Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Glob Chang Biol ; 30(1): e16991, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37905464

RESUMO

Sea turtles are vulnerable to climate change since their reproductive output is influenced by incubating temperatures, with warmer temperatures causing lower hatching success and increased feminization of embryos. Their ability to cope with projected increases in ambient temperatures will depend on their capacity to adapt to shifts in climatic regimes. Here, we assessed the extent to which phenological shifts could mitigate impacts from increases in ambient temperatures (from 1.5 to 3°C in air temperatures and from 1.4 to 2.3°C in sea surface temperatures by 2100 at our sites) on four species of sea turtles, under a "middle of the road" scenario (SSP2-4.5). Sand temperatures at sea turtle nesting sites are projected to increase from 0.58 to 4.17°C by 2100 and expected shifts in nesting of 26-43 days earlier will not be sufficient to maintain current incubation temperatures at 7 (29%) of our sites, hatching success rates at 10 (42%) of our sites, with current trends in hatchling sex ratio being able to be maintained at half of the sites. We also calculated the phenological shifts that would be required (both backward for an earlier shift in nesting and forward for a later shift) to keep up with present-day incubation temperatures, hatching success rates, and sex ratios. The required shifts backward in nesting for incubation temperatures ranged from -20 to -191 days, whereas the required shifts forward ranged from +54 to +180 days. However, for half of the sites, no matter the shift the median incubation temperature will always be warmer than the 75th percentile of current ranges. Given that phenological shifts will not be able to ameliorate predicted changes in temperature, hatching success and sex ratio at most sites, turtles may need to use other adaptive responses and/or there is the need to enhance sea turtle resilience to climate warming.


Assuntos
Tartarugas , Animais , Tartarugas/fisiologia , Temperatura , Mudança Climática , Reprodução , Razão de Masculinidade
2.
Glob Chang Biol ; 30(1): e17004, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37961789

RESUMO

Climate warming and the feminization of populations due to temperature-dependent sex determination may threaten sea turtles with extinction. To identify sites of heightened risk, we examined sex ratio data and patterns of climate change over multiple decades for 64 nesting sites spread across the globe. Over the last 62 years the mean change in air temperature was 0.85°C per century (SD = 0.65°C, range = -0.53 to +2.5°C, n = 64 nesting sites). Temperatures increased at 40 of the 64 study sites. Female-skewed hatchling or juvenile sex ratios occurred at 57 of the 64 sites, with skews >90% female at 17 sites. We did not uncover a relationship between the extent of warming and sex ratio (r62 = -0.03, p = .802, n = 64 nesting sites). Hence, our results suggest that female-hatchling sex ratio skews are not simply a consequence of recent warming but have likely persisted at some sites for many decades. So other factors aside from recent warming must drive these variations in sex ratios across nesting sites, such as variations in nesting behaviour (e.g. nest depth), substrate (e.g. sand albedo), shading available and rainfall patterns. While overall across sites recent warming is not linked to hatchling sex ratio, at some sites there is both is a high female skew and high warming, such as Raine Island (Australia; 99% female green turtles; 1.27°C warming per century), nesting beaches in Cyprus (97.1% female green turtles; 1.68°C warming per century) and in the Dutch Caribbean (St Eustatius; 91.5% female leatherback turtles; 1.15°C warming per century). These may be among the first sites where management intervention is needed to increase male production. Continued monitoring of sand temperatures and sex ratios are recommended to help identify when high incubation temperatures threaten population viability.


Assuntos
Tartarugas , Animais , Feminino , Masculino , Razão de Masculinidade , Areia , Temperatura , Mudança Climática
3.
Mol Ecol ; 32(3): 628-643, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36336814

RESUMO

Hybridization is known to be part of many species' evolutionary history. Sea turtles have a fascinating hybridization system in which species separated by as much as 43 million years are still capable of hybridizing. Indeed, the largest nesting populations in Brazil of loggerheads (Caretta caretta) and hawksbills (Eretmochelys imbricata) have a high incidence of hybrids between these two species. A third species, olive ridleys (Lepidochelys olivacea), is also known to hybridize although at a smaller scale. Here, we used restriction site-associated DNA sequencing (RAD-Seq) markers, mitogenomes, and satellite-telemetry to investigate the patterns of hybridization and introgression in the Brazilian sea turtle population and their relationship with the migratory behaviours between feeding and nesting aggregations. We also explicitly test if the mixing of two divergent genomes in sea turtle hybrids causes mitochondrial paternal leakage. We developed a new species-specific PCR-assay capable of detecting mitochondrial DNA (mtDNA) inheritance from both parental species and performed ultra-deep sequencing to estimate the abundance of each mtDNA type. Our results show that all adult hybrids are first generation (F1) and most display a loggerhead migratory behaviour. We detected paternal leakage in F1 hybrids and different proportions of mitochondria from maternal and paternal species. Although previous studies showed no significant fitness decrease in hatchlings, our results support genetically-related hybrid breakdown possibly caused by cytonuclear incompatibility. Further research on hybrids from other populations in addition to Brazil and between different species will show if backcross inviability and mitochondrial paternal leakage is observed across sea turtle species.


Assuntos
DNA Mitocondrial , Tartarugas , Animais , DNA Mitocondrial/genética , Tartarugas/genética , Mitocôndrias/genética , Evolução Biológica , Reação em Cadeia da Polimerase
4.
Glob Chang Biol ; 29(23): 6546-6557, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37795641

RESUMO

Projection models are being increasingly used to manage threatened taxa by estimating their responses to climate change. Sea turtles are particularly susceptible to climate change as they have temperature-dependent sex determination and increased sand temperatures on nesting beaches could result in the 'feminisation' of hatchling sex ratios for some populations. This study modelled likely long-term trends in sand temperatures and hatchling sex ratios at an equatorial nesting site for endangered green turtles (Chelonia mydas) and critically endangered hawksbill turtles (Eretmochelys imbricata). A total of 1078 days of sand temperature data were collected from 28 logger deployments at nest depth between 2018 and 2022 in Papua New Guinea (PNG). Long-term trends in sand temperature were generated from a model using air temperature as an environmental proxy. The influence of rainfall and seasonal variation on sand temperature was also investigated. Between 1960 and 2019, we estimated that sand temperature increased by ~0.6°C and the average hatchling sex ratio was relatively balanced (46.2% female, SD = 10.7). No trends were observed in historical rainfall anomalies and projections indicated no further changes to rainfall until 2100. Therefore, the sex ratio models were unlikely to be influenced by changing rainfall patterns. A relatively balanced sex ratio such as this is starkly different to the extremely female-skewed hatchling sex ratio (>99% female) reported for another Coral Sea nesting site, Raine Island (~850 km West). This PNG nesting site is likely rare in the global context, as it is less threatened by climate-induced feminisation. Although there is no current need for 'cooling' interventions, the mean projected sex ratios for 2020-2100 were estimated 76%-87% female, so future interventions may be required to increase male production. Our use of long-term sand temperature and rainfall trends has advanced our understanding of climate change impacts on sea turtles.


Assuntos
Tartarugas , Animais , Feminino , Masculino , Temperatura , Tartarugas/fisiologia , Areia , Mudança Climática , Estações do Ano , Razão de Masculinidade
5.
Dis Aquat Organ ; 152: 61-71, 2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36394141

RESUMO

Despite being the most abundant sea turtle in the world, the olive ridley turtle Lepidochelys olivacea is classified as Vulnerable by the IUCN. There is evidence of congenital malformations in hatchlings, and the associated causes are multifactorial, with both genetic and environmental sources. Santuario Playa Ceuta (SPC) is a sanctuary for the olive ridley, located at the northernmost region of its nesting range in the Mexican Pacific. The objective of this study was to identify and quantify the prevalence and severity of congenital malformations in olive ridley embryos/hatchlings in SPC during the 2017 nesting season. We collected 62907 eggs from 643 relocated nests that were moved to a hatchery, of which 4242 eggs with obvious development did not hatch and were analyzed for this study. Hatching success was 53.9%, with 22.5% of nests (n = 145) and 0.54% of eggs (n = 344) showing embryos or hatchlings with malformations. The nest severity index was 2.4 (range: 1-10) malformed embryos or hatchlings per nest, and the organism severity index was 1.4 (range: 1-7) malformations per malformed embryo or hatchling. Leucism was the most prevalent malformation (34.4%; 170/494 total observed), with the craniofacial region showing the greatest diversity of malformations (17/35 types). Given the geographical position of SPC, extreme environmental conditions (e.g. cold, heat, and dryness) could be one of the main causes of teratogenesis in this species. However, more studies are needed regarding the presence of contaminants, genetic factors, health assessments of nesting females, and malformation rates of nests that remain in situ versus those that are relocated.


Assuntos
Tartarugas , Feminino , Animais , México/epidemiologia
6.
Mol Ecol ; 30(23): 6178-6192, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34390061

RESUMO

Reconstructing past events of hybridization and population size changes are required to understand speciation mechanisms and current patterns of genetic diversity, and ultimately contribute to species' conservation. Sea turtles are ancient species currently facing anthropogenic threats including climate change, fisheries, and illegal hunting. Five of the seven extant sea turtle species are known to currently hybridize, especially along the Brazilian coast where some populations can have ~32%-42% of hybrids. Although frequently observed today, it is not clear what role hybridization plays in the evolutionary diversification of this group of reptiles. In this study, we generated whole genome resequencing data of the five globally distributed sea turtle species to estimate a calibrated phylogeny and the population size dynamics, and to understand the role of hybridization in shaping the genomes of these ancient species. Our results reveal discordant species divergence dates between mitochondrial and nuclear genomes, with a high frequency of conflicting trees throughout the nuclear genome suggesting that some sea turtle species frequently hybridized in the past. The reconstruction of the species' demography showed a general decline in effective population sizes with no signs of recovery, except for the leatherback sea turtle. Furthermore, we discuss the influence of reference bias in our estimates. We show long-lasting ancestral gene flow events within Chelonioidea that continued for millions of years after initial divergence. Speciation with gene flow is a common pattern in marine species, and it raises questions whether current hybridization events should be considered as a part of these species' evolutionary history or a conservation issue.


Assuntos
Tartarugas , Animais , Fluxo Gênico , Genoma , Caça , Hibridização Genética , Tartarugas/genética
7.
Biol Lett ; 16(8): 20200281, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32750267

RESUMO

The application of network methodology in anatomical structures offers new insights on the connectivity pattern of skull bones, skeletal elements and their muscles. Anatomical networks helped to improve our understanding of the water-to-land transition and how the pectoral fins were transformed into limbs via their modular disintegration. Here, we apply the same methodology to tetrapods secondarily adapted to the marine environment. We find that these animals achieved their return to the sea with four types of morphological changes, which can be grouped into two different main strategies. In all marine mammals and the majority of the reptiles, the fin is formed by the persistence of superficial and interdigital connective tissues, like a 'baby mitten', whereas the underlying connectivity pattern of the bones does not influence the formation of the forefin. On the contrary, ichthyosaurs 'zipped up' their fingers and transformed their digits into carpal-like elements, forming a homogeneous and better-integrated forefin. These strategies led these vertebrates into three different macroevolutionary paths exploring the possible spectrum of morphological adaptations.


Assuntos
Evolução Biológica , Fósseis , Animais , Extremidades/anatomia & histologia , Peixes , Répteis/anatomia & histologia , Vertebrados
8.
J Hered ; 107(3): 199-213, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26615184

RESUMO

Hawksbill turtle (Eretmochelys imbricata) populations have experienced global decline because of a history of intense commercial exploitation for shell and stuffed taxidermied whole animals, and harvest for eggs and meat. Improved understanding of genetic diversity and phylogeography is needed to aid conservation. In this study, we analyzed the most geographically comprehensive sample of hawksbill turtles from the Indo-Pacific Ocean, sequencing 766 bp of the mitochondrial control region from 13 locations (plus Aldabra, n = 4) spanning over 13500 km. Our analysis of 492 samples revealed 52 haplotypes distributed in 5 divergent clades. Diversification times differed between the Indo-Pacific and Atlantic lineages and appear to be related to the sea-level changes that occurred during the Last Glacial Maximum. We found signals of demographic expansion only for turtles from the Persian Gulf region, which can be tied to a more recent colonization event. Our analyses revealed evidence of transoceanic migration, including connections between feeding grounds from the Atlantic Ocean and Indo-Pacific rookeries. Hawksbill turtles appear to have a complex pattern of phylogeography, showing a weak isolation by distance and evidence of multiple colonization events. Our novel dataset will allow mixed-stock analyses of hawksbill turtle feeding grounds in the Indo-Pacific by providing baseline data needed for conservation efforts in the region. Eight management units are proposed in our study for the Indo-Pacific region that can be incorporated in conservation plans of this critically endangered species.


Assuntos
Variação Genética , Genética Populacional , Tartarugas/genética , Animais , Teorema de Bayes , DNA Mitocondrial/genética , Espécies em Perigo de Extinção , Evolução Molecular , Feminino , Haplótipos , Modelos Genéticos , Oceano Pacífico , Filogenia , Filogeografia , Análise de Sequência de DNA
9.
J Therm Biol ; 47: 13-8, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25526649

RESUMO

While climate change is now fully recognised as a reality, its impact on biodiversity is still not completely understood. To predict its impact, proxies coherent with the studied ecosystem or species are thus required. Marine turtles are threatened worldwide (though some populations are recovering) as they are particularly sensitive to temperature throughout their entire life cycle. This is especially true at the embryo stage when temperature affects both growth rates and sex determination. Nest temperature is thus of prime importance to understand the persistence of populations in the context of climate change. We analysed the nest temperature of 21 loggerheads (Caretta caretta) originating from Dalyan Beach in Turkey using day-lagged generalised mixed models with autocorrelation. Surprisingly, the selected model for nest temperature includes an effect for sea surface temperature 4-times higher than for air temperature. We also detected a very significant effect of metabolic heating during development compatible with what is already known about marine turtle nests. Our new methodology allows the prediction of marine turtle nest temperatures with good precision based on a combination of air temperature measured at beach level and sea surface temperature in front of the beach. These data are available in public databases for most of the beaches worldwide.


Assuntos
Comportamento de Nidação , Temperatura , Tartarugas , Ar , Animais , Modelos Biológicos , Oceanos e Mares
10.
Proc Biol Sci ; 281(1777): 20132559, 2014 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-24403331

RESUMO

Fisheries bycatch is a critical source of mortality for rapidly declining populations of leatherback turtles, Dermochelys coriacea. We integrated use-intensity distributions for 135 satellite-tracked adult turtles with longline fishing effort to estimate predicted bycatch risk over space and time in the Pacific Ocean. Areas of predicted bycatch risk did not overlap for eastern and western Pacific nesting populations, warranting their consideration as distinct management units with respect to fisheries bycatch. For western Pacific nesting populations, we identified several areas of high risk in the north and central Pacific, but greatest risk was adjacent to primary nesting beaches in tropical seas of Indo-Pacific islands, largely confined to several exclusive economic zones under the jurisdiction of national authorities. For eastern Pacific nesting populations, we identified moderate risk associated with migrations to nesting beaches, but the greatest risk was in the South Pacific Gyre, a broad pelagic zone outside national waters where management is currently lacking and may prove difficult to implement. Efforts should focus on these predicted hotspots to develop more targeted management approaches to alleviate leatherback bycatch.


Assuntos
Migração Animal , Conservação dos Recursos Naturais/métodos , Pesqueiros , Tartarugas/fisiologia , Animais , Oceano Pacífico , Tecnologia de Sensoriamento Remoto
11.
Glob Chang Biol ; 20(8): 2437-49, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24353164

RESUMO

Artificial light at night poses a significant threat to multiple taxa across the globe. In coastal regions, artificial lighting close to marine turtle nesting beaches is disruptive to their breeding success. Prioritizing effective management of light pollution requires an understanding of how the light exposure of nesting areas changes over time in response to changing temporal and spatial distributions of coastal development. We analyzed multitemporal, satellite night-light data, in combination with linear mixed model analysis, to determine broadscale changes in artificial light exposure at Australian marine turtle nesting areas between 1993 and 2010. We found seven marine turtle management units (MU), from five species, have experienced significant increases in light exposure over time, with flatback turtles nesting in east Australia experiencing the fastest increases. The remaining 12 MUs showed no significant change in light exposure. Unchanging MUs included those previously identified as having high exposure to light pollution (located in western Australia and southern Queensland), indicating that turtles in these areas have been potentially exposed to high light levels since at least the early nineties. At a finer geographic scale (within-MU), nine MUs contained nesting areas with significant increases in light exposure. These nesting areas predominantly occurred close to heavily industrialized coastal areas, thus emphasizing the importance of rigorous light management in industry. Within all MUs, nesting areas existed where light levels were extremely low and/or had not significantly increased since 1993. With continued coastal development, nesting females may shift to these darker/unchanging 'buffer' areas in the future. This is valuable information that informs our understanding of the capacity and resilience of marine turtles faced with coastal development: an understanding that is essential for effective marine turtle conservation.


Assuntos
Ecossistema , Iluminação , Tartarugas/fisiologia , Animais , Austrália , Feminino , Comportamento de Nidação
12.
J Therm Biol ; 44: 70-7, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25086976

RESUMO

Climate change poses a unique threat to species with temperature dependent sex determination (TSD), such as marine turtles, where increases in temperature can result in extreme sex ratio biases. Knowledge of the primary sex ratio of populations with TSD is key for providing a baseline to inform management strategies and to accurately predict how future climate changes may affect turtle populations. However, there is a lack of robust data on offspring sex ratio at appropriate temporal and spatial scales to inform management decisions. To address this, we estimate the primary sex ratio of hawksbill hatchlings, Eretmochelys imbricata, from incubation duration of 5514 in situ nests from 10 nesting beaches from two regions in Brazil over the last 27 years. A strong female bias was estimated in all beaches, with 96% and 89% average female sex ratios produced in Bahia (BA) and Rio Grande do Norte (RN). Both inter-annual (BA, 88 to 99%; RN, 75 to 96% female) and inter-beach (BA, 92% to 97%; RN, 81% to 92% female) variability in mean offspring sex ratio was observed. These findings will guide management decisions in Brazil and provide further evidence of highly female-skew sex ratios in hawksbill turtles.


Assuntos
Aclimatação , Razão de Masculinidade , Tartarugas/fisiologia , Animais , Ecossistema , Feminino , Masculino , Comportamento de Nidação , Tartarugas/embriologia
13.
BMC Ecol Evol ; 24(1): 108, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39143507

RESUMO

It has been widely demonstrated that air and sand temperatures influence the anatomy of sea turtle hatchlings. We examined the impact of precipitation during the nesting season on the hatchling body size of loggerhead and green turtles from 37 beaches worldwide. Longitudinal data collected between 2012 and 2018 from Florida (US) and from a sample on Bõa Vista Island (Cabo Verde) carried out in 2019 showed that loggerhead body size at hatching was negatively correlated with precipitation, while precipitation was not correlated with hatchling body size in green turtles. A meta-analysis revealed that precipitation is positively correlated with hatchling mass in loggerhead turtles, while it is positively correlated with straight carapace length and width in green turtle hatchlings. The strongest influence of precipitation was found in the middle of the incubation period of loggerhead turtles in Cabo Verde, and we posit that this is due to an increase in the uptake of water for embryonic growth. These findings highlight the great importance of understanding the correlated effects of regional environmental variables, such as precipitation, on the development of sea turtle hatchlings and will have an impact on the evaluation of ongoing conservation and climate change discussions.


Assuntos
Tamanho Corporal , Tartarugas , Animais , Tartarugas/fisiologia , Tartarugas/crescimento & desenvolvimento , Tamanho Corporal/fisiologia , Chuva , Florida , Clima
14.
Mar Pollut Bull ; 201: 116141, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38401386

RESUMO

The loggerhead turtle (Caretta caretta) has been suggested as a bio-indicator species for plastic pollution. However, detailed investigations in the eastern Mediterranean are limited. Here, we present data from loggerhead turtles (2012-2022; n = 131) of which 42.7 % (n = 57) had ingested macroplastic (pieces ≥ 5 mm). Frequency of occurrence (%) was not found to have changed over time, with body size (CCL cm), between stranded or bycaught turtles, or with levels of digesta present. The characteristics of ingested plastic (n = 492) were largely sheetlike (62 %), clear (41 %) or white (25 %) and the most common polymers identified were Polypropylene (37 %) and Polyethylene (35 %). Strong selectivity was displayed towards certain types, colours and shapes. Data are also presented for posthatchling turtles (n = 4), an understudied life stage. Much larger sample sizes will be needed for this species to be an effective bio-indicator, with the consideration of monitoring green turtles (Chelonia mydas) for the eastern Mediterranean recommended allowing a more holistic picture to be gathered.


Assuntos
Tartarugas , Animais , Conteúdo Gastrointestinal , Plásticos , Poluição Ambiental , Monitoramento Ambiental
15.
Proc Biol Sci ; 280(1768): 20131468, 2013 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-23945687

RESUMO

Organismal movement is an essential component of ecological processes and connectivity among ecosystems. However, estimating connectivity and identifying corridors of movement are challenging in oceanic organisms such as young turtles that disperse into the open sea and remain largely unobserved during a period known as 'the lost years'. Using predictions of transport within an ocean circulation model and data from published genetic analysis, we present to our knowledge, the first basin-scale hypothesis of distribution and connectivity among major rookeries and foraging grounds (FGs) of green turtles (Chelonia mydas) during their 'lost years'. Simulations indicate that transatlantic dispersal is likely to be common and that recurrent connectivity between the southwestern Indian Ocean and the South Atlantic is possible. The predicted distribution of pelagic juvenile turtles suggests that many 'lost years hotspots' are presently unstudied and located outside protected areas. These models, therefore, provide new information on possible dispersal pathways that link nesting beaches with FGs. These pathways may be of exceptional conservation concern owing to their importance for sea turtles during a critical developmental period.


Assuntos
Migração Animal , Simulação por Computador , Tartarugas/fisiologia , Movimentos da Água , Animais , Conservação dos Recursos Naturais , Modelos Teóricos , Oceanos e Mares
16.
Mar Pollut Bull ; 193: 115264, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37423081

RESUMO

Sea turtles are affected by pollutants worldwide, and the polycyclic aromatic hydrocarbons (PAHs) have been detected in different types of samples and at high levels in some cases. The present study brings concentrations of 37 PAHs in liver samples of 17 green turtles Chelonia mydas stranded in northeastern Brazil [four with cutaneous tumors of fibropapillomatosis (FP), being classified as FP+]. Six PAHs were detected in 100% of the liver samples, and all alkylated PAHs were frequently quantified. High levels of phenanthrene (771.20 and 794.43 ng g-1 d.w.) and fluorene (1882.36 ng g-1 d.w.) were found in three females FP- (without FP cutaneous tumors). On the other hand, one green turtle FP+ had the higher level of naphthalene (531.70 ng g-1 d.w.), compound detected in 82.35 % of the samples. Our study brings additional baseline of organic pollutants in green turtles, improving knowledge on bioaccumulation of these compounds in sea turtles.


Assuntos
Poluentes Ambientais , Neoplasias , Hidrocarbonetos Policíclicos Aromáticos , Tartarugas , Animais , Feminino , Brasil , Fígado
17.
Mar Pollut Bull ; 186: 114489, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36549238

RESUMO

Litter is a serious threat to the marine environment, with detrimental effects on wildlife and marine biodiversity. Limited data as a result of funding and logistical challenges in developing countries hamper our understanding of the problem. Here, we employed commercial unmanned aerial vehicle (UAV) as a cost-effective tool to study the exposure of marine turtles to floating marine litter (FML) in waters of Mayo Bay, Philippines. A quadcopter UAV was flown autonomously with on-board camera capturing videos during the flight. Still frames were extracted when either turtle or litter were detected in post-flight processing. The extracted frames were georeferenced and mapped using QGIS software. Results showed that turtles are highly exposed to FML in nearshore waters. Moreover, spatial dependence between FML and turtles was also observed. The study highlights the effectiveness of UAVs in marine litter research and underscores the threat of FML to turtles in nearshore waters.


Assuntos
Tartarugas , Animais , Monitoramento Ambiental/métodos , Filipinas , Fluormetolona , Dispositivos Aéreos não Tripulados , Baías , Plásticos/análise
18.
R Soc Open Sci ; 10(2): 221002, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36778962

RESUMO

How species respond to climate change may impact their extinction probability. Here we link climatology and ecology to tackle a globally important conservation question. For sea turtles, there are concerns that climate warming will cause both the feminization of populations as well as reduced hatchling survival. For 58 nesting sites across the world spanning all seven sea turtle species, we investigated whether warming might be avoided by shifts in nesting phenology to a cooler part of the year. We show that even with the most extreme phenological shift that has been reported to date-an 18-day advance in nesting per °C increase in sea surface temperature (SST)-temperatures will continue to increase at nesting sites with climate warming. We estimate that SST at nesting sites will rise by an average of 0.6°C (standard deviation = 0.9°C, n = 58) when we model a 1.5°C rise in SST combined with a best-case-scenario shift in nesting. Since sea turtles exhibit temperature-dependent sex determination, these temperature rises could lead to increasingly female-biased sex ratios as well as reduced hatchling production at sites across the world. These findings underscore concerns for the long-term survival of this iconic group.

19.
Sci Total Environ ; 879: 163040, 2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-36965720

RESUMO

The loggerhead sea turtle (Caretta caretta) has been selected as sentinel species by the Marine Strategy Framework Directive (MSFD) descriptor 10 in relation to marine litter. In this, and other protected species, there is a need to develop conservative pollution biomarkers equally informative of chemical exposures to those traditionally carried out in metabolic organs, such as the liver. With this aim, plasma from turtles undergoing rehabilitation at the Fundació Oceanogràfic rescue centre (Arca del Mar) were selected and tested for B-esterase measurements. Hydrolysis rates of acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and carboxylesterases (CEs) using four commercial substrates were undertaken on 191 plasma samples. Results indicated that acetylthiocholine was the most adequate substrate of cholinesterases and butyrate esters for CE measures. The correlation of these parameters with well-established blood biochemistry measurements was analysed. B-esterase measures in wild specimens were discussed in relation to age group, pathology on admission to the rescue centre and season; moreover, contrasts with long-term resident turtles were also made. Although this study provides baseline data on B-esterase measures in a large sample size for this species, more complementary information is still needed in terms of population genetics, chemical exposures, and in relation to other biochemical parameters before they can be confidently applied in wild specimens within the regulatory MSFD.


Assuntos
Tartarugas , Animais , Carboxilesterase/metabolismo , Acetilcolinesterase/metabolismo , Butirilcolinesterase/metabolismo , Nível de Saúde
20.
Biodivers Data J ; 11: e98589, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38327292

RESUMO

Background: Six species of marine turtles occur in the Azores Archipelago. The loggerhead, Carettacaretta (Linnaeus, 1758), is by far the most common species and is being constantly monitored and tagged by a joint project between the University of the Azores and the University of Florida since 1989. With the implementation of the tuna fishery observers (for dolphin safe seals), an increment of sea turtle reports has been verified as expected. The leather back turtle, Dermochelyscoriacea (Vandelli, 1761) is the second most observed species in the Azores' EEZ, a fact probably also linked to the tuna fishery observation programme. All other species are occasional/vagrant albeit the green turtle, Cheloniamydas (Linnaeus, 1758) is more commonly seen than the others. Historically, sea turtles were occasionally taken for food in specific fishing villages and ports. Since 1986, sea turtles, as well as all marine mammals, are fully protected in the Azores although human-related activities (e.g. plastics, discarded fishing gear) do generate serious injuries and deaths. New information: In this paper, we update sea turtle species' checklist for the Azores and give detailed geographic coordinates on their known occurrences.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA