Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cereb Cortex ; 33(21): 10918-10930, 2023 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-37718244

RESUMO

The comprehension of metaphor, a vivid and figurative language, is a complex endeavor requiring cooperation among multiple cognitive systems. There are still many important questions regarding neural mechanisms implicated in specific types of metaphor. To address these questions, we conducted activation likelihood estimation meta-analyses on 30 studies (containing data of 480 participants) and meta-analytic connectivity modeling analyses. First, the results showed that metaphor comprehension engaged the inferior frontal gyrus, middle temporal gyrus, fusiform gyrus, lingual gyrus, and middle occipital gyrus-all in the left hemisphere. In addition to the commonly reported networks of language and attention, metaphor comprehension engaged networks of visual. Second, sub-analysis showed that the contextual complexity can modulate figurativeness, with the convergence on the left fusiform gyrus during metaphor comprehension at discourse-level. Especially, right hemisphere only showed convergence in studies of novel metaphors, suggesting that the right hemisphere is more associated with difficulty than metaphorical. The work here extends knowledge of the neural mechanisms underlying metaphor comprehension in individual brain regions and neural networks.


Assuntos
Compreensão , Metáfora , Humanos , Compreensão/fisiologia , Lateralidade Funcional/fisiologia , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Mapeamento Encefálico , Redes Neurais de Computação
2.
Neuroimage ; 227: 117666, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33359341

RESUMO

Social exclusion refers to the experience of being disregarded or rejected by others and has wide-ranging negative consequences for well-being and cognition. Cyberball, a game where a ball is virtually tossed between players, then leads to the exclusion of the research participant, is a common method used to examine the experience of social exclusion. The neural correlates of social exclusion remain a topic of debate, particularly with regards to the role of the dorsal anterior cingulate cortex (dACC) and the concept of social pain. Here we conducted a quantitative meta-analysis using activation likelihood estimation (ALE) to identify brain activity reliably engaged by social exclusion during Cyberball task performance (Studies = 53; total N = 1,817 participants). Results revealed consistent recruitment in ventral anterior cingulate and posterior cingulate cortex, inferior and superior frontal gyri, posterior insula, and occipital pole. No reliable activity was observed in dACC. Using a probabilistic atlas to define dACC, fewer than 15% of studies reported peak coordinates in dACC. Meta-analytic connectivity mapping suggests patterns of co-activation are consistent with the topography of the default network. Reverse inference for cognition associated with reliable Cyberball activity computed in Neurosynth revealed social exclusion to be associated with cognitive terms Social, Autobiographical, Mental States, and Theory of Mind. Taken together, these findings highlight the role of the default network in social exclusion and warns against interpretations of the dACC as a key region involved in the experience of social exclusion in humans.


Assuntos
Encéfalo/fisiologia , Rede de Modo Padrão/fisiologia , Isolamento Social , Mapeamento Encefálico/métodos , Humanos , Imageamento por Ressonância Magnética/métodos , Distância Psicológica
3.
Neuroimage ; 245: 118731, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34788662

RESUMO

Numerous neuroimaging studies have investigated the neural mechanisms of two mutually independent yet closely related cognitive processes aiding humans to navigate complex societies: social hierarchy-related learning (SH-RL) and social hierarchy-related interaction (SH-RI). To integrate these heterogeneous results into a more fine-grained and reliable characterization of the neural basis of social hierarchy, we combined coordinate-based meta-analyses with connectivity and functional decoding analyses to understand the underlying neuropsychological mechanism of SH-RL and SH-RI. We identified the anterior insula and temporoparietal junction (dominance detection), medial prefrontal cortex (information updating and computation), and intraparietal sulcus region, amygdala, and hippocampus (social hierarchy representation) as consistent activated brain regions for SH-RL, but the striatum, amygdala, and hippocampus associated with reward processing for SH-RI. Our results provide an overview of the neural architecture of the neuropsychological processes underlying how we understand, and interact within, social hierarchy.


Assuntos
Mapeamento Encefálico/métodos , Neuroimagem Funcional , Hierarquia Social , Aprendizagem/fisiologia , Humanos , Modelos Neurológicos , Modelos Psicológicos , Reforço Psicológico
4.
Neuroimage ; 238: 118264, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34129948

RESUMO

Humans use different spatial reference frames (allocentric or egocentric) to navigate successfully toward their destination in different spatial scale spaces (environmental or vista). However, it remains unclear how the brain represents different spatial scales and different spatial reference frames. Thus, we conducted an activation likelihood estimation (ALE) meta-analysis of 47 fMRI articles involving human spatial navigation. We found that both the environmental and vista spaces activated the parahippocampal place area (PPA), retrosplenial complex (RSC), and occipital place area in the right hemisphere. The environmental space showed stronger activation than the vista space in the occipital and frontal regions. No brain region exhibited stronger activation for the vista than the environmental space. The allocentric and egocentric reference frames activated the bilateral PPA and right RSC. The allocentric frame showed more stronger activations than the egocentric frame in the right culmen, left middle frontal gyrus, and precuneus. No brain region displayed stronger activation for the egocentric than the allocentric navigation. Our findings suggest that navigation in different spatial scale spaces can evoke specific and common brain regions, and that the brain regions representing spatial reference frames are not absolutely separated.


Assuntos
Rede Nervosa/fisiologia , Lobo Occipital/fisiologia , Giro Para-Hipocampal/fisiologia , Percepção Espacial/fisiologia , Navegação Espacial/fisiologia , Meio Ambiente , Humanos
5.
Neuroimage ; 231: 117833, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33549749

RESUMO

Neural networks involved in placebo analgesia and nocebo hyperalgesia processes have been widely investigated with neuroimaging methods. However, few studies have directly compared these two processes and it remains unclear whether common or distinct neural circuits are involved. To address this issue, we implemented a coordinate-based meta-analysis and compared neural representations of placebo analgesia (30 studies; 205 foci; 677 subjects) and nocebo hyperalgesia (22 studies; 301 foci; 401 subjects). Contrast analyses confirmed placebo-specific concordance in the right ventral striatum, and nocebo-specific concordance in the dorsal anterior cingulate cortex (dACC), left posterior insula and left parietal operculum during combined pain anticipation and administration stages. Importantly, no overlapping regions were found for these two processes in conjunction analyses, even when the threshold was low. Meta-analytic connectivity modeling (MACM) and resting-state functional connectivity (RSFC) analyses on key regions further confirmed the distinct brain networks underlying placebo analgesia and nocebo hyperalgesia. Together, these findings indicate that the placebo analgesia and nocebo hyperalgesia processes involve distinct neural circuits, which supports the view that the two phenomena may operate via different neuropsychological processes.


Assuntos
Analgesia/métodos , Encéfalo/diagnóstico por imagem , Hiperalgesia/diagnóstico por imagem , Rede Nervosa/diagnóstico por imagem , Dor/diagnóstico por imagem , Encéfalo/fisiopatologia , Mapeamento Encefálico/métodos , Humanos , Hiperalgesia/fisiopatologia , Hiperalgesia/terapia , Imageamento por Ressonância Magnética/métodos , Rede Nervosa/fisiopatologia , Efeito Nocebo , Dor/fisiopatologia , Efeito Placebo , Tomografia por Emissão de Pósitrons/métodos
6.
Neuroimage ; 206: 116321, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31678500

RESUMO

Action is a cover term used to refer to a large set of motor processes differing in domain specificities (e.g. execution or observation). Here we review neuroimaging evidence on action processing (N = 416; Subjects = 5912) using quantitative Activation Likelihood Estimation (ALE) and Meta-Analytic Connectivity Modeling (MACM) approaches to delineate the functional specificities of six domains: (1) Action Execution, (2) Action Imitation, (3) Motor Imagery, (4) Action Observation, (5) Motor Learning, (6) Motor Preparation. Our results show distinct functional patterns for the different domains with convergence in posterior BA44 (pBA44) for execution, imitation and imagery processing. The functional connectivity network seeding in the motor-based localized cluster of pBA44 differs from the connectivity network seeding in the (language-related) anterior BA44. The two networks implement distinct cognitive functions. We propose that the motor-related network encompassing pBA44 is recruited when processing movements requiring a mental representation of the action itself.


Assuntos
Encéfalo/diagnóstico por imagem , Área de Broca/diagnóstico por imagem , Imaginação , Comportamento Imitativo , Aprendizagem , Movimento , Observação , Encéfalo/fisiologia , Área de Broca/fisiologia , Conectoma , Neuroimagem Funcional , Humanos , Funções Verossimilhança , Imageamento por Ressonância Magnética , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiologia , Tomografia por Emissão de Pósitrons
7.
Neuroimage ; 217: 116939, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32416229

RESUMO

We effortlessly sort people into different racial groups from their visual appearance and implicitly generate racial bias affecting cognition and behavior. As these mental activities provide the proximate mechanisms for social behaviours, it becomes essential to understand the neural activity underlying differences between own-race and other-race visual categorization. Yet intrinsic limitations of individual neuroimaging studies, owing to reduced sample size, inclusion of multiple races, and interactions between races in the participants and in the displayed visual stimuli, dampens generalizability of results. In the present meta-analytic study, we applied multimodal techniques to partly overcome these hurdles, and we investigated the entire functional neuroimaging literature on race categorization, therefore including more than 2000 Black, White and Asian participants. Our data-driven approach shows that own- and other-race visual categorization involves partly segregated neural networks, with distinct connectivity and functional profiles, and defined hierarchical organization. Categorization of own-race mainly engages areas related to cognitive components of empathy and mentalizing, such as the medial prefrontal cortex and the inferior frontal gyrus. These areas are functionally co-activated with cortical structures involved in auto-biographical memories and social knowledge. Conversely, other-race categorization recruits areas implicated in, and functionally connected with, visuo-attentive processing, like the fusiform gyrus and the inferior parietal lobule, and areas engaged in affective functions, like the amygdala. These results contribute to a better definition of the neural networks involved in the visual parcelling of social categories based on race, and help to situate these processes within a common neural space.


Assuntos
Neuroanatomia , Grupos Raciais , Percepção Visual/fisiologia , Tonsila do Cerebelo/diagnóstico por imagem , Tonsila do Cerebelo/fisiologia , Povo Asiático , Atenção , População Negra , Mapeamento Encefálico , Feminino , Humanos , Funções Verossimilhança , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiologia , Lobo Parietal/diagnóstico por imagem , Lobo Parietal/fisiologia , Estimulação Luminosa , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Pré-Frontal/fisiologia , Comportamento Social , Percepção Social , Lobo Temporal , População Branca , Adulto Jovem
8.
Hum Brain Mapp ; 41(12): 3266-3283, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32314470

RESUMO

Ventromedial regions of the frontal lobe (vmFL) are thought to play a key role in decision-making and emotional regulation. However, aspects of this area's functional organization, including the presence of a multiple subregions, their functional and anatomical connectivity, and the cross-species homologies of these subregions with those of other species, remain poorly understood. To address this uncertainty, we employed a two-stage parcellation of the region to identify six distinct structures within the region on the basis of data-driven classification of functional connectivity patterns obtained using the meta-analytic connectivity modeling (MACM) approach. From anterior to posterior, the derived subregions included two lateralized posterior regions, an intermediate posterior region, a dorsal and ventral central region, and a single anterior region. The regions were characterized further by functional connectivity derived using resting-state fMRI and functional decoding using the Brain Map database. In general, the regions could be differentiated on the basis of different patterns of functional connectivity with canonical "default mode network" regions and/or subcortical regions such as the striatum. Together, the findings suggest the presence of functionally distinct neural structures within vmFL, consistent with data from experimental animals as well prior demonstrations of anatomical differences within the region. Detailed correspondence with the anterior cingulate, medial orbitofrontal cortex, and rostroventral prefrontal cortex, as well as specific animal homologs are discussed. The findings may suggest future directions for resolving potential functional and structural correspondence of subregions within the frontal lobe across behavioral contexts, and across mammalian species.


Assuntos
Tonsila do Cerebelo , Mapeamento Encefálico , Rede de Modo Padrão , Giro do Cíngulo , Hipocampo , Rede Nervosa/fisiologia , Córtex Pré-Frontal , Tálamo , Estriado Ventral , Adulto , Tonsila do Cerebelo/anatomia & histologia , Tonsila do Cerebelo/diagnóstico por imagem , Tonsila do Cerebelo/fisiologia , Atlas como Assunto , Conectoma , Rede de Modo Padrão/anatomia & histologia , Rede de Modo Padrão/diagnóstico por imagem , Rede de Modo Padrão/fisiologia , Giro do Cíngulo/anatomia & histologia , Giro do Cíngulo/diagnóstico por imagem , Giro do Cíngulo/fisiologia , Hipocampo/anatomia & histologia , Hipocampo/diagnóstico por imagem , Hipocampo/fisiologia , Humanos , Imageamento por Ressonância Magnética , Rede Nervosa/anatomia & histologia , Rede Nervosa/diagnóstico por imagem , Córtex Pré-Frontal/anatomia & histologia , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Pré-Frontal/fisiologia , Tálamo/anatomia & histologia , Tálamo/diagnóstico por imagem , Tálamo/fisiologia , Estriado Ventral/anatomia & histologia , Estriado Ventral/diagnóstico por imagem , Estriado Ventral/fisiologia
9.
Neuroimage ; 170: 400-411, 2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28213119

RESUMO

Despite the common conception of the dorsal premotor cortex (PMd) as a single brain region, its diverse connectivity profiles and behavioral heterogeneity argue for a differentiated organization of the PMd. A previous study revealed that the right PMd is characterized by a rostro-caudal and a ventro-dorsal distinction dividing it into five subregions: rostral, central, caudal, ventral and dorsal. The present study assessed whether a similar organization is present in the left hemisphere, by capitalizing on a multimodal data-driven approach combining connectivity-based parcellation (CBP) based on meta-analytic modeling, resting-state functional connectivity, and probabilistic diffusion tractography. The resulting PMd modules were then characterized based on multimodal functional connectivity and a quantitative analysis of associated behavioral functions. Analyzing the clusters consistent across all modalities revealed an organization of the left PMd that mirrored its right counterpart to a large degree. Again, caudal, central and rostral modules reflected a cognitive-motor gradient and a premotor eye-field was found in the ventral part of the left PMd. In addition, a distinct module linked to abstract cognitive functions was observed in the rostro-ventral left PMd across all CBP modalities, implying greater differentiation of higher cognitive functions for the left than the right PMd.


Assuntos
Mapeamento Encefálico/métodos , Imagem de Tensor de Difusão/métodos , Córtex Motor/diagnóstico por imagem , Córtex Motor/fisiologia , Adulto , Humanos , Metanálise como Assunto , Modelos Teóricos
10.
Neuroimage ; 149: 424-435, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28222386

RESUMO

Computational cognitive neuroimaging approaches can be leveraged to characterize the hierarchical organization of distributed, functionally specialized networks in the human brain. To this end, we performed large-scale mining across the BrainMap database of coordinate-based activation locations from over 10,000 task-based experiments. Meta-analytic coactivation networks were identified by jointly applying independent component analysis (ICA) and meta-analytic connectivity modeling (MACM) across a wide range of model orders (i.e., d=20-300). We then iteratively computed pairwise correlation coefficients for consecutive model orders to compare spatial network topologies, ultimately yielding fractionation profiles delineating how "parent" functional brain systems decompose into constituent "child" sub-networks. Fractionation profiles differed dramatically across canonical networks: some exhibited complex and extensive fractionation into a large number of sub-networks across the full range of model orders, whereas others exhibited little to no decomposition as model order increased. Hierarchical clustering was applied to evaluate this heterogeneity, yielding three distinct groups of network fractionation profiles: high, moderate, and low fractionation. BrainMap-based functional decoding of resultant coactivation networks revealed a multi-domain association regardless of fractionation complexity. Rather than emphasize a cognitive-motor-perceptual gradient, these outcomes suggest the importance of inter-lobar connectivity in functional brain organization. We conclude that high fractionation networks are complex and comprised of many constituent sub-networks reflecting long-range, inter-lobar connectivity, particularly in fronto-parietal regions. In contrast, low fractionation networks may reflect persistent and stable networks that are more internally coherent and exhibit reduced inter-lobar communication.


Assuntos
Encéfalo/fisiologia , Vias Neurais/fisiologia , Mapeamento Encefálico/métodos , Análise por Conglomerados , Mineração de Dados , Bases de Dados Factuais , Humanos , Modelos Neurológicos
11.
Neuroimage ; 148: 219-229, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28089676

RESUMO

The amygdala is one of the most extensively studied human brain regions and undisputedly plays a central role in many psychiatric disorders. However, an outstanding question is whether connectivity of amygdala subregions, specifically the centromedial (CM), laterobasal (LB) and superficial (SF) nuclei, are modulated by brain state (i.e., task vs. rest). Here, using a multimodal approach, we directly compared meta-analytic connectivity modeling (MACM) and specific co-activation likelihood estimation (SCALE)-derived estimates of CM, LB and SF task-based co-activation to the functional connectivity of these nuclei as assessed by resting state fmri (rs-fmri). Finally, using a preexisting resting state functional connectivity-derived cortical parcellation, we examined both MACM and rs-fmri amygdala subregion connectivity with 17 large-scale networks, to explicitly address how the amygdala interacts with other large-scale neural networks. Analyses revealed strong differentiation of CM, LB and SF connectivity patterns with other brain regions, both in task-dependent and task-independent contexts. All three regions, however, showed convergent connectivity with the right ventrolateral prefrontal cortex (VLPFC) that was not driven by high base rate levels of activation. Similar patterns of connectivity across rs-fmri and MACM were observed for each subregion, suggesting a similar network architecture of amygdala connectivity with the rest of the brain across tasks and resting state for each subregion, that may be modified in the context of specific task demands. These findings support animal models that posit a parallel model of amygdala functioning, but importantly, also modify this position to suggest integrative processing in the amygdala.


Assuntos
Tonsila do Cerebelo/diagnóstico por imagem , Tonsila do Cerebelo/fisiologia , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiologia , Adulto , Mapeamento Encefálico , Córtex Cerebral/diagnóstico por imagem , Feminino , Humanos , Funções Verossimilhança , Imageamento por Ressonância Magnética , Masculino , Modelos Neurológicos , Imagem Multimodal , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiologia , Neuroimagem , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Pré-Frontal/fisiologia , Descanso
12.
Hum Brain Mapp ; 38(8): 3878-3898, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28548226

RESUMO

The subdifferentiation of the nucleus accumbens (NAc) has been extensively studied using neuroanatomy and histochemistry, yielding a well-accepted dichotomic shell/core architecture that reflects dissociable roles, such as in reward and aversion, respectively. However, in vivo parcellation of these structures in humans has been rare, potentially impairing future research into the structural and functional characteristics and alterations of putative NAc subregions. Here, we used three complementary parcellation schemes based on tractography, task-independent functional connectivity, and task-dependent co-activation to investigate the regional differentiation within the NAc. We found that a 2-cluster solution with shell-like and core-like subdivisions provided the best description of the data and was consistent with the earlier anatomical shell/core architecture. The consensus clusters from this optimal solution, which was based on the three schemes, were used as the final parcels for the subsequent connection analyses. The resulting connectivity patterns presented inter-hemispheric symmetry, convergence and divergence across the modalities, and, most importantly, clearly distinct patterns between the two subregions. This convergent connectivity patterns also confirmed the connections in animal models, supporting views that the two subregions could have antagonistic roles in some circumstances. Finally, the identified parcels should be helpful in further neuroimaging studies of the NAc. Hum Brain Mapp 38:3878-3898, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Mapeamento Encefálico , Imageamento por Ressonância Magnética , Imagem Multimodal , Núcleo Accumbens/diagnóstico por imagem , Núcleo Accumbens/fisiologia , Adulto , Mapeamento Encefálico/métodos , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Imagem Multimodal/métodos , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiologia , Testes Neuropsicológicos , Adulto Jovem
13.
Hum Brain Mapp ; 37(4): 1308-20, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26873519

RESUMO

Emotionally-laden tactile stimulation-such as a caress on the skin or the feel of velvet-may represent a functionally distinct domain of touch, underpinned by specific cortical pathways. In order to determine whether, and to what extent, cortical functional neuroanatomy supports a distinction between affective and discriminative touch, an activation likelihood estimate (ALE) meta-analysis was performed. This meta-analysis statistically mapped reported functional magnetic resonance imaging (fMRI) activations from 17 published affective touch studies in which tactile stimulation was associated with positive subjective evaluation (n = 291, 34 experimental contrasts). A separate ALE meta-analysis mapped regions most likely to be activated by tactile stimulation during detection and discrimination tasks (n = 1,075, 91 experimental contrasts). These meta-analyses revealed dissociable regions for affective and discriminative touch, with posterior insula (PI) more likely to be activated for affective touch, and primary somatosensory cortices (SI) more likely to be activated for discriminative touch. Secondary somatosensory cortex had a high likelihood of engagement by both affective and discriminative touch. Further, meta-analytic connectivity (MCAM) analyses investigated network-level co-activation likelihoods independent of task or stimulus, across a range of domains and paradigms. Affective-related PI and discriminative-related SI regions co-activated with different networks, implicated in dissociable functions, but sharing somatosensory co-activations. Taken together, these meta-analytic findings suggest that affective and discriminative touch are dissociable both on the regional and network levels. However, their degree of shared activation likelihood in somatosensory cortices indicates that this dissociation reflects functional biases within tactile processing networks, rather than functionally and anatomically distinct pathways.


Assuntos
Córtex Cerebral/fisiologia , Emoções/fisiologia , Imageamento por Ressonância Magnética/métodos , Tato/fisiologia , Mapeamento Encefálico/métodos , Humanos , Funções Verossimilhança , Estimulação Física/métodos
14.
Neuroimage ; 117: 327-42, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25998956

RESUMO

The cerebellum historically has been thought to mediate motor and sensory signals between the body and cerebral cortex, yet cerebellar lesions are also associated with altered cognitive behavioral performance. Neuroimaging evidence indicates that the cerebellum contributes to a wide range of cognitive, perceptual, and motor functions. Here, we used the BrainMap database to investigate whole-brainco-activation patterns between cerebellar structures and regions of the cerebral cortex, as well as associations with behavioral tasks. Hierarchical clustering was performed to meta-analytically identify cerebellar structures with similar cortical co-activation, and independently, with similar correlations to specific behavioral tasks. Strong correspondences were observed in these separate but parallel analyses of meta-analytic connectivity and behavioral metadata. We recovered differential zones of cerebellar co-activation that are reflected across the literature. Furthermore, the behaviors and tasks associated with the different cerebellar zones provide insight into the specialized function of the cerebellum, relating to high-order cognition, emotion, perception, interoception, and action. Taken together, these task-basedmeta-analytic results implicate distinct zones of the cerebellum as critically involved in the monitoring and mediation of psychological responses to internal and external stimuli.


Assuntos
Mapeamento Encefálico/métodos , Cerebelo/fisiologia , Cérebro/fisiologia , Processos Mentais/fisiologia , Rede Nervosa/fisiologia , Cerebelo/anatomia & histologia , Cérebro/anatomia & histologia , Humanos , Rede Nervosa/anatomia & histologia
15.
Neuroimage ; 123: 114-28, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26282855

RESUMO

The dorsal premotor cortex (dPMC) is a key region for motor learning and sensorimotor integration, yet we have limited understanding of its functional interactions with other regions. Previous work has started to examine functional connectivity in several brain areas using resting state functional connectivity (RSFC) and meta-analytical connectivity modelling (MACM). More recently, structural covariance (SC) has been proposed as a technique that may also allow delineation of functional connectivity. Here, we applied these three approaches to provide a comprehensive characterization of functional connectivity with a seed in the left dPMC that a previous meta-analysis of functional neuroimaging studies has identified as playing a key role in motor learning. Using data from two sources (the Rockland sample, containing resting state data and anatomical scans from 132 participants, and the BrainMap database, which contains peak activation foci from over 10,000 experiments), we conducted independent whole-brain functional connectivity mapping analyses of a dPMC seed. RSFC and MACM revealed similar connectivity maps spanning prefrontal, premotor, and parietal regions, while the SC map identified more widespread frontal regions. Analyses indicated a relatively consistent pattern of functional connectivity between RSFC and MACM that was distinct from that identified by SC. Notably, results indicate that the seed is functionally connected to areas involved in visuomotor control and executive functions, suggesting that the dPMC acts as an interface between motor control and cognition.


Assuntos
Aprendizagem/fisiologia , Atividade Motora , Córtex Motor/fisiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Mapeamento Encefálico , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Vias Neurais/fisiologia , Adulto Jovem
16.
Neuroimage ; 113: 44-60, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25776219

RESUMO

Previous studies, predominantly in experimental animals, have suggested the presence of a differentiation of function across the hippocampal formation. In rodents, ventral regions are thought to be involved in emotional behavior while dorsal regions mediate cognitive or spatial processes. Using a combination of modeling the co-occurrence of significant activations across thousands of neuroimaging experiments and subsequent data-driven clustering of these data we were able to provide evidence of distinct subregions within a region corresponding to the human subiculum, a critical hub within the hippocampal formation. This connectivity-based model consists of a bilateral anterior region, as well as separate posterior and intermediate regions on each hemisphere. Functional connectivity assessed both by meta-analytic and resting fMRI approaches revealed that more anterior regions were more strongly connected to the default mode network, and more posterior regions were more strongly connected to 'task positive' regions. In addition, our analysis revealed that the anterior subregion was functionally connected to the ventral striatum, midbrain and amygdala, a circuit that is central to models of stress and motivated behavior. Analysis of a behavioral taxonomy provided evidence for a role for each subregion in mnemonic processing, as well as implication of the anterior subregion in emotional and visual processing and the right posterior subregion in reward processing. These findings lend support to models which posit anterior-posterior differentiation of function within the human hippocampal formation and complement other early steps toward a comparative (cross-species) model of the region.


Assuntos
Mapeamento Encefálico/métodos , Hipocampo/anatomia & histologia , Hipocampo/fisiologia , Imageamento por Ressonância Magnética/métodos , Emoções/fisiologia , Lateralidade Funcional/fisiologia , Humanos , Memória/fisiologia , Rede Nervosa/anatomia & histologia , Rede Nervosa/fisiologia , Neuroimagem , Recompensa , Percepção Visual/fisiologia
17.
Hum Brain Mapp ; 36(6): 2374-86, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25733379

RESUMO

Despite its 0.5-1% lifetime prevalence in men and its general societal relevance, neuroimaging investigations in pedophilia are scarce. Preliminary findings indicate abnormal brain structure and function. However, no study has yet linked structural alterations in pedophiles to both connectional and functional properties of the aberrant hotspots. The relationship between morphological alterations and brain function in pedophilia as well as their contribution to its psychopathology thus remain unclear. First, we assessed bimodal connectivity of structurally altered candidate regions using meta-analytic connectivity modeling (MACM) and resting-state correlations employing openly accessible data. We compared the ensuing connectivity maps to the activation likelihood estimation (ALE) maps of a recent quantitative meta-analysis of brain activity during processing of sexual stimuli. Second, we functionally characterized the structurally altered regions employing meta-data of a large-scale neuroimaging database. Candidate regions were functionally connected to key areas for processing of sexual stimuli. Moreover, we found that the functional role of structurally altered brain regions in pedophilia relates to nonsexual emotional as well as neurocognitive and executive functions, previously reported to be impaired in pedophiles. Our results suggest that structural brain alterations affect neural networks for sexual processing by way of disrupted functional connectivity, which may entail abnormal sexual arousal patterns. The findings moreover indicate that structural alterations account for common affective and neurocognitive impairments in pedophilia. The present multimodal integration of brain structure and function analyses links sexual and nonsexual psychopathology in pedophilia.


Assuntos
Encéfalo/patologia , Encéfalo/fisiopatologia , Pedofilia/patologia , Pedofilia/fisiopatologia , Adulto , Nível de Alerta/fisiologia , Mapeamento Encefálico/métodos , Bases de Dados Factuais , Feminino , Humanos , Funções Verossimilhança , Imageamento por Ressonância Magnética , Masculino , Metanálise como Assunto , Vias Neurais/patologia , Vias Neurais/fisiopatologia , Descanso , Comportamento Sexual/fisiologia
18.
Hum Brain Mapp ; 36(5): 1908-24, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25619891

RESUMO

Wernicke's area is one of the most important language regions and has been widely studied in both basic research and clinical neurology. However, its exact anatomy has been controversial. In this study, we proposed to address the anatomy of Wernicke's area by investigating different connectivity profiles. First, the posterior superior temporal gyrus (STG), traditionally called "Wernicke's area", was parcellated into three component subregions with diffusion MRI. Then, whole-brain anatomical connectivity, resting-state functional connectivity (RSFC) and meta-analytic connectivity modeling (MACM) analyses were used to establish the anatomical, resting-state and task-related coactivation network of each subregion to identify which subregions participated in the language network. In addition, behavioral domain analysis, meta-analyses of semantics, execution speech, and phonology and intraoperative electrical stimulation were used to determine which subregions were involved in language processing. Anatomical connectivity, RSFC and MACM analyses consistently identified that the two anterior subregions in the posterior STG primarily participated in the language network, whereas the most posterior subregion in the temporoparietal junction area primarily participated in the default mode network. Moreover, the behavioral domain analyses, meta-analyses of semantics, execution speech and phonology and intraoperative electrical stimulation mapping also confirmed that only the two anterior subregions were involved in language processing, whereas the most posterior subregion primarily participated in social cognition. Our findings revealed a convergent posterior anatomical border for Wernicke's area and indicated that the brain's functional subregions can be identified on the basis of its specific structural and functional connectivity patterns.


Assuntos
Mapeamento Encefálico/métodos , Área de Wernicke/anatomia & histologia , Área de Wernicke/fisiologia , Adolescente , Adulto , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/fisiopatologia , Neoplasias Encefálicas/cirurgia , Imagem de Tensor de Difusão , Estimulação Elétrica/métodos , Feminino , Glioma/patologia , Glioma/fisiopatologia , Glioma/cirurgia , Humanos , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/anatomia & histologia , Vias Neurais/fisiologia , Vias Neurais/cirurgia , Descanso , Fala/fisiologia , Área de Wernicke/cirurgia , Adulto Jovem
19.
Neuroimage ; 99: 269-80, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24844743

RESUMO

The anterior insula is a multifunctional region involved in various cognitive, perceptual and socio-emotional processes. In particular, a portion of the left anterior insula is closely associated with working memory processes in healthy participants and shows gray matter reduction in schizophrenia. To unravel the functional networks related to this left anterior insula region, we here combined resting state connectivity, meta-analytic-connectivity modeling (MACM) and structural covariance (SC) in addition to functional characterization based on BrainMap meta-data. Apart from allowing new insight into the seed region, this approach moreover provided an opportunity to systematically compare these different connectivity approaches. The results showed that the left anterior insula has a broad response profile and is part of multiple functional networks including language, memory and socio-emotional networks. As all these domains are linked with several symptoms of schizophrenia, dysfunction of the left anterior insula might be a crucial component contributing to this disorder. Moreover, although converging connectivity across all three connectivity approaches for the left anterior insula were found, also striking differences were observed. RS and MACM as functional connectivity approaches specifically revealed functional networks linked with internal cognition and active perceptual/language processes, respectively. SC, in turn, showed a clear preference for highlighting regions involved in social cognition. These differential connectivity results thus indicate that the use of multiple forms of connectivity is advantageous when investigating functional networks as conceptual differences between these approaches might lead to systematic variation in the revealed functional networks.


Assuntos
Córtex Cerebral/anatomia & histologia , Vias Neurais/anatomia & histologia , Adulto , Algoritmos , Mapeamento Encefálico , Córtex Cerebral/fisiologia , Córtex Cerebral/fisiopatologia , Cognição/fisiologia , Feminino , Substância Cinzenta/patologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Rede Nervosa/patologia , Vias Neurais/fisiologia , Vias Neurais/fisiopatologia , Esquizofrenia/patologia , Adulto Jovem
20.
Hum Brain Mapp ; 35(7): 3152-69, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24142505

RESUMO

Theories positing that the cerebellum contributes to cognitive as well as motor control are driven by two sources of information: (1) studies highlighting connections between the cerebellum and both prefrontal and motor territories, (2) functional neuroimaging studies demonstrating cerebellar activations evoked during the performance of both cognitive and motor tasks. However, almost no studies to date have combined these two sources of information and investigated cortico-cerebellar connectivity during task performance. Through the use of a novel neuroimaging tool (Meta-Analytic Connectivity Modelling) we demonstrate for the first time that cortico-cerebellar connectivity patterns seen in anatomical studies and resting fMRI are also present during task performance. Consistent with human and nonhuman primate anatomical studies cerebellar lobules Crus I and II were significantly coactivated with prefrontal and parietal cortices during task performance, whilst lobules HV, HVI, HVIIb, and HVIII were significantly coactivated with the pre- and postcentral gyrus. An analysis of the behavioral domains showed that these circuits were driven by distinct tasks. Prefrontal-parietal-cerebellar circuits were more active during cognitive and emotion tasks whilst motor-cerebellar circuits were more active during action execution tasks. These results highlight the separation of prefrontal and motor cortico-cerebellar loops during task performance, and further demonstrate that activity within these circuits relates to distinct functions.


Assuntos
Mapeamento Encefálico , Cerebelo/anatomia & histologia , Cerebelo/fisiologia , Córtex Cerebral/anatomia & histologia , Córtex Cerebral/fisiologia , Vias Neurais/fisiologia , Animais , Lateralidade Funcional , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Metanálise como Assunto , Atividade Motora/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA