KO neurons. Furthermore, Cdk5 inhibition prevented 5-HT7 receptor-mediated reversal of mGluR-LTD both in wild-type and in Fmr1 KO neurons. Our results show that Cdk5 modulates hippocampal synaptic plasticity. 5-HT7 receptors require Cdk5 to modulate synaptic plasticity in wild-type and rescue abnormal plasticity in Fmr1 KO neurons, pointing out Cdk5 as a possible novel target in Fragile X Syndrome.

7.
EMBO J ; 36(2): 232-244, 2017 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-27856517

RESUMO

mGluR long-term depression (mGluR-LTD) is a form of synaptic plasticity induced at excitatory synapses by metabotropic glutamate receptors (mGluRs). mGluR-LTD reduces synaptic strength and is relevant to learning and memory, autism, and sensitization to cocaine; however, the mechanism is not known. Here we show that activation of Group I mGluRs in medium spiny neurons induces trafficking of GluA2 from the endoplasmic reticulum (ER) to the synapse by enhancing GluA2 binding to essential COPII vesicle proteins, Sec23 and Sec13. GluA2 exit from the ER further depends on IP3 and Ryanodine receptor-controlled Ca2+ release as well as active translation. Synaptic insertion of GluA2 is coupled to removal of high-conducting Ca2+-permeable AMPA receptors from synapses, resulting in synaptic depression. This work demonstrates a novel mechanism in which mGluR signals release AMPA receptors rapidly from the ER and couple ER release to GluA2 synaptic insertion and GluA1 removal.


Assuntos
Retículo Endoplasmático/metabolismo , Neurônios/fisiologia , Receptores de AMPA/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animais , Cálcio/metabolismo , Células Cultivadas , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Ratos Sprague-Dawley , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo
8.
Alcohol Clin Exp Res ; 45(2): 351-364, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33196109

RESUMO

BACKGROUND: Studying synaptic plasticity in the rat hippocampus slice is a well-established way to analyze cellular mechanisms related to learning and memory. Different modes of recording can be used, such as extracellular field excitatory post-synaptic potential (EPSP) and diverse patch-clamp methods. However, most studies using these methods have examined only up to the juvenile stage of brain maturation, which is known to terminate during late adolescence/early adulthood. Moreover, several animal models of human diseases have been developed at this late stage of brain development. To study the vulnerability of adolescent rat to the cognitive impairment of alcohol, we developed a model of binge-like exposure in which ethanol selectively abolishes low frequency stimulation (LFS)-induced, field EPSP long-term depression (LTD) in the rat hippocampus slice. METHODS: In the present study, we sought to use whole-cell patch-clamp recording in the voltage-clamp mode to further investigate the mechanisms involved in the abolition of LFS-induced LTD in our model of binge-like exposure in adolescent rat hippocampus slices. In addition, we investigated LFS-induced NMDAR-LTD and mGluR-LTD at different ages and changed several parameters to improve the recordings. RESULTS: Using patch-clamp recording, LFS-induced NMDAR-LTD and mGluR-LTD could be measured until 4 weeks of age, but not in older animals. Similarly, chemical mGluR-LTD and a combined LFS-LTD involving both N-Methyl-D-Aspartate Receptor (NMDAR) and mGluR were not measured in older animals. The absence of LFS-LTD was not due to the loss of a diffusible intracellular agent nor the voltage mode of recording or intracellular blockade of either sodium or potassium currents. In contrast to voltage-clamp recordings, LFS-induced LTD tested with field recordings was measured at all ages and the effects of EtOH were visible in all cases. CONCLUSIONS: We concluded that whole-cell patch-clamp recordings are not suitable for studying synaptic LFS-induced LTD in rats older than 4 weeks of age and therefore cannot be used to explore electrophysiological disturbances, such as those induced by alcohol binge drinking during adolescence, which constitutes a late period of brain maturation.


Assuntos
Hipocampo/crescimento & desenvolvimento , Depressão Sináptica de Longo Prazo/fisiologia , Plasticidade Neuronal/fisiologia , Técnicas de Patch-Clamp/métodos , Fatores Etários , Animais , Estimulação Elétrica/métodos , Etanol/administração & dosagem , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Masculino , Plasticidade Neuronal/efeitos dos fármacos , Técnicas de Cultura de Órgãos , Ratos , Ratos Sprague-Dawley
9.
J Neurosci ; 39(2): 224-237, 2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30459224

RESUMO

The input-output relationships in neural circuits are determined not only by synaptic efficacy but also by neuronal excitability. Activity-dependent alterations of synaptic efficacy have been extensively investigated, but relatively less is known about how the neuronal output is modulated when synaptic efficacy changes are associated with neuronal excitability changes. In this study, we demonstrate that paired pulses of low-frequency stimulation (PP-LFS) induced metabotropic glutamate receptor (mGluR)-dependent LTD at Schaffer collateral (SC)-CA1 synapses in Sprague Dawley rats (both sexes), and this LTD was associated with EPSP to spike (E-S) potentiation, leading to the increase in action potential (AP) outputs. Threshold voltage (Vth) for APs evoked by synaptic stimulation and that by somatic current injection were hyperpolarized significantly after PP-LFS. Blockers of GABA receptors mimicked and occluded PP-LFS effects on E-S potentiation and Vth hyperpolarization, suggesting that suppression of GABAergic mechanisms is involved in E-S potentiation after PP-LFS. Indeed, IPSCs and tonic inhibitory currents were reduced after PP-LFS. The IPSC reduction was accompanied by increased paired-pulse ratio, and abolished by AM251, a blocker for Type 1 cannabinoid receptors, suggesting that PP-LFS suppresses presynaptic GABA release by mGluR-dependent endocannabinoids signaling. By contrast, a Group 1 mGluR agonist, 3, 5-dihydroxyphenylglycine, induced LTD at SC-CA1 synapses but failed to induce significant IPSC reduction and AP output increase. We propose that mGluR signaling that induces LTD coexpression at excitatory and inhibitory synapses regulates an excitation-inhibition balance to increase neuronal output in CA1 neurons.SIGNIFICANCE STATEMENT Long-lasting forms of synaptic plasticity are usually associated with excitability changes, the ability to fire action potentials. However, excitability changes have been regarded to play subsidiary roles to synaptic plasticity in modifying neuronal output. We demonstrate that, when metabotropic glutamate receptor-dependent LTD is induced by paired pulses of low-frequency stimulation, the action potential output in response to a given input paradoxically increases, indicating that increased excitability is more powerful than synaptic depression. This increase is mediated by the suppression of a presynaptic GABA release via metabotropic glutamate receptor-dependent endocannabinoid signaling. Our study shows that neuronal output changes do not always follow the direction of synaptic plasticity at excitatory synapses, highlighting the importance of regulating inhibitory tone via endocannabinoid signaling.


Assuntos
Região CA1 Hipocampal/fisiologia , Endocanabinoides/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Depressão Sináptica de Longo Prazo/fisiologia , Células Piramidais/fisiologia , Receptores de Glutamato Metabotrópico/metabolismo , Sinapses/fisiologia , Potenciais de Ação/fisiologia , Animais , Região CA1 Hipocampal/citologia , Antagonistas de Receptores de Canabinoides/farmacologia , Feminino , Agonistas GABAérgicos/farmacologia , Antagonistas GABAérgicos/farmacologia , Masculino , Piperidinas/farmacologia , Pirazóis/farmacologia , Ratos , Ratos Sprague-Dawley
10.
Cereb Cortex ; 29(7): 2932-2946, 2019 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-29982412

RESUMO

Metabotropic glutamate receptor-dependent long-term depression (mGluR-LTD) is conventionally considered to be solely dependent on local protein synthesis. Given the impact of epigenetics on memory, the intriguing question is whether epigenetic regulation influences mGluR-LTD as well. G9a/GLP histone lysine methyltransferase complex is crucial for brain development and goal-directed learning as well as for drug-addiction. In this study, we analyzed whether the epigenetic regulation by G9a/GLP complex affects mGluR-LTD in CA1 hippocampal pyramidal neurons of 5-7 weeks old male Wistar rats. In hippocampal slices with intact CA1 dendritic regions, inhibition of G9a/GLP activity abolished mGluR-LTD. The inhibition of this complex upregulated the expression of plasticity proteins like PKMζ, which mediated the prevention of mGluR-LTD expression by regulating the NSF-GluA2-mediated trafficking of AMPA receptors towards the postsynaptic site. G9a/GLP inhibition during the induction of mGluR-LTD also downregulated the protein levels of phosphorylated-GluA2 and Arc. Interestingly, G9a/GLP inhibition could not impede the mGluR-LTD when the cell-body was severed. Our study highlights the role of G9a/GLP complex in intact neuronal network as a bidirectional switch; when turned on, it facilitates the expression of mGluR-LTD, and when turned off, it promotes the expression of long-term potentiation.


Assuntos
Região CA1 Hipocampal/fisiologia , Histona-Lisina N-Metiltransferase/metabolismo , Depressão Sináptica de Longo Prazo/fisiologia , Células Piramidais/fisiologia , Receptores de Glutamato Metabotrópico/metabolismo , Animais , Masculino , Ratos , Ratos Wistar
11.
J Neurosci ; 35(16): 6401-12, 2015 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-25904792

RESUMO

Glutamate, a major neurotransmitter in the brain, activates ionotropic and metabotropic glutamate receptors (iGluRs and mGluRs, respectively). The two types of glutamate receptors interact with each other, as exemplified by the modulation of iGluRs by mGluRs. However, the other way of interaction (i.e., modulation of mGluRs by iGluRs) has not received much attention. In this study, we found that group I mGluR-specific agonist (RS)-3,5-dihydroxyphenylglycine (DHPG) alone is not sufficient to activate phospholipase C (PLC) in rat hippocampus, while glutamate robustly activates PLC. These results suggested that additional mechanisms provided by iGluRs are involved in group I mGluR-mediated PLC activation. A series of experiments demonstrated that glutamate-induced PLC activation is mediated by mGluR5 and is facilitated by local Ca(2+) signals that are induced by AMPA-mediated depolarization and L-type Ca(2+) channel activation. Finally, we found that PLC and L-type Ca(2+) channels are involved in hippocampal mGluR-dependent long-term depression (mGluR-LTD) induced by paired-pulse low-frequency stimulation, but not in DHPG-induced chemical LTD. Together, we propose that AMPA receptors initiate Ca(2+) influx via the L-type Ca(2+) channels that facilitate mGluR5-PLC signaling cascades, which underlie mGluR-LTD in rat hippocampus.


Assuntos
Ácido Glutâmico/fisiologia , Hipocampo/enzimologia , Hipocampo/metabolismo , Receptor de Glutamato Metabotrópico 5/fisiologia , Receptores de AMPA/agonistas , Receptores de Glutamato Metabotrópico/agonistas , Fosfolipases Tipo C/metabolismo , Animais , Cálcio/metabolismo , Canais de Cálcio Tipo L/fisiologia , Ativação Enzimática/efeitos dos fármacos , Ácido Glutâmico/farmacologia , Glicina/análogos & derivados , Glicina/farmacologia , Hipocampo/efeitos dos fármacos , Hipocampo/fisiologia , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Depressão Sináptica de Longo Prazo/fisiologia , Masculino , Ratos , Receptor de Glutamato Metabotrópico 5/agonistas , Receptores de AMPA/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Resorcinóis/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
12.
J Neurochem ; 139 Suppl 2: 200-214, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-26923875

RESUMO

Group I metabotropic glutamate receptor (mGluR) dependent long-term depression (LTD) is a major form of synaptic plasticity underlying learning and memory. The molecular mechanisms involved in mGluR-LTD have been investigated intensively for the last two decades. In this 60th anniversary special issue article, we review the recent advances in determining the mechanisms that regulate the induction, transduction and expression of mGluR-LTD in the hippocampus, with a focus on the mitogen-activated protein kinase (MAPK) pathways. In particular we discuss the requirement of p38 MAPK and extracellular signal-regulated kinase 1/2 (ERK 1/2) activation. The recent advances in understanding the signaling cascades regulating mGluR-LTD are then related to the cognitive impairments observed in neurological disorders, such as fragile X syndrome and Alzheimer's disease. mGluR-LTD is a form of synaptic plasticity that impacts on memory formation. In the hippocampus mitogen-activated protein kinases (MAPKs) have been found to be important in mGluR-LTD. In this 60th anniversary special issue article, we review the independent and complementary roles of two classes of MAPK, p38 and ERK1/2 and link this to the aberrant mGluR-LTD that has an important role in diseases. This article is part of the 60th Anniversary special issue.


Assuntos
Hipocampo/enzimologia , Depressão Sináptica de Longo Prazo/fisiologia , Sistema de Sinalização das MAP Quinases/fisiologia , Doenças do Sistema Nervoso/enzimologia , Receptores de Glutamato Metabotrópico/fisiologia , Animais , Nível de Saúde , Hipocampo/patologia , Humanos , Doenças do Sistema Nervoso/patologia
13.
Proc Natl Acad Sci U S A ; 110(40): 16205-10, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24043809

RESUMO

Some forms of synaptic plasticity require rapid, local activation of protein synthesis. Although this is thought to reflect recruitment of mRNAs to free ribosomes, this would limit the speed and magnitude of translational activation. Here we provide compelling in situ evidence supporting an alternative model in which synaptic mRNAs are transported as stably paused polyribosomes. Remarkably, we show that metabotropic glutamate receptor activation allows the synthesis of proteins that lead to a functional long-term depression phenotype even when translation initiation has been greatly reduced. Thus, neurons evolved a unique mechanism to swiftly translate synaptic mRNAs into functional protein upon synaptic signaling using stalled polyribosomes to bypass the rate-limiting step of translation initiation. Because dysregulated plasticity is implicated in neurodevelopmental and psychiatric disorders such as fragile X syndrome, this work uncovers a unique translational target for therapies.


Assuntos
Regulação da Expressão Gênica/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Polirribossomos/metabolismo , RNA Mensageiro/metabolismo , Sinapses/fisiologia , Animais , Western Blotting , Células HEK293 , Humanos , Immunoblotting , Microscopia Confocal , Proteínas Associadas aos Microtúbulos/metabolismo , Neurônios/metabolismo , Elongação Traducional da Cadeia Peptídica/fisiologia , Polirribossomos/fisiologia , Ratos , Ratos Sprague-Dawley , Potenciais Sinápticos/fisiologia
14.
PNAS Nexus ; 3(2): pgae062, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38384385

RESUMO

Metabotropic glutamate receptor-dependent long-term depression (mGluR-LTD) is an important form of synaptic plasticity that occurs in many regions of the central nervous system and is the underlying mechanism for several learning paradigms. In the hippocampus, mGluR-LTD is manifested by the weakening of synaptic transmission and elimination of dendritic spines. Interestingly, not all spines respond or undergo plasticity equally in response to mGluR-LTD. A subset of dendritic spines containing synaptopodin (SP), an actin-associated protein is critical for mGluR-LTD and protects spines from elimination through mGluR1 activity. The precise cellular function of SP is still enigmatic and it is still unclear how SP contributes to the functional aspect of mGluR-LTD despite its modulation of the structural plasticity. In this study, we show that the lack of SP impairs mGluR-LTD by negatively affecting the mGluR5-dependent activity. Such impairment of mGluR5 activity is accompanied by a significant decrease of surface mGluR5 level in SP knockout (SPKO) mice. Intriguingly, the remaining mGluR-LTD becomes a protein synthesis-independent process in the SPKO and is mediated instead by endocannabinoid signaling. These data indicate that the postsynaptic protein SP can regulate the locus of expression of mGluR-LTD and provide insight into our understanding of spine/synapse-specific plasticity.

15.
Biol Psychiatry ; 92(11): 871-879, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-35871097

RESUMO

BACKGROUND: Cue-induced cocaine craving progressively intensifies (incubates) during abstinence from cocaine self-administration. Expression of incubated cocaine craving depends on elevated calcium-permeable AMPA receptors (CP-AMPARs) on medium spiny neurons in the nucleus accumbens (NAc) core. After incubation has occurred, stimulation of NAc metabotropic glutamate 1 (mGlu1) receptors or systemic administration of mGlu1 positive allosteric modulators removes CP-AMPARs from NAc synapses via dynamin-dependent internalization (mGlu1 long-term depression [LTD]) and thereby reduces incubated cocaine craving. Because mGlu1 positive allosteric modulators are potential therapeutics for cocaine craving, it is important to further define the mechanism triggering this mGlu1-LTD. METHODS: Male and female rats self-administered saline or cocaine (10 days) using a long access regimen (6 h/day). Following ≥40 days of abstinence, we assessed the ability of an mGlu1 positive allosteric modulator to inhibit expression of incubated craving and remove CP-AMPARs from NAc synapses under control conditions, after blocking the integrated stress response (ISR), or after knocking down oligophrenin-1, a mediator of the ISR that can promote AMPAR endocytosis. AMPAR transmission in NAc medium spiny neurons was assessed with ex vivo slice recordings. RESULTS: mGlu1 stimulation reduced cue-induced craving and removed synaptic CP-AMPARs. When the ISR was blocked prior to mGlu1 stimulation, there was no reduction in cue-induced craving, nor were CP-AMPARs removed from the synapse. Further, selective knockdown of oligophrenin-1 blocked mGlu1-LTD. CONCLUSIONS: Our results indicate that mGlu1-LTD in the NAc and consequently the reduction of cue-induced seeking occur through activation of the ISR, which induces translation of oligophrenin-1. We also demonstrate CP-AMPAR accumulation and mGlu1 reversal in female rats, as previously shown in male rats.


Assuntos
Cocaína , Proteínas do Citoesqueleto , Proteínas Ativadoras de GTPase , Plasticidade Neuronal , Animais , Feminino , Masculino , Ratos , Cálcio/metabolismo , Cocaína/farmacologia , Núcleo Accumbens/metabolismo , Ratos Sprague-Dawley , Receptores de AMPA/metabolismo , Autoadministração , Proteínas Ativadoras de GTPase/metabolismo , Proteínas do Citoesqueleto/metabolismo
16.
Mol Brain ; 14(1): 84, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34034796

RESUMO

Down syndrome (DS) is the most frequent genetic cause of intellectual disability including hippocampal-dependent memory deficits. We have previously reported hippocampal mTOR (mammalian target of rapamycin) hyperactivation, and related plasticity as well as memory deficits in Ts1Cje mice, a DS experimental model. Here we characterize the proteome of hippocampal synaptoneurosomes (SNs) from these mice, and found a predicted alteration of synaptic plasticity pathways, including long term depression (LTD). Accordingly, mGluR-LTD (metabotropic Glutamate Receptor-LTD) is enhanced in the hippocampus of Ts1Cje mice and this is correlated with an increased proportion of a particular category of mushroom spines in hippocampal pyramidal neurons. Remarkably, prenatal treatment of these mice with rapamycin has a positive pharmacological effect on both phenotypes, supporting the therapeutic potential of rapamycin/rapalogs for DS intellectual disability.


Assuntos
Espinhas Dendríticas/metabolismo , Espinhas Dendríticas/patologia , Síndrome de Down/patologia , Síndrome de Down/fisiopatologia , Depressão Sináptica de Longo Prazo , Receptores de Glutamato Metabotrópico/metabolismo , Sirolimo/farmacologia , Animais , Espinhas Dendríticas/efeitos dos fármacos , Modelos Animais de Doenças , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/patologia , Hipocampo/fisiopatologia , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Camundongos Transgênicos , Proteínas Mitocondriais/metabolismo , Plasticidade Neuronal/efeitos dos fármacos , Proteômica , Células Piramidais/efeitos dos fármacos , Células Piramidais/metabolismo , Células Piramidais/patologia , Sinapses/efeitos dos fármacos , Sinapses/metabolismo
17.
Neurobiol Aging ; 98: 225-230, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33341653

RESUMO

Impaired mRNA translation (protein synthesis) is linked to Alzheimer's disease (AD) pathophysiology. Recent studies revealed the role of increased phosphorylation of eukaryotic elongation factor 2 (eEF2) in AD-associated cognitive deficits. Phosphorylation of eEF2 (at the Thr56 site) by its only known kinase eEF2K leads to inhibition of general protein synthesis. AD is considered as a disease of "synaptic failure" characterized by impairments of synaptic plasticity, including long-term potentiation (LTP) and long-term depression (LTD). Deficiency of metabotropic glutamate receptor 5-dependent LTD (mGluR-LTD) is indicated in cognitive syndromes associated with various neurological disorders, including AD, but the molecular signaling mechanisms underlying the mGluR-LTD dysregulation in AD remain unclear. In this brief communication, we report genetic repression of eEF2K in aged APP/PS1 AD model mice prevented AD-associated hippocampal mGluR-LTD deficits. Using a pharmacological approach, we further observed that impairments of mGluR-LTD in APP/PS1 mice were rescued by treating hippocampal slices with a small molecule eEF2K antagonist NH125. Our findings, taken together, suggest a critical role of abnormal protein synthesis dysregulation at the elongation phase in AD-associated mGluR-LTD failure, thus providing insights into a mechanistic understanding of synaptic impairments in AD and other related dementia syndromes.


Assuntos
Doença de Alzheimer/etiologia , Potenciação de Longa Duração/genética , Potenciação de Longa Duração/fisiologia , Fator 2 de Elongação de Peptídeos/genética , Fator 2 de Elongação de Peptídeos/metabolismo , Receptor de Glutamato Metabotrópico 5/genética , Receptor de Glutamato Metabotrópico 5/fisiologia , Doença de Alzheimer/genética , Animais , Modelos Animais de Doenças , Hipocampo/metabolismo , Imidazóis/farmacologia , Camundongos Transgênicos , Plasticidade Neuronal/genética , Fator 2 de Elongação de Peptídeos/antagonistas & inibidores , Fosforilação , Biossíntese de Proteínas , Receptor de Glutamato Metabotrópico 5/metabolismo
18.
Front Cell Dev Biol ; 9: 635636, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33585492

RESUMO

p38 is a mitogen-activated protein kinase (MAPK), that responds primarily to stress stimuli. p38 has a number of targets for phosphorylation, including MAPK-activated protein kinase 2 (MK2). MK2 primarily functions as a master regulator of RNA-binding proteins, indirectly controlling gene expression at the level of translation. The role of MK2 in regulating the synthesis of pro-inflammatory cytokines downstream of inflammation and cellular stress is well-described. A significant amount of evidence, however, now points to a role for the p38MAPK-MK2 signaling axis in mediating synaptic plasticity through control of AMPA receptor trafficking and the morphology of dendritic spines. These processes are mediated through control of cytoskeletal dynamics via the activation of cofilin-1 and possibly control of the expression of Arc/Arg3.1. There is evidence that MK2 is necessary for group I metabotropic glutamate receptors long-term depression (mGluR-LTD). Disruption of this signaling may play an important role in mediating cognitive dysfunction in neurological disorders such as fragile X syndrome and Alzheimer's disease. To date, the role of neuronal MK2 mediating synaptic plasticity in response to inflammatory stimuli has not yet been investigated. In immune cells, it is clear that MK2 is phosphorylated following activation of a broad range of cell surface receptors for cytokines and other inflammatory mediators. We propose that neuronal MK2 may be an important player in the link between inflammatory states and dysregulation of synaptic plasticity underlying cognitive functions. Finally, we discuss the potential of the p38MAPK-MK2 signaling axis as target for therapeutic intervention in a number of neurological disorders.

19.
Neuropharmacology ; 155: 121-130, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31129151

RESUMO

The ability to either erase or update the memories of a previously learned spatial task is an essential process that is required to modify behaviour in a changing environment. Current evidence suggests that the neural representation of such cognitive flexibility involves the balancing of synaptic potentiation (acquisition of memories) with synaptic depression (modulation and updating previously acquired memories). Here we demonstrate that the p38 MAPK/MAPK-activated protein kinase 2 (MK2) cascade is required to maintain the precise tuning of long-term potentiation and long-term depression at CA1 synapses of the hippocampus which is correlated with efficient reversal learning. Using the MK2 knockout (KO) mouse, we show that mGluR-LTD, but not NMDAR-LTD, is markedly impaired in mice aged between 4 and 5 weeks (juvenile) to 7 months (mature adult). Although the amplitude of LTP was the same as in wildtype mice, priming of LTP by the activation of group I metabotropic receptors was impaired in MK2 KO mice. Consistent with unaltered LTP amplitude and compromised mGluR-LTD, MK2 KO mice had intact spatial learning when performing the Barnes maze task, but showed specific deficits in selecting the most efficient combination of search strategies to perform the task reversal. Findings from this study suggest that the mGluR-p38-MK2 cascade is important for cognitive flexibility by regulating LTD amplitude and the priming of LTP.


Assuntos
Hipocampo/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Plasticidade Neuronal/fisiologia , Proteínas Serina-Treonina Quinases/deficiência , Receptores de Glutamato Metabotrópico/metabolismo , Reversão de Aprendizagem/fisiologia , Animais , Potenciais Pós-Sinápticos Excitadores/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Depressão Sináptica de Longo Prazo/fisiologia , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos , Camundongos Knockout , Técnicas de Cultura de Órgãos , Proteínas Serina-Treonina Quinases/genética
20.
Front Mol Neurosci ; 11: 353, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30333723

RESUMO

We have previously demonstrated that activation of serotonin 5-HT7 receptors (5-HT7R) reverses metabotropic glutamate receptor-mediated long term depression (mGluR-LTD) in the hippocampus of wild-type (WT) and Fmr1 Knockout (KO) mice, a model of Fragile X Syndrome (FXS) in which mGluR-LTD is abnormally enhanced. Here, we have investigated intracellular mechanisms underlying the effect of 5-HT7R activation using patch clamp on hippocampal slices. Furthermore, we have tested whether in vivo administration of LP-211, a selective 5-HT7R agonist, can rescue learning and behavior in Fmr1 KO mice. In the presence of an adenylate cyclase blocker, mGluR-LTD was slightly enhanced in WT and therefore the difference between mGluR-LTD in WT and Fmr1 KO slices was no longer present. Conversely, activation of adenylate cyclase by either forskolin or Pituitary Adenylate Cyclase Activating Polypeptide (PACAP) completely reversed mGluR-LTD in WT and Fmr1 KO. 5-HT7R activation reversed mGluR-LTD in WT and corrected exaggerated mGluR-LTD in Fmr1 KO; this effect was abolished by blockade of either adenylate cyclase or protein kinase A (PKA). Exposure of hippocampal slices to LP-211 caused an increased phosphorylation of extracellular signal regulated kinase (ERK), an intracellular effector involved in mGluR-LTD, in WT mice. Conversely, this effect was barely detectable in Fmr1 KO mice, suggesting that 5-HT7R-mediated reversal of mGluR-LTD does not require ERK stimulation. Finally, an acute in vivo administration of LP-211 improved novel object recognition (NOR) performance in WT and Fmr1 KO mice and reduced stereotyped behavior in Fmr1 KO mice. Our results indicate that mGluR-LTD in WT and Fmr1 KO slices is bidirectionally modulated in conditions of either reduced or enhanced cAMP formation. Activation of 5-HT7 receptors reverses mGluR-LTD by activation of the cAMP/PKA intracellular pathway. Importantly, a systemic administration of a 5-HT7R agonist to Fmr1 KO mice corrected learning deficits and repetitive behavior. We suggest that selective 5-HT7R agonists might become novel pharmacological tools for FXS therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA