Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 525
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Calcif Tissue Int ; 114(6): 638-649, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38642089

RESUMO

Type 2 diabetes (T2D) increases fracture incidence and fracture-related mortality rates (KK.Cg-Ay/J. The Jackson Laboratory; Available from: https://www.jax.org/strain/002468 ). While numerous mouse models for T2D exist, few effectively stimulate persistent hyperglycemia in both sexes, and even fewer are suitable for bone studies. Commonly used models like db/db and ob/ob have altered leptin pathways, confounding bone-related findings since leptin regulates bone properties (Fajardo et al. in Journal of Bone and Mineral Research 29(5): 1025-1040, 2014). The Yellow Kuo Kondo (KK/Ay) mouse, a polygenic mutation model of T2D, is able to produce a consistent diabetic state in both sexes and addresses the lack of a suitable model of T2D for bone studies. The diabetic state of KK/Ay stems from a mutation in the agouti gene, responsible for coat color in mice. This mutation induces ectopic gene expression across various tissue types, resulting in diabetic mice with yellow fur coats (Moussa and Claycombe in Obesity Research 7(5): 506-514, 1999). Male and female KK/Ay mice exhibited persistent hyperglycemia, defining them as diabetic with blood glucose (BG) levels consistently exceeding 300 mg/dL. Notably, male control mice in this study were also diabetic, presenting a significant limitation. Nevertheless, male and female KK/Ay mice showed significantly elevated BG levels, HbA1c, and serum insulin concentration when compared to the non-diabetic female control mice. Early stages of T2D are characterized by hyperglycemia and hyperinsulinemia resulting from cellular insulin resistance, whereas later stages may feature hypoinsulinemia due to ß-cell apoptosis (Banday et al. Avicenna Journal of Medicine 10(04): 174-188, 2020 and Klein et al. Cell Metabolism 34(1): 11-20, 2022). The observed hyperglycemia, hyperinsulinemia, and the absence of differences in ß-cell mass suggest that KK/Ay mice in this study are modeling the earlier stages of T2D. While compromised bone microarchitecture was observed in this study, older KK/Ay mice, representing more advanced stages of T2D, might exhibit more pronounced skeletal manifestations. Compared to the control group, the femora of KK/Ay mice had higher cortical area and cortical thickness, and improved trabecular properties which would typically be indicative of greater bone strength. However, KK/Ay mice displayed lower cortical tissue mineral density in both sexes and increased cortical porosity in females. Fracture instability toughness of the femora was lower in KK/Ay mice overall compared to controls. These findings indicate that decreased mechanical integrity noted in the femora of KK/Ay mice was likely due to overall bone quality being compromised.


Assuntos
Diabetes Mellitus Tipo 2 , Modelos Animais de Doenças , Mutação , Obesidade , Animais , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Camundongos , Feminino , Masculino , Mutação/genética , Obesidade/genética , Obesidade/metabolismo , Obesidade/complicações , Osso e Ossos/metabolismo , Osso e Ossos/patologia , Camundongos Obesos , Densidade Óssea/genética
2.
J Biomech Eng ; 146(12)2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-39225677

RESUMO

Ascending thoracic aortic aneurysms (aTAAs) can lead to life-threatening dissection and rupture. Recent studies have highlighted aTAA mechanical properties as relevant factors associated with progression. The aim of this study was to quantify in vivo aortic wall stretch in healthy participants and aTAA patients using displacement encoding with stimulated echoes (DENSE) magnetic resonance imaging. Moreover, aTAA wall stretch between surgical and nonsurgical patients was investigated. Finally, DENSE measurements were compared to reference-standard mechanical testing on aTAA specimens from surgical repairs. In total, 18 subjects were recruited, six healthy participants and 12 aTAA patients, for this prospective study. Electrocardiogram-gated DENSE imaging was performed to measure systole-diastole wall stretch, as well as the ratio of aTAA stretch to unaffected descending thoracic aorta stretch. Free-breathing and breath-hold DENSE protocols were used. Uniaxial tensile testing-measured indices were correlated to DENSE measurements in five harvested specimens. in vivo aortic wall stretch was significantly lower in aTAA compared to healthy subjects (1.75±1.44% versus 5.28±1.92%, respectively, P = 0.0004). There was no correlation between stretch and maximum aTAA diameter (P = 0.56). The ratio of aTAA to unaffected thoracic aorta wall stretch was significantly lower in surgical candidates compared to nonsurgical candidates (0.993±0.011 versus 1.017±0.016, respectively, P = 0.0442). Finally, in vivo aTAA wall stretch correlated to wall failure stress and peak modulus of the intima (P = 0.017 and P = 0.034, respectively), while the stretch ratio correlated to whole-wall thickness failure stretch and stress (P = 0.013 and P = 0.040, respectively). Aortic DENSE has the potential to assess differences in aTAA mechanical properties and progressions.


Assuntos
Aneurisma da Aorta Torácica , Imageamento por Ressonância Magnética , Humanos , Aneurisma da Aorta Torácica/diagnóstico por imagem , Aneurisma da Aorta Torácica/fisiopatologia , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Fenômenos Biomecânicos , Fenômenos Mecânicos , Adulto , Estresse Mecânico , Aorta Torácica/diagnóstico por imagem , Aorta Torácica/fisiopatologia , Resistência à Tração
3.
J Biomech Eng ; 146(4)2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38323620

RESUMO

The stress-strain curve of biological soft tissues helps characterize their mechanical behavior. The yield point on this curve is when a specimen breaches its elastic range due to irreversible microstructural damage. The yield point is easily found using the offset yield method in traditional engineering materials. However, correctly identifying the yield point in soft tissues can be subjective due to its nonlinear material behavior. The typical method for yield point identification is visual inspection, which is investigator-dependent and does not lend itself to automation of the analysis pipeline. An automated algorithm to identify the yield point objectively assesses soft tissues' biomechanical properties. This study aimed to analyze data from uniaxial extension testing on biological soft tissue specimens and create a machine learning (ML) model to determine a tissue sample's yield point. We present a trained machine learning model from 279 uniaxial extension curves from testing aneurysmal/nonaneurysmal and longitudinal/circumferential oriented tissue specimens that multiple experts labeled through an adjudication process. The ML model showed a median error of 5% in its estimated yield stress compared to the expert picks. The study found that an ML model could accurately identify the yield point (as defined) in various aortic tissues. Future studies will be performed to validate this approach by visually inspecting when damage occurs and adjusting the model using the ML-based approach.


Assuntos
Aorta , Aprendizado de Máquina , Humanos , Estresse Mecânico , Fenômenos Biomecânicos
4.
J Neuroeng Rehabil ; 21(1): 62, 2024 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658969

RESUMO

BACKGROUND: Stroke remains a major cause of long-term adult disability in the United States, necessitating the need for effective rehabilitation strategies for post-stroke gait impairments. Despite advancements in post-stroke care, existing rehabilitation often falls short, prompting the development of devices like robots and exoskeletons. However, these technologies often lack crucial input from end-users, such as clinicians, patients, and caregivers, hindering their clinical utility. Employing a human-centered design approach can enhance the design process and address user-specific needs. OBJECTIVE: To establish a proof-of-concept of the human-centered design approach by refining the NewGait® exosuit device for post-stroke gait rehabilitation. METHODS: Using iterative design sprints, the research focused on understanding the perspectives of clinicians, stroke survivors, and caregivers. Two design sprints were conducted, including empathy interviews at the beginning of the design sprint to integrate end-users' insights. After each design sprint, the NewGait device underwent refinements based on emerging issues and recommendations. The final prototype underwent mechanical testing for durability, biomechanical simulation testing for clinical feasibility, and a system usability evaluation, where the new stroke-specific NewGait device was compared with the original NewGait device and a commercial product, Theratogs®. RESULTS: Affinity mapping from the design sprints identified crucial categories for stakeholder adoption, including fit for females, ease of donning and doffing, and usability during barefoot walking. To address these issues, a system redesign was implemented within weeks, incorporating features like a loop-backed neoprene, a novel closure mechanism for the shoulder harness, and a hook-and-loop design for the waist belt. Additional improvements included reconstructing anchors with rigid hook materials and replacing latex elastic bands with non-latex silicone-based bands for enhanced durability. Further, changes to the dorsiflexion anchor were made to allow for barefoot walking. Mechanical testing revealed a remarkable 10-fold increase in durability, enduring 500,000 cycles without notable degradation. Biomechanical simulation established the modularity of the NewGait device and indicated that it could be configured to assist or resist different muscles during walking. Usability testing indicated superior performance of the stroke-specific NewGait device, scoring 84.3 on the system usability scale compared to 62.7 for the original NewGait device and 46.9 for Theratogs. CONCLUSION: This study successfully establishes the proof-of-concept for a human-centered design approach using design sprints to rapidly develop a stroke-specific gait rehabilitation system. Future research should focus on evaluating the clinical efficacy and effectiveness of the NewGait device for post-stroke rehabilitation.


Assuntos
Desenho de Equipamento , Exoesqueleto Energizado , Transtornos Neurológicos da Marcha , Reabilitação do Acidente Vascular Cerebral , Humanos , Reabilitação do Acidente Vascular Cerebral/instrumentação , Reabilitação do Acidente Vascular Cerebral/métodos , Transtornos Neurológicos da Marcha/reabilitação , Transtornos Neurológicos da Marcha/etiologia , Design Centrado no Usuário , Feminino , Fenômenos Biomecânicos , Masculino , Pessoa de Meia-Idade , Robótica/instrumentação , Cuidadores
5.
BMC Oral Health ; 24(1): 396, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38549137

RESUMO

BACKGROUND: The stability of implant-abutment connection is crucial to minimize mechanical and biological complications. Therefore, an assessment of the microgap behavior and abutment displacement in different implant-abutment designs was performed. METHODS: Four implant systems were tested, three with a conical implant-abutment connection based on friction fit and a cone angle < 12 ° (Medentika, Medentis, NobelActive) and a system with an angulated connection (< 40°) (Semados). In different static loading conditions (30 N - 90º, 100 N - 90º, 200 N - 30º) the microgap and abutment displacement was evaluated using synchrotron-based microtomography and phase-contrast radioscopy with numerical forward simulation of the optical Fresnel propagation yielding an accuracy down to 0.1 µm. RESULTS: Microgaps were present in all implant systems prior to loading (0.15-9 µm). Values increased with mounting force and angle up to 40.5 µm at an off axis loading of 100 N in a 90° angle. CONCLUSIONS: In contrast to the implant-abutment connection with a large cone angle (45°), the conical connections based on a friction fit (small cone angles with < 12°) demonstrated an abutment displacement which resulted in a deformation of the outer implant wall. The design of the implant-abutment connection seems to be crucial for the force distribution on the implant wall which might influence peri-implant bone stability.


Assuntos
Implantes Dentários , Síncrotrons , Humanos , Projeto do Implante Dentário-Pivô , Simulação por Computador , Dente Suporte , Análise do Estresse Dentário
6.
Artigo em Inglês | MEDLINE | ID: mdl-38642123

RESUMO

BACKGROUND: In recent years, the medical community has witnessed a notable increase in high-energy traumatic injuries, leading to a surge in complex fracture patterns that challenge existing treatment methodologies. Among these, the posterior approach to acetabular fractures stands out for offering direct visualization of the retro-acetabular surface, with current fixation methods relying on 3.5 mm low-profile reconstruction plates and various other implants. Despite the effectiveness of these methods, there is a burgeoning demand for a singular, adaptable implant that not only streamlines the surgical process but also optimizes patient outcomes. METHODS: In an innovative approach to address this need, three-dimensional (3D) models of the posterior acetabular wall were meticulously crafted using AutoCAD® software. The chosen material for the implant was 316L surgical steel for its durability and strength. The design of the implant featured a low-profile mesh structure, which was instrumental in facilitating osteosynthesis. This design allowed for the placement of screws of varying lengths in multiple directions, ensuring the initial reconstruction of the joint in an anatomical position without hindering the placement of the definitive implant. The primary objective was to secure the fixation and stabilization of the fracture by specifically targeting the smaller bone fragments. A comparative analysis was then conducted between this novel plate and a conventional 316L surgical steel, seven-hole, 3.5 mm reconstruction plate through finite element analysis. RESULTS: The comparative analysis unveiled that both plates demonstrated comparable deformation capacities, with no significant differences in load-bearing capabilities observed. This finding suggests that the innovative plate can match the performance of traditional plates used in such surgeries. CONCLUSIONS: The finite element analysis revealed that the newly developed anatomical plate for posterior wall acetabular fractures meets the necessary physical and mechanical criteria for permanent implementation in patients with these fractures. This breakthrough represents a promising advancement that could simplify surgical procedures and potentially elevate patient outcomes. LEVEL OF EVIDENCE II: This study is classified as a Level II, diagnostic study.

7.
J Synchrotron Radiat ; 30(Pt 2): 379-389, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36891851

RESUMO

The microstructure of polycrystals is known to govern the performance of structural materials. This drives the need for mechanical characterization methods capable of probing large representative volumes at the grain and sub-grain scales. In this paper, the use of in situ diffraction contrast tomography (DCT) along with far-field 3D X-ray diffraction (ff-3DXRD) at the Psiché beamline of Soleil is presented and applied to study crystal plasticity in commercially pure titanium. A tensile stress rig was modified to comply with the DCT acquisition geometry and used for in situ testing. DCT and ff-3DXRD measurements were carried out during a tensile test of a tomographic Ti specimen up to 1.1% strain. The evolution of the microstructure was analyzed in a central region of interest comprising about 2000 grains. Using the 6DTV algorithm, DCT reconstructions were successfully obtained and allowed the characterization of the evolution of lattice rotation in the entire microstructure. The results are backed up by comparisons with EBSD and DCT maps acquired at ESRF-ID11 that allowed the validation of the orientation field measurements in the bulk. Difficulties at the grain boundaries are highlighted and discussed in line with increasing plastic strain during the tensile test. Finally, a new outlook is provided on the potential of ff-3DXRD to enrich the present dataset with access to average lattice elastic strain data per grain, on the possibility of performing crystal plasticity simulations from DCT reconstructions, and ultimately on comparisons between experiments and simulations at the scale of the grain.

8.
Adv Exp Med Biol ; 1413: 121-135, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37195529

RESUMO

A key issue facing trachea replacement attempts has been the discrepancy of the mechanical properties between the native tracheal tissue and that of the replacement construct; this difference is often one of the major causes for implant failure in vivo and within clinical efforts. The trachea is composed of distinct structural regions, with each component fulfilling a different role in maintaining overall tracheal stability. The trachea's horseshoe-shaped hyaline cartilage rings, smooth muscle and annular ligament collectively produce an anisotropic tissue that allows for longitudinal extensibility and lateral rigidity. Therefore, any tracheal substitute must be mechanically robust in order to withstand intra-thoracic pressure changes that occur during respiration. Conversely, they must also be able to deform radially to allow for changes in the cross-sectional area during coughing and swallowing. These complicated native tissue characteristics, coupled with a lack of standardised protocols to accurately quantify tracheal biomechanics as guidance for implant design, constitute a significant hurdle for tracheal biomaterial scaffold fabrication. This chapter aims to highlight the pressure forces exerted on the trachea and how they can influence tracheal construct design and also the biomechanical properties of the three main components of the trachea and how to mechanically assess them.


Assuntos
Próteses e Implantes , Traqueia , Cartilagem Hialina , Fenômenos Biomecânicos , Músculo Liso/fisiologia , Engenharia Tecidual
9.
J Neuroeng Rehabil ; 20(1): 11, 2023 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-36683044

RESUMO

BACKGROUND: The mechanical properties of an ankle-foot orthosis (AFO) play an important role in the gait mechanics of the end user. However, testing methodologies for evaluating these mechanical properties are not standardized. The purpose of this study was to compare five different evaluation frameworks to assess AFO stiffness. METHOD: The same 13 carbon composite AFOs were tested with five different methods. Four previously reported custom test fixtures (the BRUCE, KST, SMApp, and EMPIRE) rotated an AFO into dorsiflexion about a defined axis in the sagittal plane. The fifth method involved quasi-static deflection of AFOs into dorsiflexion by hanging weights (HW) from the footplate. AFO rotational stiffness was calculated as the linear fit of the AFO resistive torque and angular deflection. Differences between methods were assessed using descriptive statistics and a repeated measures Friedman with post-hoc Bonferroni-Holm adjusted Wilcoxon signed-rank tests. RESULTS: There were significant differences in measured AFO stiffnesses between test methods. Specifically, the BRUCE and HW methods measured lower stiffness than both the EMPIRE and the KST. Stiffnesses measured by the SMApp were not significantly different than any test method. Stiffnesses were lowest in the HW method, where motion was not constrained to a single plane. The median difference in absolute AFO stiffness across methods was 1.03 Nm/deg with a range of [0.40 to 2.35] Nm/deg. The median relative percent difference, measured as the range of measured stiffness from the five methods over the average measured stiffness was 62% [range 13% to 156%]. When the HW method was excluded, the four previously reported test fixtures produced a median difference in absolute AFO stiffness of 0.52 [range 0.38 to 2.17] Nm/deg with a relative percent difference between the methods of 27% [range 13% to 89%]. CONCLUSIONS: This study demonstrates the importance of developing mechanical testing standards, similar to those that exist for lower limb prosthetics. Lacking standardization, differences in methodology can result in large differences in measured stiffness, particularly for different constraints on motion. Non-uniform measurement practices may limit the clinical utility of AFO stiffness as a metric in AFO prescription and future research.


Assuntos
Tornozelo , Órtoses do Pé , Humanos , Articulação do Tornozelo , Marcha , Projetos de Pesquisa , Fenômenos Biomecânicos , Amplitude de Movimento Articular
10.
Int J Mol Sci ; 24(12)2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37373072

RESUMO

Polypropylene (PP) belongs among the most important commodity plastics due to its widespread application. The color of the PP products can be achieved by the addition of pigments, which can dramatically affect its material characteristics. To maintain product consistency (dimensional, mechanical, and optical), knowledge of these implications is of great importance. This study investigates the effect of transparent/opaque green masterbatches (MBs) and their concentration on the physico-mechanical and optical properties of PP produced by injection molding. The results showed that selected pigments had different nucleating abilities, affecting the dimensional stability and crystallinity of the product. The rheological properties of pigmented PP melts were affected as well. Mechanical testing showed that the presence of both pigments increased the tensile strength and Young's modulus, while the elongation at break was significantly increased only for the opaque MB. The impact toughness of colored PP with both MBs remained similar to that of neat PP. The optical properties were well controlled by the dosing of MBs, and were further related to the RAL color standards, as demonstrated by CIE color space analysis. Finally, the selection of appropriate pigments for PP should be considered, especially in areas where dimensional and color stability, as well as product safety, are highly important.


Assuntos
Plásticos , Polipropilenos , Módulo de Elasticidade , Fungos
11.
Br J Nutr ; 128(8): 1518-1525, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34758890

RESUMO

In the USA, as many as 20 % of recruits sustain stress fractures during basic training. In addition, approximately one-third of female recruits develop Fe deficiency upon completion of training. Fe is a cofactor in bone collagen formation and vitamin D activation, thus we hypothesised Fe deficiency may be contributing to altered bone microarchitecture and mechanics during 12-weeks of increased mechanical loading. Three-week old female Sprague Dawley rats were assigned to one of four groups: Fe-adequate sedentary, Fe-deficient sedentary, Fe-adequate exercise and Fe-deficient exercise. Exercise consisted of high-intensity treadmill running (54 min 3×/week). After 12-weeks, serum bone turnover markers, femoral geometry and microarchitecture, mechanical properties and fracture toughness and tibiae mineral composition and morphometry were measured. Fe deficiency increased the bone resorption markers C-terminal telopeptide type I collagen and tartate-resistant acid phosphatase 5b (TRAcP 5b). In exercised rats, Fe deficiency further increased bone TRAcP 5b, while in Fe-adequate rats, exercise increased the bone formation marker procollagen type I N-terminal propeptide. In the femur, exercise increased cortical thickness and maximum load. In the tibia, Fe deficiency increased the rate of bone formation, mineral apposition and Zn content. These data show that the femur and tibia structure and mechanical properties are not negatively impacted by Fe deficiency despite a decrease in tibiae Fe content and increase in serum bone resorption markers during 12-weeks of high-intensity running in young growing female rats.


Assuntos
Reabsorção Óssea , Deficiências de Ferro , Corrida , Ratos , Feminino , Animais , Tíbia , Fosfatase Ácida Resistente a Tartarato , Densidade Óssea , Ratos Sprague-Dawley , Fêmur
12.
Biomed Eng Online ; 21(1): 80, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36419171

RESUMO

BACKGROUND: Accurate evaluation of the mechanical properties of trabecular bone is important, in which the internal bone marrow plays an important role. The aim of this systematic review is to investigate the roles of bone marrow on the mechanical properties of trabecular bone to better support clinical work and laboratory research. METHODS: A systematic review of the literature published up to June 2022 regarding the role of bone marrow on the mechanical properties of trabecular bone was performed, using PubMed and Web of Science databases. The journal language was limited to English. A total of 431 articles were selected from PubMed (n = 186), Web of Science (n = 244) databases, and other sources (n = 1). RESULTS: After checking, 38 articles were finally included in this study. Among them, 27 articles discussed the subject regarding the hydraulic stiffening of trabecular bone due to the presence of bone marrow. Nine of them investigated the effects of bone marrow on compression tests with different settings, i.e., in vitro experiments under unconfined and confined conditions, and computer model simulations. Relatively few controlled studies reported the influence of bone marrow on the shear properties of trabecular bone. CONCLUSION: Bone marrow plays a non-neglectable role in the mechanical properties of trabecular bone, its contribution varies depending on the different loading types and test settings. To obtain the mechanical properties of trabecular bone comprehensively and accurately, the solid matrix (trabeculae) and fluid-like component (bone marrow) should be considered in parallel rather than tested separately.


Assuntos
Medula Óssea , Osso Esponjoso , Simulação por Computador , Bases de Dados Factuais , Idioma
13.
Eur J Oral Sci ; 130(1): e12832, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34923692

RESUMO

The presence of cariogenic bacteria within the prepared tooth cavity at the adhesive resin-dentin interface is detrimental to the long-term stability and function of composite restorations. Here, we report the synthesis and incorporation of methacrylated azobenzene nanogels within bisphenol A-glycidyl methacrylate/hydroxyethyl methacrylate/ethanol (B/H/E) adhesive resins and evaluate their ability to reduce the bacterial invasion of cariogenic Streptococcus mutans biofilms while preserving the mechanical strength and structural integrity of the critical interfacial connection between the restoration and the tooth. The azobenzene nanogel, with a hydrodynamic radius of < 2 nm and a molecular weight of 12,000 Da, was polymerized within B/H/E adhesive formulations at concentrations of 0.5 wt.%, 1.5 wt.%, and 2.5 wt.%. While the double-bond conversion, cytocompatibility, water solubility, and sorption of the adhesive networks were comparable, azobenzene nanogel networks showed improved hydrophobicity with a ≥ 25° increase in water contact angle. The polymerized adhesive surfaces formulated with azobenzene nanogels showed a 66% reduction in bacterial biofilms relative to the control while maintaining the mechanical properties and micro-tensile bond strength of the adhesive networks. The increased hydrophobicity and antibacterial activity are promising indicators that azobenzene nanogel additives have the potential to increase the durability and longevity of adhesive resins.


Assuntos
Resinas Compostas , Colagem Dentária , Antibacterianos/farmacologia , Compostos Azo , Resinas Compostas/química , Cimentos Dentários , Dentina/química , Adesivos Dentinários/química , Odontologia , Teste de Materiais , Metacrilatos/química , Nanogéis , Resistência à Tração
14.
J Biomech Eng ; 144(3)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34505126

RESUMO

Plate fractures after fixation of a Vancouver Type B1 periprosthetic femoral fracture (PFF) are difficult to treat and could lead to severe disability. However, due to the lack of direct measurement of in vivo performance of the PFF fixation construct, it is unknown whether current standard mechanical tests or previous experimental and computational studies have appropriately reproduced the in vivo mechanics of the plate. To provide a basis for the evaluation and development of appropriate mechanical tests for assessment of plate fracture risk, this study applied loads of common activities of daily living (ADLs) to implanted femur finite element (FE) models with PFF fixation constructs with an existing or a healed PFF. Based on FE simulated plate mechanics, the standard four-point-bend test adequately matched the stress state and the resultant bending moment in the plate as compared with femur models with an existing PFF. In addition, the newly developed constrained three-point-bend tests were able to reproduce plate stresses in models with a healed PFF. Furthermore, a combined bending and compression cadaveric test was appropriate for risk assessment including both plate fracture and screw loosening after the complete healing of PFF. The result of this study provides the means for combined experimental and computational preclinical evaluation of PFF fixation constructs.


Assuntos
Fraturas do Fêmur , Fraturas Periprotéticas , Atividades Cotidianas , Placas Ósseas , Fraturas do Fêmur/cirurgia , Fêmur , Fixação Interna de Fraturas , Humanos , Testes Mecânicos , Fraturas Periprotéticas/cirurgia
15.
Sensors (Basel) ; 22(20)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36298350

RESUMO

We applied a polarization filter array and high-speed camera to the imaging of biological tissues during large, dynamic deformations at 7000 frames per second. The results are compared to previous measurements of similar specimens using a rotating polarizer imaging system. The polarization filter eliminates motion blur and temporal bias from the reconstructed collagen fiber alignment angle and retardation images. The polarization imaging configuration dose pose additional challenges due to the need for calibration of the polarization filter array for a given sample in the same lighting conditions as during the measurement.


Assuntos
Iluminação , Pele , Movimento (Física) , Calibragem , Colágeno
16.
Int J Mol Sci ; 23(14)2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35887250

RESUMO

In this paper, the synthesis, characterization, and properties of crosslinked poly(ε-caprolactone)-based polyurethanes as potential tissue replacement materials are reported. The polyurethane prepolymers were prepared from poly(ε-caprolactone)diol (PCD), polyethylene glycol (PEG)/polylactic acid diol (PLAD), and 1,6-hexamethylene diisocyanate (HDI). In these segmented polyurethanes, the role of PEG/PLAD was to tune the hydrophobic/hydrophilic character of the resulting polymer while sucrose served as a crosslinking agent. PLAD was synthesized by the polycondensation reaction of D,L-lactic acid and investigated by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and nuclear magnetic resonance spectroscopy (NMR). The crosslinked polyurethane samples (SUPURs) obtained were characterized by attenuated total reflectance Fourier-transform infrared spectroscopy (AT-FT-IR), swelling, and mechanical (uniaxial tensile tests) experiments. The thermo and thermomechanical behavior were studied by differential scanning calorimetry (DSC) and dynamical mechanical analysis (DMA). The viability of dental pulp stem cells was investigated in the case of polyurethanes composed of fully biocompatible elements. In our studies, none of our polymers showed toxicity to stem cells (DPSCs).


Assuntos
Poliuretanos , Sacarose , Materiais Biocompatíveis/química , Poliésteres/química , Polietilenoglicóis/química , Polímeros , Poliuretanos/química , Espectroscopia de Infravermelho com Transformada de Fourier
17.
J Prosthodont ; 31(9): 784-790, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35061921

RESUMO

PURPOSE: To evaluate the flexural strength (FS), impact strength (IS), surface roughness (Ra), and hardness of 3D-printed resin incorporating silicon dioxide nanoparticles (SNPs). MATERIALS AND METHODS: A total of 320 acrylic specimens were fabricated with different dimensions according to test specifications and divided into a control group of heat denture base resin, and 3 test groups (80/test (n = 10) of unmodified, 0.25 wt%, and 0.5 wt% SNPs modified 3D-printed resin. 10,000 thermal cycles were performed to half of the fabricated specimens. FS, IS (Charpy impact), Ra, and hardness were evaluated and the collected data was analyzed with ANOVA followed by Tukey's post hoc test (α = 0.05). RESULTS: Incorporating SNPs into 3D-printed resin significantly increased the FS, IS (at 0.5%) and hardness compared to unmodified 3D-printed resin (p < 0.001). However, the FS of pure 3D-printed and 3D/SNP-0.50% resin and IS of all 3D-printed resin groups were significantly lower than the control group (p < 0.0001). Hardness of 3D/SNP-0.25% and 3D/SNP-0.50% was significantly higher than control and unmodified 3D-printed resin (p < 0.0001), with insignificant differences between them. The Ra of all 3D-printed resin groups were significantly higher than control group (p < 0.001), while insignificant difference was found between 3D-printed groups. Thermal cycling significantly reduced FS and hardness for all tested groups, while for IS the reduction was significant only in the control and 3D/SNP-0.50% groups. Thermal cycling significantly increased Ra of the control group and unmodified 3D-printed resin (p < 0.001). CONCLUSION: The addition of SNPs to 3D-printed denture base resin improved its mechanical properties while Ra was not significantly altered. Thermal cycling adversely affected tested properties, except IS of unmodified 3D-printed resin and 3D/SNP-0.25%, and Ra of modified 3D-printed resin.


Assuntos
Nanopartículas , Dióxido de Silício , Bases de Dentadura , Teste de Materiais , Propriedades de Superfície
18.
FASEB J ; 34(10): 13409-13418, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32794252

RESUMO

Elastic fibers containing elastin play an important role in tendon functionality, but the knowledge on presence and function of elastin during tendon healing is limited. The aim of this study was to investigate elastin content and distribution in intact and healing Achilles tendons and to understand how elastin influence the viscoelastic properties of tendons. The right Achilles tendon was completely transected in 81 Sprague-Dawley rats. Elastin content was quantified in intact and healing tendons (7, 14, and 28 days post-surgery) and elastin distribution was visualized by immunohistochemistry at 14 days post-surgery. Degradation of elastin by elastase incubation was used to study the role of elastin on viscoelastic properties. Mechanical testing was either performed as a cyclic test (20× 10 N) or as a creep test. We found significantly higher levels of elastin in healing tendons at all time-points compared to intact tendons (4% in healing tendons 28 days post-surgery vs 2% in intact tendons). The elastin was more widely distributed throughout the extracellular matrix in the healing tendons in contrast to the intact tendon where the distribution was not so pronounced. Elastase incubation reduced the elastin levels by approximately 30% and led to a 40%-50% reduction in creep. This reduction was seen in both intact and healing tendons. Our results show that healing tendons contain more elastin and is more compliable than intact tendons. The role of elastin in tendon healing and tissue compliance indicates a protective role of elastic fibers to prevent re-injuries during early tendon healing. PLAIN LANGUAGE SUMMARY: Tendons transfer high loads from muscles to bones during locomotion. They are primarily made by the protein collagen, a protein that provide strength to the tissues. Besides collagen, tendons also contain other building blocks such as, for example, elastic fibers. Elastic fibers contain elastin and elastin is important for the extensibility of the tendon. When a tendon is injured and ruptured the tissue heals through scar formation. This scar tissue is different from a normal intact tendon and it is important to understand how the tendons heal. Little is known about the presence and function of elastin during healing of tendon injuries. We have shown, in animal experiments, that healing tendons have higher amounts of elastin compared to intact tendons. The elastin is also spread throughout the tissue. When we reduced the levels of this protein, we discovered altered mechanical properties of the tendon. The healing tendon can normally extend quite a lot, but after elastin removal this extensibility was less obvious. The ability of the healing tissue to extend is probably important to protect the tendon from re-injuries during the first months after rupture. We therefore propose that the tendons heal with a large amount of elastin to prevent re-ruptures during early locomotion.


Assuntos
Tendão do Calcâneo , Elastina/fisiologia , Ruptura/metabolismo , Traumatismos dos Tendões/metabolismo , Cicatrização , Tendão do Calcâneo/lesões , Tendão do Calcâneo/metabolismo , Animais , Fenômenos Biomecânicos , Feminino , Ratos , Ratos Sprague-Dawley
19.
Philos Trans A Math Phys Eng Sci ; 379(2203): 20200296, 2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34148416

RESUMO

Single-lap shear (SLS) joints are straightforward to manufacture. This makes them especially attractive for testing polymer composite welded joints. Owing to local heating, which is characteristic of composite welding processes, the production of more geometrically intricate joints (such as double-lap or scarfed joints) or bigger joints (such as end-notched flexure or double cantilever beam) typically entails significant complexity in the design of the welding process. Testing of SLS joints is also uncomplicated and, even though, owing to mixed-mode loading and uneven stress distribution, it does not provide design values, it is widely acknowledged as a valuable tool for comparison. Even so, comparing different aspects of composite welded joints through their corresponding SLS strength values alone can be deceptive. This paper shows that comparison of different welding processes, adherend materials, process parameters or different types of joining techniques through SLS testing is only meaningful when strength values are combined with knowledge on other aspects of the joints such as joint mesostructure, failure modes and joint mechanics. This article is part of a discussion meeting issue 'A cracking approach to inventing new tough materials: fracture stranger than friction'.

20.
Artigo em Inglês | MEDLINE | ID: mdl-34092935

RESUMO

The elastic-plastic properties of mesoscale electrodeposited LIGA Ni alloy specimens are investigated as a function of specimen size, strain rate, and material composition. Two material compositions are studied: a high-strength fine-grained Ni-Fe alloy and a high-ductility coarse-grained Ni-Co alloy. The specimens have thicknesses of approximately 200 µm and gauge widths ranging from 75 µm to 700 µm. Tensile tests are conducted at strain rates of 0.001/s and 1/s using tabletop loading apparatuses and digital image correlation (DIC) for strain measurement. For each test condition, the apparent Young's modulus, yield strength, ultimate tensile strength, and strain hardening exponent and strength coefficient are extracted from the tensile tests. The true strains to failure are also assessed from fractography. Size, rate, and composition effects are discussed. For most properties, the statistical scatter represented by the standard deviation exceeds the measurement uncertainty; the notable exceptions to these observations are the apparent Young's modulus and yield strength, where large measurement uncertainties are ascribed to common experimental factors and material microplasticity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA