Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Exp Physiol ; 109(3): 405-415, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37847495

RESUMO

Mechanical load is one of the main determinants of cardiac structure and function. Mechanical load is studied in vitro using cardiac preparations together with loading protocols (e.g., auxotonic, isometric). However, such studies are often limited by reductionist models and poorly simulated mechanical load profiles. This hinders the physiological relevance of findings. Living myocardial slices have been used to study load in vitro. Living myocardial slices (LMS) are 300-µm-thick intact organotypic preparations obtained from explanted animal or human hearts. They have preserved cellular populations and the functional, structural, metabolic and molecular profile of the tissue from which they are prepared. Using a three-element Windkessel (3EWK) model we previously showed that LMSs can be cultured while performing cardiac work loops with different preload and afterload. Under such conditions, LMSs remodel as a function of the mechanical load applied to them (physiological load, pressure or volume overload). These studies were conducted in commercially available length actuators that had to be extensively modified for culture experiments. In this paper, we demonstrate the design, development and validation of a novel device, MyoLoop. MyoLoop is a bioreactor that can pace, thermoregulate, acquire and process data, and chronically load LMSs and other cardiac tissues in vitro. In MyoLoop, load is parametrised using a 3EWK model, which can be used to recreate physiological and pathological work loops and the remodelling response to these. We believe MyoLoop is the next frontier in basic cardiovascular research enabling reductionist but physiologically relevant in vitro mechanical studies.


Assuntos
Reatores Biológicos , Coração , Animais , Humanos , Miocárdio , Projetos de Pesquisa
2.
J Appl Biomech ; 40(5): 374-382, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39084617

RESUMO

The study aimed to determine differences in sagittal-plane joint biomechanics between athletes with and without knee osteoarthritis (OA) during drop vertical jump 2 years after anterior cruciate ligament reconstruction (ACLR). Forty-one athletes with ACLR completed motion analysis testing during drop vertical jump from 30 cm. Sagittal-plane peak joint angles and moments and joint contributions to total support moment (TSM) were calculated during first landing. Medial compartment knee OA of the reconstructed knee was evaluated using Kellgren-Lawrence scores (ACLR group: Kellgren-Lawrence <2; ACLR-OA group: Kellgren-Lawrence ≥2). The ACLR-OA group (n = 13) had higher hip and lower knee contributions in the surgical limb than the ACLR group and their nonsurgical limb. Further, the ACLR-OA group had higher peak hip extension moment than the ACLR group (P = .024). The ACLR-OA group had significantly lower peak knee extension and ankle plantar flexion moments and TSM (P ≤ .032) than ACLR group. The ACLR-OA group landed with increased hip extension moment, decreased knee extension and ankle plantar flexion moments and TSM, and decreased knee and increased hip contributions to TSM compared with ACLR group. The ACLR-OA group may have adopted movement patterns to decrease knee load and compensated by shifting the load to the hip. Clinicians may incorporate tailored rehabilitation programs that mitigate the decreased knee load to minimize the risk of knee OA after ACLR.


Assuntos
Reconstrução do Ligamento Cruzado Anterior , Osteoartrite do Joelho , Humanos , Reconstrução do Ligamento Cruzado Anterior/reabilitação , Osteoartrite do Joelho/fisiopatologia , Osteoartrite do Joelho/cirurgia , Masculino , Fenômenos Biomecânicos , Feminino , Adulto , Atletas , Amplitude de Movimento Articular , Articulação do Joelho/fisiologia , Articulação do Joelho/fisiopatologia , Lesões do Ligamento Cruzado Anterior/cirurgia , Lesões do Ligamento Cruzado Anterior/fisiopatologia
3.
Basic Res Cardiol ; 117(1): 63, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36449104

RESUMO

Resident cardiac macrophages (rcMACs) are among the most abundant immune cells in the heart. Plasticity and activation are hallmarks of rcMACs in response to changes in the microenvironment, which is essential for in vitro experimentation. The in vivo investigation is confounded by the infiltration of other cells hindering direct studies of rcMACs. As a tool to investigate rcMACs, we applied the ex vivo model of living myocardial slices (LMS). LMS are ultrathin ex vivo multicellular cardiac preparations in which the circulatory network is interrupted. The absence of infiltration in this model enables the investigation of the rcMACs response to immunomodulatory and mechanical stimulations. Such conditions were generated by applying interferon-gamma (IFN-γ) or interleukine-4 (IL-4) and altering the preload of cultured LMS, respectively. The immunomodulatory stimulation of the LMS induced alterations of the gene expression pattern without affecting tissue contractility. Following 24 h culture, low input RNA sequencing of rcMACs isolated from LMS was used for gene ontology analysis. Reducing the tissue stretch (unloading) of LMS altered the gene ontology clusters of isolated rcMACs with intermediate semantic similarity to IFN-γ triggered reaction. Through the overlap of genes affected by IFN-γ and unloading, we identified Allograft inflammatory factor 1 (AIF-1) as a potential marker gene for inflammation of rcMACs as significantly altered in whole immunomodulated LMS. MicroRNAs associated with the transcriptomic changes of rcMACs in unloaded LMS were identified in silico. Here, we demonstrate the approach of LMS to understand load-triggered cardiac inflammation and, thus, identify potential translationally important therapeutic targets.


Assuntos
Coração , Miocárdio , Humanos , Macrófagos , Interferon gama , Inflamação
4.
FASEB J ; 35(5): e21560, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33860543

RESUMO

Glomerular hypertension induces mechanical load to podocytes, often resulting in podocyte detachment and the development of glomerulosclerosis. Although it is well known that podocytes are mechanosensitive, the mechanosensors and mechanotransducers are still unknown. Since filamin A, an actin-binding protein, is already described to be a mechanosensor and mechanotransducer, we hypothesized that filamins could be important for the outside-in signaling as well as the actin cytoskeleton of podocytes under mechanical stress. In this study, we demonstrate that filamin A is the main isoform of the filamin family that is expressed in cultured podocytes. Together with filamin B, filamin A was significantly up-regulated during mechanical stretch (3 days, 0.5 Hz, and 5% extension). To study the role of filamin A in cultured podocytes under mechanical stress, filamin A was knocked down (Flna KD) by specific siRNA. Additionally, we established a filamin A knockout podocyte cell line (Flna KO) by CRISPR/Cas9. Knockdown and knockout of filamin A influenced the expression of synaptopodin, a podocyte-specific protein, focal adhesions as well as the morphology of the actin cytoskeleton. Moreover, the cell motility of Flna KO podocytes was significantly increased. Since the knockout of filamin A has had no effect on cell adhesion of podocytes during mechanical stress, we simultaneously knocked down the expression of filamin A and B. Thereby, we observed a significant loss of podocytes during mechanical stress indicating a compensatory mechanism. Analyzing hypertensive mice kidneys as well as biopsies of patients suffering from diabetic nephropathy, we found an up-regulation of filamin A in podocytes in contrast to the control. In summary, filamin A and B mediate matrix-actin cytoskeleton interactions which are essential for the adaptation of cultured podocyte to mechanical stress.


Assuntos
Citoesqueleto de Actina/metabolismo , Nefropatias Diabéticas/patologia , Filaminas/metabolismo , Adesões Focais/patologia , Glomérulos Renais/patologia , Podócitos/patologia , Estresse Mecânico , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Estudos de Casos e Controles , Adesão Celular , Movimento Celular , Nefropatias Diabéticas/metabolismo , Adesões Focais/metabolismo , Humanos , Glomérulos Renais/metabolismo , Camundongos , Pessoa de Meia-Idade , Podócitos/metabolismo , Estudos Retrospectivos , Transdução de Sinais
5.
J Pineal Res ; 73(4): e12827, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36030553

RESUMO

The biomechanical environment plays a key role in regulating cartilage formation, but the current understanding of mechanotransduction pathways in chondrogenic cells is incomplete. Among the combination of external factors that control chondrogenesis are temporal cues that are governed by the cell-autonomous circadian clock. However, mechanical stimulation has not yet directly been proven to modulate chondrogenesis via entraining the circadian clock in chondroprogenitor cells. The purpose of this study was to establish whether mechanical stimuli entrain the core clock in chondrogenic cells, and whether augmented chondrogenesis caused by mechanical loading was at least partially mediated by the synchronised, rhythmic expression of the core circadian clock genes, chondrogenic transcription factors, and cartilage matrix constituents at both transcript and protein levels. We report here, for the first time, that cyclic uniaxial mechanical load applied for 1 h for a period of 6 days entrains the molecular clockwork in chondroprogenitor cells during chondrogenesis in limb bud-derived micromass cultures. In addition to the several core clock genes and proteins, the chondrogenic markers SOX9 and ACAN also followed a robust sinusoidal rhythmic expression pattern. These rhythmic conditions significantly enhanced cartilage matrix production and upregulated marker gene expression. The observed chondrogenesis-promoting effect of the mechanical environment was at least partially attributable to its entraining effect on the molecular clockwork, as co-application of the small molecule clock modulator longdaysin attenuated the stimulatory effects of mechanical load. This study suggests that an optimal biomechanical environment enhances tissue homoeostasis and histogenesis during chondrogenesis at least partially through entraining the molecular clockwork.


Assuntos
Relógios Circadianos , Melatonina , Condrogênese , Mecanotransdução Celular , Melatonina/farmacologia , Fatores de Transcrição/metabolismo , Condrócitos/metabolismo , Células Cultivadas , Diferenciação Celular
6.
Curr Cardiol Rep ; 24(6): 711-730, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35353328

RESUMO

PURPOSE OF REVIEW: This review combines existing mechano-energetic principles to provide a refreshing perspective in heart failure (HF) and examine if the phenomenon of myocardial fatigue can be rigorously tested in vitro with current technological advances as a bridge between pre-clinical science and clinical practice. RECENT FINDINGS: As a testament to the changing paradigm of HF pathophysiology, there has been a shift of focus from structural to functional causes, as reflected in its modern universal definition and redefined classification. Bolstered by recent landmark trials of sodium-glucose cotransport-2 inhibitors across the HF spectrum, there is a rekindled interest to revisit the basic physiological tenets of energetic efficiency, metabolic flexibility, and mechanical load on myocardial performance. Indeed, these principles are well established in the study of skeletal muscle fatigue. Since both striated muscles share similar sarcomeric building blocks, is it possible that myocardial fatigue can occur in the face of sustained adverse supra-physiological load as a functional cause of HF? Myocardial fatigue is a mechano-energetic concept that offers a novel functional mechanism in HF. It is supported by current studies on exercise-induced cardiac fatigue and reverse translational science such as from recent landmark trials on sodium glucose co-transporter 2 inhibitors in HF. We propose a novel framework of myocardial fatigue, injury, and damage that aligns with the contemporary notion of HF as a continuous spectrum, helps determine the chance and trajectory of myocardial recovery, and aims to unify the plethora of cellular and molecular mechanisms in HF.


Assuntos
Insuficiência Cardíaca , Inibidores do Transportador 2 de Sódio-Glicose , Fadiga/etiologia , Fadiga/metabolismo , Glucose/metabolismo , Humanos , Miocárdio/metabolismo , Sódio/metabolismo
7.
Niger J Clin Pract ; 25(3): 336-341, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35295057

RESUMO

Background: The optimal bonding of adhesives to dentin requires the sealer to be completely removed from the dentinal walls. Aim: This study compared the efficacy of different sealer removal protocols on the microtensile bond strengths (MTBS) of single-step adhesives to a calcium silicate-based bioceramic root canal sealer-contaminated dentin. Materials and Methods: Standardized box-shaped Class I cavities were prepared in human lower third molars (N = 50). All cavities were contaminated with a bioceramic root canal sealer (Endosequence BC Sealer, Brasseler, Savannah, USA), except the control group (G1) cavities. For the experimental groups, contaminated dentin surfaces were wiped with a dry cotton pellet (G2), wiped with a cotton pellet saturated with water (G3), rinsed with the air/water spray (G4), and passively applied aqueous ultrasonic energy with an ultrasonic scaler (G5) before the restoration procedure. All the cavity surface was restored with a one-bottle universal adhesive and composite resin. All the specimens were subjected to both thermocycling (2,500 thermal cycles from 5 to 55°C, with a 30-s dwelling time and a 10-s transfer time) and mechanical loading (50 N load for 100,000 cycles). The restored specimens were sectioned into resin-dentin beams for MTBS evaluation. Additional specimens were prepared for the scanning electron microscopy (SEM) to examine the dentin-adhesive interface (n = 10). Results: No significant difference was found between the mean bond strengths of the groups. In SEM examination, no residual sealer was found in any group. Conclusion: Calcium silicate-based bioceramic sealer was removed from the dentin surface with all removal protocols when evaluated with MTBS after the thermal and mechanical cycle tests.


Assuntos
Adesivos , Dentina , Resinas Compostas , Dentina/química , Humanos , Microscopia Eletrônica de Varredura
8.
J Physiol ; 599(1): 143-155, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33052608

RESUMO

KEY POINTS: microRNAs (miRs) are small non-coding molecules that regulate post-transcriptional target gene expression. miRs are involved in regulating cellular activities in response to mechanical loading in all physiological systems, although it is largely unknown whether this response differs with increasing magnitudes of load. miR-221, miR-222, miR-21-5p and miR-27a-5p were significantly increased in ex vivo cartilage explants subjected to increasing load magnitude and in in vivo joint cartilage exposed to abnormal loading. TIMP3 and CPEB3 are putative miR targets in chondrocytes Identification of mechanically regulated miRs that have potential to impact on tissue homeostasis provides a mechanism by which load-induced tissue behaviour is regulated, in both health and pathology, in all physiological systems. ABSTRACT: MicroRNAs (miRs) are small non-coding molecules that regulate post-transcriptional target gene expression and are involved in mechano-regulation of cellular activities in all physiological systems. It is unknown whether such epigenetic mechanisms are regulated in response to increasing magnitudes of load. The present study investigated mechano-regulation of miRs in articular cartilage subjected to 'physiological' and 'non-physiological' compressive loads in vitro as a model system and validated findings in an in vivo model of abnormal joint loading. Bovine full-depth articular cartilage explants were loaded to 2.5 MPa (physiological) or 7 MPa (non-physiological) (1 Hz, 15 min) and mechanically-regulated miRs identified using next generation sequencing and verified using a quantitative PCR. Downstream targets were verified using miR-specific mimics or inhibitors in conjunction with 3'-UTR luciferase activity assays. A subset of miRs were mechanically-regulated in ex vivo cartilage explants and in vivo joint cartilage. miR-221, miR-222, miR-21-5p and miR-27a-5p were increased and miR-483 levels decreased with increasing load magnitude. Tissue inhibitor of metalloproteinase 3 (TIMP3) and cytoplasmic polyadenylation element binding protein 3 (CPEB3) were identified as putative downstream targets. Our data confirm miR-221 and -222 mechano-regulation and demonstrates novel mechano-regulation of miR-21-5p and miR-27a-5p in ex vivo and in vivo cartilage loading models. TIMP3 and CPEB3 are putative miR targets in chondrocytes. Identification of specific miRs that are regulated by increasing load magnitude, as well as their potential to impact on tissue homeostasis, has direct relevance to other mechano-sensitive physiological systems and provides a mechanism by which load-induced tissue behaviour is regulated, in both health and pathology.


Assuntos
Cartilagem Articular , MicroRNAs , Animais , Bovinos , Condrócitos , MicroRNAs/genética
9.
Int J Mol Sci ; 22(18)2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34575847

RESUMO

Osteoarthritis (OA) is a long-term chronic joint disease characterized by the deterioration of bones and cartilage, which results in rubbing of bones which causes joint stiffness, pain, and restriction of movement. Tissue engineering strategies for repairing damaged and diseased cartilage tissue have been widely studied with various types of stem cells, chondrocytes, and extracellular matrices being on the lead of new discoveries. The application of natural or synthetic compound-based scaffolds for the improvement of chondrogenic differentiation efficiency and cartilage tissue engineering is of great interest in regenerative medicine. However, the properties of such constructs under conditions of mechanical load, which is one of the most important factors for the successful cartilage regeneration and functioning in vivo is poorly understood. In this review, we have primarily focused on natural compounds, particularly extracellular matrix macromolecule-based scaffolds and their combinations for the chondrogenic differentiation of stem cells and chondrocytes. We also discuss different mechanical forces and compression models that are used for In Vitro studies to improve chondrogenic differentiation. Summary of provided mechanical stimulation models In Vitro reviews the current state of the cartilage tissue regeneration technologies and to the potential for more efficient application of cell- and scaffold-based technologies for osteoarthritis or other cartilage disorders.


Assuntos
Diferenciação Celular , Condrócitos/citologia , Condrócitos/metabolismo , Condrogênese , Mecanotransdução Celular , Animais , Biomimética , Cartilagem , Colágeno/metabolismo , Suscetibilidade a Doenças , Matriz Extracelular , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Osteoartrite/etiologia , Osteoartrite/metabolismo , Osteoartrite/patologia , Engenharia Tecidual , Alicerces Teciduais
10.
FASEB J ; 33(12): 14450-14460, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31675484

RESUMO

Hypertension is one of the central causes of kidney damage. In the past it was shown that glomerular hypertension leads to morphologic changes of podocytes and effacement and is responsible for detachment of these postmitotic cells. Because we have shown that podocytes are mechanosensitive and respond to mechanical stress by reorganization of the actin cytoskeleton in vitro, we look for mechanotransducers in podocytes. In this study, we demonstrate that the extracellular matrix protein fibronectin (Fn1) might be a potential candidate. The present study shows that Fn1 is essential for the attachment of podocytes during mechanical stress. By real-time quantitative PCR as well as by liquid chromatography-mass spectrometry, we found a significant up-regulation of Fn1 caused by mechanical stretch (3 d, 0.5 Hz, and 5% extension). To study the role of Fn1 in cultured podocytes under mechanical stress, Fn1 was knocked down (Fn1 KD) by a specific small interfering RNA. Additionally, we established a Fn1 knockout (KO) podocyte cell line (Fn1 KO) by clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9). During mechanical stress, a significant loss of podocytes (>80%) was observed in Fn1 KD as well as Fn1 KO podocytes compared with control cells. Furthermore, Fn1 KO podocytes showed a significant down-regulation of the focal adhesion proteins talin, vinculin, and paxillin and a reduced cell spreading, indicating an important role of Fn1 in adhesion. Analyses of kidney sections from patients with diabetic nephropathy have shown a significant up-regulation of FN1 in contrast to control biopsies. In summary, we show that Fn1 plays an important role in the adaptation of podocytes to mechanical stress.-Kliewe, F., Kaling, S., Lötzsch, H., Artelt, N., Schindler, M., Rogge, H., Schröder, S., Scharf, C., Amann, K., Daniel, C., Lindenmeyer, M. T., Cohen, C. D., Endlich, K., Endlich, N. Fibronectin is up-regulated in podocytes by mechanical stress.


Assuntos
Fibronectinas/metabolismo , Podócitos/fisiologia , Estresse Mecânico , Animais , Fenômenos Biomecânicos , Adesão Celular/fisiologia , Regulação para Baixo , Fibronectinas/genética , Deleção de Genes , Regulação da Expressão Gênica , Humanos , Integrinas/genética , Integrinas/metabolismo , Glomérulos Renais/metabolismo , Camundongos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Regulação para Cima
11.
Clin Oral Implants Res ; 31(12): 1232-1242, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32979889

RESUMO

OBJECTIVES: The study purpose was to examine peri-implant bone alternations around osseointegrated implants caused solely by abutment screw preload stress using different tightening torque values. MATERIALS AND METHODS: Twenty 20- to 22-week-old Japanese white rabbits received two implants each in right and left femurs. Implants were randomly assigned to one of three tightening torque groups or the control (Cont) group. After 8 weeks, 35 Ncm torque was delivered to abutment screws in the recommended torque (RT) group (n = 16). Other screws received 70 Ncm torque as the high torque (HT) group (n = 16). Temporary tightening (TT) groups (n = 8) received only 70 Ncm torque without preload stress as screws were untightened immediately. Cont group (n = 40) remained in situ. Animals were euthanized at 4, 6, 8, and 10 weeks after torque application. Micro-CT images were then taken, and undecalcified ground sections were stained with toluidine blue. RESULTS: Cross-sections of cortical bone showed remodeling activities adjacent to the implant in all groups. While bone marrow spaces appearance was relatively small in Cont and TT groups, RT and HT groups showed large bone marrow spaces and extensive remodeling activity. Bone-to-implant contact was significantly less in RT and HT groups compared with Cont and TT groups at different time points (p Ë‚ .05). Furthermore, RT and HT groups showed significantly less bone volume and area (p Ë‚ .05). CONCLUSION: Results suggested that preload stress without any occlusal loading might negatively affect peri-implant bone stability and initiate bone remodeling. This could alter bone mechanical properties, subsequently influencing long-term implant success.


Assuntos
Dente Suporte , Implantes Dentários , Animais , Parafusos Ósseos/efeitos adversos , Osso e Ossos , Projeto do Implante Dentário-Pivô , Implantes Dentários/efeitos adversos , Análise do Estresse Dentário , Coelhos , Estresse Mecânico , Torque
12.
Sensors (Basel) ; 20(9)2020 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-32357392

RESUMO

This study was conducted to analyze the effects of tillage depth and gear selection on the mechanical load and fuel efficiency of an agricultural tractor during plow tillage. In order to analyze these effects, we developed an agricultural field measuring system consisting of a load measurement part (wheel torque meter, proximity sensor, and real-time kinematic (RTK) global positioning system (GPS)) and a tillage depth measurement part (linear potentiometer and inclinometer). Field tests were carried out using moldboard plows with a maximum tillage depth of 20 cm and three gear selections (M2H, M3L, and M3H) in a rice stubble paddy field for plow tillage. The average travel speed and slip ratio had the lowest M2H and the highest M3L. M3H had the highest theoretical speed, but the travel speed was 0.13 km/h lower than M3L due to the reduction in the axle rotational speed at deep tillage depth. Regarding engine load, the higher the gear, the greater the torque and the lower the axle rotation speed. The front axle load was not significantly affected by the tillage depth as compared to other mechanical parts, except for the M3H gear. The rear axle load generated about twice the torque of the front wheel and overall, it tended to show a higher average rear axle torque at higher gear selection. The rear axle load and fuel rate were found to be most affected by the combination of the tillage depth and gear selection combination. Overall, field test results show that the M3H had the highest fuel efficiency and a high working speed while overcoming high loads at the same tillage depth. In conclusion, M3H is the most suitable gear stage for plow cultivation, and the higher the gear stage and the deeper the tillage depth during plowing, the higher the fuel efficiency. The results of this study will be useful for analyzing mechanical load and fuel efficiency during farm operations. In a future study, we will conduct load analysis studies in other farming operations that consider various soil mechanics factors as well as tillage depths and gear selections.

13.
Exp Cell Res ; 365(1): 106-118, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29499205

RESUMO

Researchers have been using lab-on-a-chip systems to isolate factors for study, simulate laboratory analysis and model cellular, tissue and organ level processes. The technology is increasing rapidly, but the bone field has been slow to keep pace. Novel models are needed that have the power and flexibility to investigate the elegant and synchronous multicellular interactions that occur in normal bone turnover and in disease states in which remodeling is implicated. By removing temporal and spatial limitations and enabling quantification of functional outcomes, the platforms should provide unique environments that are more biomimetic than single cell type systems while minimizing complex systemic effects of in vivo models. This manuscript details the development and characterization of lab-on-a-chip platforms for stimulating osteocytes and quantifying bone remodeling. Our platforms provide the foundation for a model that can be used to investigate remodeling interactions as a whole or as a standard mechanotransduction tool by which isolated activity can be quantified as a function of load.


Assuntos
Remodelação Óssea/fisiologia , Mecanotransdução Celular/fisiologia , Animais , Biomimética/métodos , Linhagem Celular , Dispositivos Lab-On-A-Chip , Camundongos , Microfluídica/métodos , Osteócitos/fisiologia , Células RAW 264.7
14.
NMR Biomed ; 30(8)2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28543921

RESUMO

NMR experiments carried out at magnetic fields below 1 T provide new relaxation parameters unavailable with conventional clinical scanners. Contrast of T1 generally becomes larger towards low fields, as slow molecular reorientation processes dominate relaxation at the corresponding Larmor frequencies. This advantage has to be considered in the context of lower sensitivity and frequently reduced spatial resolution. The layered structure of cartilage is one example where a particularly strong variation of T1 across the tissue occurs, being affected by degenerative diseases such as osteoarthritis (OA). Furthermore, the presence of 1 H-14  N cross-relaxation, leading to so-called quadrupolar dips in the 1 H relaxation time dispersion, provide insight into the concentration and mobility of proteoglycans and collagen in cartilage, both being affected by OA. In this study, low-field imaging and variable-field NMR relaxometry were combined for the first time for tissue samples, employing unidirectional load to probe the mechanical properties. 20 human knee cartilage samples were placed in a compression cell, and studied by determining relaxation profiles without and with applied pressure (0.6 MPa) at 50 µm in-plane resolution, and comparing with volume-averaged T1 dispersion. Samples were subsequently stored in formalin, prepared for histology and graded according to the Mankin score system. Quadrupolar dips and thickness change under load showed the strongest correlation with Mankin grade. Average T1 and change of maximum T1 under load, as well as its position, correlate with thickness and thickness change. Furthermore, T1 (ω) above 25 mT was found to correlate with thickness change. While volume-averaged T1 is not a suitable indicator for OA, its change due to mechanical load and its extreme values are suggested as biomarkers available in low-field MRI systems. The shape of the dispersion T1 (ω) represents a promising access to understanding and quantifying molecular dynamics in tissue, pointing toward future in vivo tissue studies.


Assuntos
Cartilagem Articular/patologia , Cartilagem Articular/fisiopatologia , Espectroscopia de Ressonância Magnética , Osteoartrite do Joelho/patologia , Osteoartrite do Joelho/fisiopatologia , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Fatores de Tempo , Suporte de Carga
15.
Connect Tissue Res ; 58(2): 162-171, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27294971

RESUMO

The healing process of ruptured tendons is suboptimal, taking months to achieve tissue with inferior properties to healthy tendon. Mechanical loading has been shown to positively influence tendon healing. However, high frequency low magnitude (HFLM) loads, which have shown promise in maintaining healthy tendon properties, have not been studied with in vitro injury models. Here, we present and validate an in vitro scratch tendon tissue injury model to investigate effects of HFLM loading on the properties of injured rat tail tendon fascicles (RTTFs). A longitudinal tendon tear was simulated using a needle aseptically to scratch a defined length along individual RTTFs. Tissue viability, biomechanical, and biochemical parameters were investigated before and 7 days after culture . The effects of static, HFLM (20 Hz), and low frequency (1 Hz) cyclic loading or no load were also investigated. Tendon viability was confirmed in damaged RTTFs after 7 days of culture, and the effects of a 0.77 ± 0.06 cm scratch on the mechanical property (tangent modulus) and tissue metabolism in damaged tendons were consistent, showing significant damage severity compared with intact tendons. Damaged tendon fascicles receiving HFLM (20 Hz) loads displayed significantly higher mean tangent modulus than unloaded damaged tendons (212.7 ± 14.94 v 92.7 ± 15.59 MPa), and damaged tendons receiving static loading (117.9 ± 10.65 MPa). HFLM stimulation maintained metabolic activity in 7-day cultured damaged tendons at similar levels to fresh tendons immediately following damage. Only damaged tendons receiving HFLM loads showed significantly higher metabolism than unloaded damaged tendons (relative fluorescence units -7021 ± 635.9 v 3745.1 ± 641.7). These validation data support the use of the custom-made in vitro injury model for investigating the potential of HFLM loading interventions in treating damaged tendons.


Assuntos
Traumatismos dos Tendões , Tendões , Animais , Modelos Animais de Doenças , Masculino , Ratos , Ratos Sprague-Dawley , Cauda , Traumatismos dos Tendões/metabolismo , Traumatismos dos Tendões/patologia , Traumatismos dos Tendões/fisiopatologia , Tendões/metabolismo , Tendões/patologia , Tendões/fisiopatologia , Suporte de Carga
16.
Osteoarthritis Cartilage ; 24(2): 354-63, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26376125

RESUMO

OBJECTIVE: This study investigated the association between spatiotemporal cartilage-subchondral bone plate alterations and mechanical load during ambulation in an experimental rat model of destabilized medial meniscus (DMM). DESIGN: Twelve-week-old Wistar rats (n = 38) underwent DMM surgery on the right knee and sham surgery on the left knee. At 2 and 4 weeks after surgery, subchondral bone changes were evaluated via micro-computed tomography with various knee flexion angles to simulate weight-bearing during rat ambulation under a 3-dimensional motion capture apparatus. Additionally, the biomechanical properties, histology, and ultrastructure of the medial tibia and femoral condyle were evaluated. RESULTS: Focal subchondral bone plate perforations were confirmed in the medial tibia within 2 weeks after surgery and were aggravated rapidly 2 weeks later. This subchondral plate porosity colocalized with articular cartilage lesions as confirmed by histology and scanning electron microscopy, and coincided with the likely point of contact between the posterior femoral condyle and tibial plateau during ambulation. Biomechanical properties were confirmed at the medial tibia, at which stiffness was reduced to approximately half that of the sham-operated knee at 4 weeks after surgery. CONCLUSIONS: Cartilage-subchondral bone plate alterations localized in the region of the point of mechanical load during ambulation in DMM-operated knees, at which the mechanical integrity of cartilage was impaired. These results indicate that DMM-induced increases in mechanical load play an important role in the pathogenesis of early post-traumatic osteoarthritis (OA), and it might accelerate the development of the disease via cartilage-subchondral bone plate crosstalk through increased subchondral plate perforations.


Assuntos
Cartilagem Articular/diagnóstico por imagem , Traumatismos do Joelho/diagnóstico por imagem , Osteoartrite do Joelho/diagnóstico por imagem , Porosidade , Lesões do Menisco Tibial , Caminhada , Suporte de Carga , Animais , Fenômenos Biomecânicos , Cartilagem Articular/metabolismo , Cartilagem Articular/fisiopatologia , Colágeno/metabolismo , Modelos Animais de Doenças , Imuno-Histoquímica , Traumatismos do Joelho/complicações , Traumatismos do Joelho/fisiopatologia , Masculino , Microscopia Eletrônica de Varredura , Osteoartrite do Joelho/etiologia , Osteoartrite do Joelho/fisiopatologia , Ratos , Ratos Wistar , Microtomografia por Raio-X
17.
Connect Tissue Res ; 57(4): 307-18, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27115725

RESUMO

Mechanical load-induced osteogenic differentiation might be the key cellular event in the calcification and ossification of ligamentum flavum. The aim of this study was to investigate the influence of tissue transglutaminase (TGM2) on mechanical load-induced osteogenesis of ligamentum flavum cells. Human ligamentum flavum cells were obtained from 12 patients undergoing lumbar spine surgery. Osteogenic phenotypes of ligamentum flavum cells, such as alkaline phosphatase (ALP), Alizarin red-S stain, and gene expression of osteogenic makers were evaluated following the administration of mechanical load and BMP-2 treatment. The expression of TGM2 was evaluated by real-time PCR, Western blotting, and enzyme-linked immunosorbent assay (ELISA) analysis. Our results showed that mechanical load in combination with BMP-2 enhanced calcium deposition and ALP activity. Mechanical load significantly increased ALP and OC gene expression on day 3, whereas BMP-2 significantly increased ALP, OPN, and Runx2 on day 7. Mechanical load significantly induced TGM2 gene expression and enzyme activity in human ligamentum flavum cells. Exogenous TGM2 increased ALP and OC gene expression; while, inhibited TG activity significantly attenuated mechanical load-induced and TGM2-induced ALP activity. In summary, mechanical load-induced TGM2 expression and enzyme activity is involved in the progression of the calcification of ligamentum flavum.


Assuntos
Proteínas de Ligação ao GTP/metabolismo , Ligamento Amarelo/citologia , Osteogênese , Estresse Mecânico , Transglutaminases/metabolismo , Fosfatase Alcalina/metabolismo , Proteína Morfogenética Óssea 2/genética , Proteína Morfogenética Óssea 2/farmacologia , Calcificação Fisiológica/efeitos dos fármacos , Calcificação Fisiológica/genética , Proteínas de Ligação ao GTP/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Osteogênese/efeitos dos fármacos , Osteogênese/genética , Biossíntese de Proteínas/efeitos dos fármacos , Proteína 2 Glutamina gama-Glutamiltransferase , Reação em Cadeia da Polimerase em Tempo Real , Transglutaminases/genética , Regulação para Cima/efeitos dos fármacos , Suporte de Carga
18.
Proc Natl Acad Sci U S A ; 110(29): 11839-44, 2013 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-23818629

RESUMO

Mechanosensing by flagella is thought to trigger bacterial swarmer-cell differentiation, an important step in pathogenesis. How flagellar motors sense mechanical stimuli is not known. To study this problem, we suddenly increased the viscous drag on motors by a large factor, from very low loads experienced by motors driving hooks or hooks with short filament stubs, to high loads, experienced by motors driving tethered cells or 1-µm latex beads. From the initial speed (after the load change), we inferred that motors running at very low loads are driven by one or at most two force-generating units. Following the load change, motors gradually adapted by increasing their speeds in a stepwise manner (over a period of a few minutes). Motors initially spun exclusively counterclockwise, but then increased the fraction of time that they spun clockwise over a time span similar to that observed for adaptation in speed. Single-motor total internal reflection fluorescence imaging of YFP-MotB (part of a stator force-generating unit) confirmed that the response to sudden increments in load occurred by the addition of new force-generating units. We estimate that 6-11 force-generating units drive motors at high loads. Wild-type motors and motors locked in the clockwise or counterclockwise state behaved in a similar manner, as did motors in cells deleted for the motor protein gene fliL or for genes in the chemotaxis signaling pathway. Thus, it appears that stators themselves act as dynamic mechanosensors. They change their structure in response to changes in external load. How such changes might impact cellular functions other than motility remains an interesting question.


Assuntos
Escherichia coli/fisiologia , Flagelos/fisiologia , Mecanotransdução Celular/fisiologia , Proteínas Motores Moleculares/fisiologia , Proteínas de Bactérias/metabolismo , Fenômenos Biomecânicos , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Flagelina , Proteínas Luminescentes/metabolismo
19.
Birth Defects Res C Embryo Today ; 105(1): 19-33, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25777047

RESUMO

The formation of cartilage from stem cells during development is a complex process which is regulated by both local growth factors and biomechanical cues, and results in the differentiation of chondrocytes into a range of subtypes in specific regions of the tissue. In fetal development cartilage also acts as a precursor scaffold for many bones, and mineralization of this cartilaginous bone precursor occurs through the process of endochondral ossification. In the endochondral formation of bones during fetal development the interplay between cell signalling, growth factors, and biomechanics regulates the formation of load bearing bone, in addition to the joint capsule containing articular cartilage and synovium, generating complex, functional joints from a single precursor anlagen. These joint tissues are subsequently prone to degeneration in adult life and have poor regenerative capabilities, and so understanding how they are created during development may provide useful insights into therapies for diseases, such as osteoarthritis, and restoring bone and cartilage lost in adulthood. Of particular interest is how these tissues regenerate in the mechanically dynamic environment of a living joint, and so experiments performed using 3D models of cartilage development and endochondral ossification are proving insightful. In this review, we discuss some of the interesting models of cartilage development, such as the chick femur which can be observed in ovo, or isolated at a specific developmental stage and cultured organotypically in vitro. Biomaterial and hydrogel-based strategies which have emerged from regenerative medicine are also covered, allowing researchers to make informed choices on the characteristics of the materials used for both original research and clinical translation. In all of these models, we illustrate the essential importance of mechanical forces and mechanotransduction as a regulator of cell behavior and ultimate structural function in cartilage.


Assuntos
Técnicas de Cultura de Células/métodos , Condrogênese/fisiologia , Imageamento Tridimensional/métodos , Modelos Biológicos , Osteogênese/fisiologia , Medicina Regenerativa/métodos , Fenômenos Biomecânicos , Humanos , Medicina Regenerativa/tendências
20.
Am J Physiol Regul Integr Comp Physiol ; 309(12): R1490-8, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26354842

RESUMO

While abnormal hemodynamic forces alter fetal myocardial growth, little is known about whether such insults affect fetal cardiac valve development. We hypothesized that chronically elevated systolic load would detrimentally alter fetal valve growth. Chronically instrumented fetal sheep received either a continuous infusion of adult sheep plasma to increase fetal blood pressure, or a lactated Ringer's infusion as a volume control beginning on day 126 ± 4 of gestation. After 8 days, mean arterial pressure was higher in the plasma infusion group (63.0 mmHg vs. 41.8 mmHg, P < 0.05). Mitral annular septal-lateral diameter (11.9 mm vs. 9.1 mm, P < 0.05), anterior leaflet length (7.7 mm vs. 6.4 mm, P < 0.05), and posterior leaflet length (P2; 4.0 mm vs. 3.0 mm, P < 0.05) were greater in the elevated load group. mRNA levels of Notch-1, TGF-ß2, Wnt-2b, BMP-1, and versican were suppressed in aortic and mitral valve leaflets; elastin and α1 type I collagen mRNA levels were suppressed in the aortic valves only. We conclude that sustained elevated arterial pressure load on the fetal heart valve leads to anatomic remodeling and, surprisingly, suppression of signaling and extracellular matrix genes that are important to valve development. These novel findings have important implications on the developmental origins of valve disease and may have long-term consequences on valve function and durability.


Assuntos
Valva Aórtica/patologia , Coração Fetal/patologia , Hemodinâmica , Hipertensão/complicações , Valva Mitral/patologia , Animais , Valva Aórtica/metabolismo , Valva Aórtica/fisiopatologia , Pressão Arterial , Modelos Animais de Doenças , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Feminino , Coração Fetal/metabolismo , Coração Fetal/fisiopatologia , Peso Fetal , Regulação da Expressão Gênica no Desenvolvimento , Idade Gestacional , Humanos , Hipertensão/patologia , Hipertensão/fisiopatologia , Masculino , Valva Mitral/metabolismo , Valva Mitral/fisiopatologia , Tamanho do Órgão , Gravidez , Gravidez de Gêmeos , RNA Mensageiro/metabolismo , Ovinos , Transdução de Sinais/genética , Sístole , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA