RESUMO
Genomic DNA polymorphism and variation in biologically active components of Moringa oleifera were investigated by two different techniques: RAPD-PCR and HPLC analysis. The concentrations of phenolic compounds (cinnamic, caffeic, ferulic, and coumaric acids) and the content of flavonoids (rutin) were quantified by HPLC analysis. Among 20 RAPD primers, 13 were selected to generate polymorphic amplicons producing an average of 5028 bands, of which 83.7% were found to be polymorphic among 57 accessions of M. oleifera (MO 1 to MO 57) and one outgroup (ACB 58) from Banasthali region, India. In total, 57 accessions were clustered into five major groups within the dendrogram. The results of this analysis were further confirmed by principal coordinate analysis (PCoA). There was also high diversity in the concentration of active compounds in the collected samples as revealed by HPLC analysis. The data revealed that the content of polyphenolic compounds varied between 0.06 (sample KVKB) and 210.5 mg/kg (sample BG). The results suggest that there is a strong correlation between phytochemical variables and DNA polymorphism. The study concludes that the results of the genetic, morphological, and phytochemical diversity could be used to select the best accessions of M. oleifera for agricultural cultivation and breeding.
Assuntos
Moringa oleifera/classificação , Compostos Fitoquímicos/isolamento & purificação , Proteínas de Plantas/genética , Cromatografia Líquida de Alta Pressão , Índia , Moringa oleifera/química , Moringa oleifera/genética , Filogenia , Melhoramento Vegetal , Polimorfismo Genético , Análise de Componente Principal , Técnica de Amplificação ao Acaso de DNA PolimórficoRESUMO
Transferring desired genes from wild species to cultivars through alien addition lines (AALs) has been shown to be an effective method for genetic improvement. Cucumis hystrix Chakr. (HH, 2n = 24) is a wild species of Cucumis that possesses many resistant genes. A synthetic allotetraploid species, C. hytivus (HHCC, 2n = 38), was obtained from the cross between cultivated cucumber, C. sativus (CC, 2n = 14), and C. hystrix followed by chromosome doubling. Cucumis sativus - C. hystrix AALs were developed by continuous backcrossing to the cultivated cucumbers. In this study, 10 different types of AALs (CC-H01, CC-H06, CC-H08, CC-H10, CC-H12, CC-H06+H09, CC-H06+H10, CC-H06+H12, CC-H08+H10, CC-H01+H06+H10) were identified based on the analysis of fluorescence in situ hybridization (FISH) and molecular markers specific to C. hystrix chromosomes. And the behavior of the alien chromosomes in three AALs (CC-H01, CC-H06+H10, CC-H01+H06+H10) at meiosis was investigated. The results showed that alien chromosomes paired with C. sativus chromosome in few pollen mother cells (PMCs). Further, disomic alien addition lines (DAALs) carrying a pair of C. hystrix chromosome H10 were screened from the selfed progenies of CC-H10. Chromosome pairing between genomes provides cytological evidence for the possible introgression of alien chromosome segments. The development of AALs could serve as a key step for exploiting and utilizing valuable genes from C. hystrix.
Assuntos
Cucumis sativus/genética , Cucumis/genética , Genoma de Planta , Cromossomos de Plantas , Hibridização Genética , Hibridização in Situ Fluorescente , Meiose , Fenótipo , Especificidade da EspécieRESUMO
In our previous work, a novel high-molecular-weight glutenin subunit (HMW-GS) with an extremely large molecular weight from Aegilops sharonensis was identified that may contribute to excellent wheat (Triticum aestivum) processing quality and increased dough strength, and we further generated HMW-GS homozygous lines by crossing. In this study, we crossed the HMW-GS homozygous line 66-17-52 with 'Chinese Spring' Ph1 mutant CS ph1b to induce chromosome recombination between wheat and Ae. sharonensis. SDS-PAGE was used to identify 19 derived F2 lines with the HMW-GSs of Ae sharonensis. The results of non-denaturing fluorescence in situ hybridization (ND-FISH) indicated that lines 6-1 and 6-7 possessed a substitution of both 5D chromosomes by a pair of 1Ssh chromosomes. Further verification by newly developed 1Ssh-specific chromosome markers showed that these two lines amplified the expected fragment. Thus, it was concluded that lines 6-1 and 6-7 are 1Ssh(5D) chromosome substitution lines. The 1Ssh(5D) chromosome substitution lines, possessing alien subunits with satisfactory quality-associated structural features of large repetitive domains and increased number of subunits, may have great potential in strengthening the viscosity and elasticity of dough made from wheat flour. Therefore, these substitution lines can be used for wheat quality improvement and further production of 1Ssh translocation lines.
Assuntos
Aegilops/metabolismo , Cromossomos de Plantas/genética , Glutens/genética , Triticum/metabolismo , Aegilops/genética , Hibridização in Situ Fluorescente , Peso Molecular , Mutação , Melhoramento Vegetal , Proteínas de Plantas/genética , Locos de Características Quantitativas , Recombinação Genética , Triticum/genéticaRESUMO
Erwinia amylovora and Pseudomonas syringae are bacterial phytopathogens responsible for considerable yield losses in commercial pome fruit production. The pathogens, if left untreated, can compromise tree health and economically impact entire commercial fruit productions. Historically, the choice of effective control methods has been limited. The use of antibiotics was proposed as an effective control method. The identification of these pathogens and screening for the presence of antibiotic resistance is paramount in the adoption and implementation of disease control methods. Molecular tests have been developed and accepted for identification and characterization of these disease-causing organisms. We improved existing molecular tests by developing methods that are equal or superior in robustness for identifying E. amylovora or P. syringae while being faster to execute. In addition, the real-time PCR-based detection method for E. amylovora provided complementary information on the susceptibility or resistance to streptomycin of individual isolates. Finally, we describe a methodology and results that compare the aggressiveness of the different bacterial isolates on four apple cultivars. We show that bacterial isolates exhibit different behaviors when brought into contact with various apple varieties and that the hierarchical clustering of symptom severity indicates a population structure, suggesting a genetic basis for host cultivar specificity.
Assuntos
Antibacterianos/farmacologia , Erwinia amylovora/isolamento & purificação , Pseudomonas syringae/isolamento & purificação , Estreptomicina/farmacologia , Erwinia amylovora/efeitos dos fármacos , Malus/microbiologia , Testes de Sensibilidade Microbiana , Tipagem Molecular , Doenças das Plantas/microbiologia , Pseudomonas syringae/efeitos dos fármacos , Reação em Cadeia da Polimerase em Tempo RealRESUMO
Aspergillus fumigatus is a ubiquitous opportunistic fungal pathogen that can cause aspergillosis in humans. Over the last decade there have been increasing global reports of treatment failure due to triazole resistance. An emerging hypothesis states that agricultural triazole fungicide use causes clinical triazole resistance. Here we test this hypothesis in Hamilton, Ontario, Canada, by examining a total of 195 agricultural, urban, and clinical isolates using 9 highly polymorphic microsatellite markers. For each isolate, the in vitro susceptibilities to itraconazole and voriconazole, 2 triazole drugs commonly used in the management of patients, were also determined. Our analyses suggested frequent gene flow among the agricultural, urban environmental, and clinical populations of A. fumigatus and found evidence for widespread sexual recombination within and among the different populations. Interestingly, all 195 isolates analyzed in this study were susceptible to both triazoles tested. However, compared with the urban population, agricultural and clinical populations showed significantly reduced susceptibility to itraconazole and voriconazole, consistent with ecological niche-specific selective pressures on A. fumigatus populations in Hamilton. Frequent gene flow and genetic recombination among these populations suggest greater attention should be paid to monitor A. fumigatus populations in Hamilton and other similar jurisdictions.
Assuntos
Antifúngicos/farmacologia , Aspergillus fumigatus/efeitos dos fármacos , Farmacorresistência Fúngica/genética , Proteínas Fúngicas/genética , Fungicidas Industriais/farmacologia , Fluxo Gênico , Humanos , Testes de Sensibilidade Microbiana , Repetições de Microssatélites/genética , Ontário , Recombinação Genética , Seleção Genética , Triazóis/farmacologiaRESUMO
Thinopyrum ponticum (Th. ponticum) (2n = 10x = 70) is an important breeding material with excellent resistance and stress tolerance. In this study, we characterized the derivative line CH1113-B13-1-1-2-1 (CH1113-B13) through cytological, morphological, genomic in situ hybridization (GISH), fluorescence in situ hybridization (FISH), expressed sequence tag (EST), and PCR-based landmark unique gene (PLUG) marker analysis. The GISH analysis revealed that CH1113-B13 contained 20 pairs of common wheat chromosomes and one pair of JSt genomic chromosomes. Linkage analysis of Th. ponticum using seven EST and seven PLUG markers indicated that the pair of alien chromosomes belonged to the seventh homeologous group. Nulli-tetrasomic and FISH analysis revealed that wheat 7B chromosomes were absent in CH1113-B13; thus, CH1113-B13 was identified as a 7JSt (7B) substitution line. Finally, adult-stage CH1113-B13 exhibited immunity to wheat stripe rust. This substitution line is therefore a promising germplasm resource for wheat breeding.
Assuntos
Poaceae/genética , Triticum/genética , Triticum/microbiologia , Basidiomycota/patogenicidade , Cruzamentos Genéticos , Resistência à Doença/genética , Eletroforese , Etiquetas de Sequências Expressas , Ligação Genética , Marcadores Genéticos , Hibridização In Situ , Hibridização in Situ Fluorescente , Melhoramento Vegetal , Doenças das Plantas/genética , Doenças das Plantas/microbiologiaRESUMO
Alien addition lines are important for transferring useful genes from alien species into common wheat. Rye is an important and valuable gene resource for improving wheat disease resistance, yield, and environment adaptation. A new wheat-rye addition line, N9436B, was developed from the progeny of the cross of common wheat (Triticum aestivum L., 2n = 6x = 42, AABBDD) cultivar Shaanmai 611 and rye (Secale cereal L., 2n = 2x = 14, RR) accession Austrian rye. We characterized this new line by cytology, genomic in situ hybridization (GISH), fluorescence in situ hybridization (FISH), molecular markers, and disease resistance screening. N9436B was stable in morphology and cytology, with a chromosome composition of 2n = 42 + 2t = 22II. GISH investigations showed that this line contained two rye chromosomes. GISH, FISH, and molecular maker identification suggested that the introduced R chromosome and the missing wheat chromosome arms were 1R chromosome and 2DL chromosome arm, respectively. N9436B exhibited 30-37 spikelets per spike and a high level of resistance to powdery mildew (Blumeria graminis f. sp. tritici, Bgt) isolate E09 at the seedling stage. N9436B was cytologically stable, had the trait of multiple spikelets, and was resistant to powdery mildew; this line should thus be useful in wheat improvement.
Assuntos
Resistência à Doença/genética , Doenças das Plantas/genética , Secale/genética , Triticum/genética , Ascomicetos , Cromossomos de Plantas/genética , Análise Citogenética , Marcadores Genéticos , Hibridização Genética , Cariótipo , Melhoramento Vegetal , Doenças das Plantas/microbiologia , Secale/microbiologia , Triticum/microbiologiaRESUMO
Four homologous and five heterologous gene-specific sequences have been mapped by in situ hybridization on the salivary gland polytene chromosomes of the olive fruit fly, Bactrocera oleae. The nine genes were dispersed on four of the five autosomal chromosomes, thus enriching the available set of chromosome landmarks for this major agricultural pest. Present data further supports the proposed chromosome homologies among B. oleae, Ceratitis capitata, and Drosophila melanogaster and the idea of the conservation of chromosomal element identity throughout dipteran evolution.
Assuntos
Genes de Insetos , Cromossomos Politênicos , Tephritidae/genética , Animais , Mapeamento Cromossômico , Genoma de InsetoRESUMO
Retrotransposons have been used frequently for the development of molecular markers by using their insertion polymorphisms among cultivars, because multiple copies of these elements are dispersed throughout the genome and inserted copies are inherited genetically. Although a large number of long terminal repeat (LTR) retrotransposon families exist in the higher eukaryotic genomes, the identification of families that show high insertion polymorphism has been challenging. Here, we performed an efficient screening of these retrotransposon families using an Illumina HiSeq2000 sequencing platform with comprehensive LTR library construction based on the primer binding site (PBS), which is located adjacent to the 5' LTR and has a motif that is universal and conserved among LTR retrotransposon families. The paired-end sequencing library of the fragments containing a large number of LTR sequences and their insertion sites was sequenced for seven strawberry (Fragaria × ananassa Duchesne) cultivars and one diploid wild species (Fragaria vesca L.). Among them, we screened 24 families with a "unique" insertion site that appeared only in one cultivar and not in any others, assuming that this type of insertion should have occurred quite recently. Finally, we confirmed experimentally the selected LTR families showed high insertion polymorphisms among closely related cultivars.
Assuntos
Primers do DNA/metabolismo , Fragaria/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Retroelementos/genética , Sequências Repetidas Terminais , Sequência de Bases , Sítios de Ligação , Sequência Conservada , DNA de Plantas/genética , DNA de Plantas/metabolismo , Mutagênese Insercional , Polimorfismo GenéticoRESUMO
AIMS: The objective of this study was to compare the protein expression profile between well-differentiated (papillary) and undifferentiated (anaplastic) thyroid carcinoma in Tunisian patients. METHODS: This first Tunisian retrospective study concerned data of 38 thyroid cancer cases (19 papillary carcinoma PTC and 19 anaplastic carcinoma ATC) collected at Salah Azaiez Institute of Tunisia. Immunohistochemistry was used to evaluate tumor expression of different molecular markers (p53, Ki67, E-cadherin, cyclin D1, bcl2, S100 and Her-2). The molecular expression was correlated with the clinicopathological characteristics of the tumors. RESULTS: There were 6 differentially expressed markers when comparing anaplastic thyroid carcinoma ATC with papillary thyroid carcinoma PTC. Expression of p53 and Ki67 were significantly increased in 16 and 18 ATC cases respectively, the Ki67 expression was lost in PTC. Cyclin D1, E-cadherin, bcl2 and S100 were overexpressed in PTC tumors; however, they were significantly decreased in ATC. The last marker, Her-2 was expressed in one case of PTC only. CONCLUSION: Our results, similar with findings of other ethnic groups, showed alteration in expression of molecular markers associated with tumor dedifferentiation, indicating loss of cell cycle control with increased proliferative activity in ATC carcinoma. These data support the hypothesis that ATC may derive from dedifferentiation of preexisting PTC tumor.
Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma Papilar/metabolismo , Carcinoma Anaplásico da Tireoide/metabolismo , Neoplasias da Glândula Tireoide/metabolismo , Adulto , Idoso , Caderinas/metabolismo , Carcinoma Papilar/patologia , Ciclina D1/metabolismo , Feminino , Humanos , Antígeno Ki-67/metabolismo , Masculino , Pessoa de Meia-Idade , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Receptor ErbB-2/metabolismo , Estudos Retrospectivos , Proteínas S100/metabolismo , Carcinoma Anaplásico da Tireoide/patologia , Neoplasias da Glândula Tireoide/patologia , Proteína Supressora de Tumor p53/metabolismo , TunísiaRESUMO
Bladder cancer is the sixth cause of cancer mortality in France and prognosis of muscle-invasive tumors remains poor due to lack of effective treatments. Recent advances in molecular biology applied to tumors and results of recent genome-wide studies have brought a important impact on the understanding of bladder carcinogenesis. Main molecular alterations concern FGFR3, TP53 and HER2, and it is now possible to distinguish three subgroups of tumors according to molecular profile. This paper proposes a review of different genetic and epigenetic alterations in bladder cancer, their potential role as theranostic markers in clinical oncology and new targeted therapies according to the concept of personalized medicine.