Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am J Physiol Gastrointest Liver Physiol ; 323(6): G562-G570, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36255075

RESUMO

Chronic nausea is a widespread functional disease in children with numerous comorbidities. High-resolution electrogastrogram (HR-EGG) has shown sufficient sensitivity as a noninvasive clinical marker to objectively detect distinct gastric slow wave properties in children with functional nausea. We hypothesized that the increased precision of magnetogastrogram (MGG) slow wave recordings could provide supplementary information not evident on HR-EGG. We evaluated simultaneous pre- and postprandial MGG and HR-EGG recordings in pediatric patients with chronic nausea and healthy asymptomatic subjects, while also measuring nausea intensity and nausea severity. We found significant reductions in postprandial dominant frequency and normogastric power, and higher levels of postprandial bradygastric power in patients with nausea in both MGG and HR-EGG. MGG also detected significantly lower preprandial normogastric power in patients. A significant difference in the mean preprandial gastric slow wave propagation direction was observed in patients as compared with controls in both MGG (control: 180 ± 61°, patient: 34 ±72°; P < 0.05) and HR-EGG (control: 240 ± 39°, patient: 180 ± 46°; P < 0.05). Patients also showed a significant change in the mean slow wave direction between pre- and postprandial periods in MGG (P < 0.05). No statistical differences were observed in propagation speed between healthy subjects and patients in either MGG or HR-EGG pre/postprandial periods. The use of MGG and/or HR-EGG represents an opportunity to assess noninvasively the effects of chronic nausea on gastric slow wave activity. MGG data may offer the opportunity for further refinement of the more portable and economical HR-EGG in future machine-learning approaches for functional nausea.NEW & NOTEWORTHY Pediatric chronic nausea is a difficult-to-measure subjective complaint that requires objective diagnosis, clinical assessment, and individualized treatment plans. Our study demonstrates that multichannel MGG used in conjunction with custom HR-EGG detects key pathological signatures of functional nausea in children. This quantifiable measure may allow more personalized diagnosis and treatment in addition to minimizing the cost and potential radiation associated with current diagnostic approaches.


Assuntos
Motilidade Gastrointestinal , Estômago , Humanos , Criança , Período Pós-Prandial , Biomarcadores , Náusea/diagnóstico
2.
Neurogastroenterol Motil ; 28(6): 837-48, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26839980

RESUMO

BACKGROUND: Gastroparesis is characterized by delayed gastric emptying without mechanical obstruction, but remains difficult to diagnose and distinguish from other gastrointestinal (GI) disorders. Gastroparesis affects the gastric slow wave, but non-invasive assessment has been limited to the electrogastrogram (EGG), which reliably characterizes temporal dynamics but does not provide spatial information. METHODS: We measured gastric slow wave parameters from the EGG and magnetogastrogram (MGG) in patients with gastroparesis and in healthy controls. In addition to dominant frequency (DF) and percentage power distribution (PPD), we measured the propagation velocity from MGG spatiotemporal patterns and the percentage of slow wave coupling (%SWC) from EGG. KEY RESULTS: No significant difference in DF was found between patients and controls. Gastroparesis patients had lower percentages of normogastric frequencies (60 ± 6% vs 78 ± 4%, p < 0.05), and higher brady (9 ± 2% vs 2 ± 1%, p < 0.05) and tachygastric (31 ± 2% vs 19 ± 1%, p < 0.05) frequency content postprandial, indicative of uncoupling. Propagation patterns were substantially different in patients and longitudinal propagation velocity was retrograde at 4.3 ± 2.9 mm/s vs anterograde at 7.4 ± 1.0 mm/s for controls (p < 0.01). No difference was found in %SWC from EGG. CONCLUSIONS & INFERENCES: Gastric slow wave parameters obtained from MGG recordings distinguish gastroparesis patients from controls. Assessment of slow wave propagation may prove critical to characterization of underlying disease processes. Future studies should determine pathologic indicators from MGG associated with other functional gastric disorders, and whether multichannel EGG with appropriate signal processing also reveals pathology.


Assuntos
Diabetes Mellitus/diagnóstico , Diabetes Mellitus/fisiopatologia , Motilidade Gastrointestinal/fisiologia , Gastroparesia/diagnóstico , Gastroparesia/fisiopatologia , Adulto , Feminino , Esvaziamento Gástrico/fisiologia , Gastroparesia/complicações , Humanos , Magnetometria/métodos , Pessoa de Meia-Idade
3.
J Gastroenterol Hepatol Res ; 2(4): 513-519, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-27077053

RESUMO

AIM: Gastric disorders affect the gastric slow wave. The cutaneous electrogastrogram (EGG) evaluates the electrical potential of the slow wave but is limited by the volume conduction properties of the abdominal wall. The magnetogastrogram (MGG) evaluates the gastric magnetic field activity and is not affected as much by the volume conductor properties of the abdominal wall. We hypothesized that MGG would not be as sensitive to body mass index as EGG. METHODS: We simultaneously recorded gastric slow wave signals with mucosal electrodes, a Superconducting Quantum Interference Device magnetometer (SQUID) and cutaneous electrodes before and after a test meal. Data were recorded from representative pools of human volunteers. The sensitivity of EGG and MGG was compared to the body mass index and waist circumference of volunteers. RESULTS: The study population had good linear regression of their Waist circumference (Wc) and Body Mass Index (BMI) (regression coefficient, R=0.9). The mean BMI of the study population was 29.2 ±1.8 kgm-2 and mean Wc 35.7±1.4 inch. We found that while subjects with BMI≥25 showed significant reduction in post-prandial EGG sensitivity, only subjects with BMI≥30 showed similar reduction in post-prandial MGG sensitivity. Sensitivity of SOBI "EGG and MGG" was not affected by the anthropometric measurements. CONCLUSIONS: Compared to electrogastrogram, the sensitivity of the magnetogastrogram is less affected by changes in body mass index and waist circumference. The use of Second Order Blind Identification (SOBI) increased the sensitivity of EGG and MGG recordings and was not affected by BMI or waist circumference.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA