Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.705
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
FASEB J ; 38(10): e23669, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38747734

RESUMO

Amomum xanthioides (AX) has been used as an edible herbal medicine to treat digestive system disorders in Asia. Additionally, Lactobacillus casei is a well-known probiotic commonly used in fermentation processes as a starter. The current study aimed to investigate the potential of Lactobacillus casei-fermented Amomum xanthioides (LAX) in alleviating metabolic disorders induced by high-fat diet (HFD) in a mouse model. LAX significantly reduced the body and fat weight, outperforming AX, yet without suppressing appetite. LAX also markedly ameliorated excessive lipid accumulation and reduced inflammatory cytokine (IL-6) levels in serum superior to AX in association with UCP1 activation and adiponectin elevation. Furthermore, LAX noticeably improved the levels of fasting blood glucose, serum insulin, and HOMA-IR through positive regulation of glucose transporters (GLUT2, GLUT4), and insulin receptor gene expression. In conclusion, the fermentation of AX demonstrates a pronounced mitigation of overnutrition-induced metabolic dysfunction, including hyperlipidemia, hyperglycemia, hyperinsulinemia, and obesity, compared to non-fermented AX. Consequently, we proposed that the fermentation of AX holds promise as a potential candidate for effectively ameliorating metabolic disorders.


Assuntos
Amomum , Dieta Hiperlipídica , Fermentação , Lacticaseibacillus casei , Obesidade , Animais , Dieta Hiperlipídica/efeitos adversos , Camundongos , Obesidade/metabolismo , Masculino , Lacticaseibacillus casei/metabolismo , Amomum/química , Camundongos Endogâmicos C57BL , Probióticos/farmacologia , Proteína Desacopladora 1/metabolismo , Resistência à Insulina , Camundongos Obesos , Adiponectina/metabolismo , Insulina/metabolismo , Insulina/sangue , Glicemia/metabolismo
2.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35074921

RESUMO

Proinflammatory cytokine production by innate immune cells plays a crucial role in inflammatory diseases, but the molecular mechanisms controlling the inflammatory responses are poorly understood. Here, we show that TANK-binding kinase 1 (TBK1) serves as a vital regulator of proinflammatory macrophage function and protects against tissue inflammation. Myeloid cell-conditional Tbk1 knockout (MKO) mice spontaneously developed adipose hypertrophy and metabolic disorders at old ages, associated with increased adipose tissue M1 macrophage infiltration and proinflammatory cytokine expression. When fed with a high-fat diet, the Tbk1-MKO mice also displayed exacerbated hepatic inflammation and insulin resistance, developing symptoms of nonalcoholic steatohepatitis. Furthermore, myeloid cell-specific TBK1 ablation exacerbates inflammation in experimental colitis. Mechanistically, TBK1 functions in macrophages to suppress the NF-κB and MAP kinase signaling pathways and thus attenuate induction of proinflammatory cytokines, particularly IL-1ß. Ablation of IL-1 receptor 1 (IL-1R1) eliminates the inflammatory symptoms of Tbk1-MKO mice. These results establish TBK1 as a pivotal anti-inflammatory mediator that restricts inflammation in different disease models.


Assuntos
Inflamação/etiologia , Inflamação/metabolismo , Células Mieloides/imunologia , Células Mieloides/metabolismo , Proteínas Serina-Treonina Quinases/genética , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Animais , Biomarcadores , Colite/etiologia , Colite/metabolismo , Colite/patologia , Citocinas/genética , Citocinas/metabolismo , Dieta Hiperlipídica , Modelos Animais de Doenças , Suscetibilidade a Doenças/imunologia , Regulação da Expressão Gênica , Glucose/metabolismo , Hipertrofia , Imunomodulação/genética , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Resistência à Insulina , Camundongos , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Especificidade de Órgãos , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Interleucina-1/deficiência , Transdução de Sinais
3.
Artigo em Inglês | MEDLINE | ID: mdl-39017680

RESUMO

Familial Partial Lipodystrophy 3 (FPLD3) is a rare genetic disorder caused by loss-of-function mutations in the PPARG gene, characterized by a selective absence of subcutaneous fat and associated metabolic complications. However, the molecular mechanisms of FPLD3 remain unclear. In this study, we recruited a 17-year-old Chinese female with FPLD3 and her family, identifying a novel PPARG frameshift mutation (exon 4: c.418dup: p.R140Kfs*7) that truncates the PPARγ protein at the 7th amino acid, significantly expanding the genetic landscape of FPLD3. By performing next generation sequencing of circular RNAs (circRNAs), microRNAs (miRNAs), and mRNAs in plasma exosomes, we discovered 59 circRNAs, 57 miRNAs, and 299 mRNAs were significantly altered in the mutation carriers in the comparison of healthy controls. Integration analysis highlighted that the circ_0001597-miR-671-5p pair and 18 mRNAs might be incorporated into the metabolic regulatory networks of the FPLD3 induced by the novel PPARG mutation. Functional annotation suggested that these genes were significantly enriched in glucose and lipid metabolism related pathways. Among the circRNA-miRNA-mRNA network, we identified two critical regulators, EGR1, a key transcription factor known for its role in insulin signaling pathways and lipid metabolism, and AGPAT3, which gets involved in the biosynthesis of triglycerides and lipolysis. Circ_0001597 regulates the expression of these genes through miR-671-5p, potentially contributing to the pathophysiology of FPLD3. Overall, this study clarified a circulating exosomal circRNA-miRNA-mRNA network in a FPLD3 family with a novel PPARG mutation, providing evidence for exploring promising biomarkers and developing novel therapeutic strategies for this rare genetic disorder.

4.
Biochem Biophys Res Commun ; 726: 150256, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-38909536

RESUMO

Understanding of embryonic development has led to the clinical application of Assisted Reproductive technologies (ART), with the resulting birth of millions of children. Recent developments in metabolomics, proteomics, and transcriptomics have brought to light new insights into embryonic growth dynamics, with implications spanning reproductive medicine, stem cell research, and regenerative medicine. The review explores the key metabolic processes and molecular pathways active during preimplantation embryo development, including PI3K-Akt, mTOR, AMPK, Wnt/ß-catenin, TGF-ß, Notch and Jak-Stat signaling pathways. We focused on analyzing the differences occurring in vitro as opposed to in vivo development and we discussed significant physiological and clinical implications.


Assuntos
Blastocisto , Desenvolvimento Embrionário , Desenvolvimento Embrionário/genética , Animais , Humanos , Blastocisto/metabolismo , Transdução de Sinais
5.
Biochem Soc Trans ; 52(3): 1305-1315, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38716960

RESUMO

Mitochondria represent the metabolic hub of normal cells and play this role also in cancer but with different functional purposes. While cells in differentiated tissues have the prerogative of maintaining basal metabolism and support the biosynthesis of specialized products, cancer cells have to rewire the metabolic constraints imposed by the differentiation process. They need to balance the bioenergetic supply with the anabolic requirements that entail the intense proliferation rate, including nucleotide and membrane lipid biosynthesis. For this aim, mitochondrial metabolism is reprogrammed following the activation of specific oncogenic pathways or due to specific mutations of mitochondrial proteins. The main process leading to mitochondrial metabolic rewiring is the alteration of the tricarboxylic acid cycle favoring the appropriate orchestration of anaplerotic and cataplerotic reactions. According to the tumor type or the microenvironmental conditions, mitochondria may decouple glucose catabolism from mitochondrial oxidation in favor of glutaminolysis or disable oxidative phosphorylation for avoiding harmful production of free radicals. These and other metabolic settings can be also determined by the neo-production of oncometabolites that are not specific for the tissue of origin or the accumulation of metabolic intermediates able to boost pro-proliferative metabolism also impacting epigenetic/transcriptional programs. The full characterization of tumor-specific mitochondrial signatures may provide the identification of new biomarkers and therapeutic opportunities based on metabolic approaches.


Assuntos
Mitocôndrias , Neoplasias , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Mitocôndrias/metabolismo , Metabolismo Energético , Fosforilação Oxidativa , Ciclo do Ácido Cítrico , Animais
6.
Mol Genet Metab ; 142(1): 108363, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38452608

RESUMO

Succinic semialdehyde dehydrogenase deficiency (SSADHD) (OMIM #271980) is a rare autosomal recessive metabolic disorder caused by pathogenic variants of ALDH5A1. Deficiency of SSADH results in accumulation of γ-aminobutyric acid (GABA) and other GABA-related metabolites. The clinical phenotype of SSADHD includes a broad spectrum of non-pathognomonic symptoms such as cognitive disabilities, communication and language deficits, movement disorders, epilepsy, sleep disturbances, attention problems, anxiety, and obsessive-compulsive traits. Current treatment options for SSADHD remain supportive, but there are ongoing attempts to develop targeted genetic therapies. This study aimed to create consensus guidelines for the diagnosis and management of SSADHD. Thirty relevant statements were initially addressed by a systematic literature review, resulting in different evidence levels of strength according to the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) criteria. The highest level of evidence (level A), based on randomized controlled trials, was unavailable for any of the statements. Based on cohort studies, Level B evidence was available for 12 (40%) of the statements. Thereupon, through a process following the Delphi Method and directed by the Appraisal of Guidelines for Research and Evaluation (AGREE II) criteria, expert opinion was sought, and members of an SSADHD Consensus Group evaluated all the statements. The group consisted of neurologists, epileptologists, neuropsychologists, neurophysiologists, metabolic disease specialists, clinical and biochemical geneticists, and laboratory scientists affiliated with 19 institutions from 11 countries who have clinical experience with SSADHD patients and have studied the disorder. Representatives from parent groups were also included in the Consensus Group. An analysis of the survey's results yielded 25 (83%) strong and 5 (17%) weak agreement strengths. These first-of-their-kind consensus guidelines intend to consolidate and unify the optimal care that can be provided to individuals with SSADHD.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Deficiências do Desenvolvimento , Succinato-Semialdeído Desidrogenase , Succinato-Semialdeído Desidrogenase/deficiência , Humanos , Succinato-Semialdeído Desidrogenase/genética , Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico , Erros Inatos do Metabolismo dos Aminoácidos/terapia , Erros Inatos do Metabolismo dos Aminoácidos/genética , Consenso , Ácido gama-Aminobutírico/metabolismo , Guias de Prática Clínica como Assunto
7.
HIV Med ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38746980

RESUMO

BACKGROUND: Studies on switching to tenofovir alafenamide (TAF)-based regimens raise concerns about a worse metabolic profile in people with HIV, even though most received tenofovir disoproxil fumarate (TDF) in their previous regimen. This study aims to evaluate changes in lipid fractions, glucose, and serum markers for hepatic steatosis (HS) after switching from a TDF- or TAF-sparing regimen to bictegravir/emtricitabine/TAF (B/F/TAF). METHODS: We performed a retrospective cohort study of people with HIV who switched to B/F/TAF from TDF- or TAF-sparing regimens between January 2019 and May 2022 with at least 6 months of follow-up. The primary endpoint was the absolute change in lipid fractions at 6 months. Secondary outcomes were changes in lipid fractions at 12 months and changes in other metabolic parameters (glucose, creatinine, and HS based on the triglyceride-to-glucose [TyG] ratio at 6 and 12 months). Changes were analysed using mixed linear regression models with random intercept and time as a fixed effect. RESULTS: The study included 259 people with HIV (median age 55 [interquartile range (IQR) 47-60] years; 80% male; 88% Caucasian; CD4+ T-cell count 675 [IQR 450-880] cells/mm3; 84.3% HIV-RNA <50 copies/mL). In total, 63 patients (30%) had hypertension, 93 (44%) dyslipidaemia, 30 (14%) diabetes, and 45% obesity/overweight. Most (60%) switched from integrase inhibitor-based regimens, and 21% switched from a boosted regimen. At 6 months, significant reductions were observed in total cholesterol (-7.64 mg/dL [95% confidence interval (CI) -13.52 to -1.76; p = 0.002]), triglycerides (-23.4 [95% CI -42.07 to -4.65]; p = 0.003), and TyG ratio (-0.14 [95% CI -0.23 to -0.05]; p < 0.001). CONCLUSION: In our real-life cohort, the effect of switching TDF-/TAF-sparing regimens to triple therapy with B/F/TAF improved total cholesterol, triglycerides, and serum markers of HS at 6 months and was neutral for the remaining metabolic parameters at 12 months.

8.
Clin Proteomics ; 21(1): 30, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649851

RESUMO

BACKGROUND: Cardio-metabolic disorders (CMDs) are common in aging people and are pivotal risk factors for cardiovascular diseases (CVDs). Inflammation is involved in the pathogenesis of CVDs and aging, but the underlying inflammatory molecular phenotypes in CMDs and aging are still unknown. METHOD: We utilized multiple proteomics to detect 368 inflammatory proteins in the plasma of 30 subjects, including healthy young individuals, healthy elderly individuals, and elderly individuals with CMDs, by Proximity Extension Assay technology (PEA, O-link). Protein-protein interaction (PPI) network and functional modules were constructed to explore hub proteins in differentially expressed proteins (DEPs). The correlation between proteins and clinical traits of CMDs was analyzed and diagnostic value for CMDs of proteins was evaluated by ROC curve analysis. RESULT: Our results revealed that there were 161 DEPs (adjusted p < 0.05) in normal aging and EGF was the most differentially expressed hub protein in normal aging. Twenty-eight DEPs were found in elderly individuals with CMDs and MMP1 was the most differentially expressed hub protein in CMDs. After the intersection of DEPs in aging and CMDs, there were 10 overlapping proteins: SHMT1, MVK, EGLN1, SLC39A5, NCF2, CXCL6, IRAK4, REG4, PTPN6, and PRDX5. These proteins were significantly correlated with the level of HDL-C, TG, or FPG in plasma. They were verified to have good diagnostic value for CMDs in aging with an AUC > 0.7. Among these, EGLN1, NCF2, REG4, and SLC39A2 were prominently increased both in normal aging and aging with CMDs. CONCLUSION: Our results could reveal molecular markers for normal aging and CMDs, which need to be further expanded the sample size and to be further investigated to predict their significance for CVDs.

9.
Clin Sci (Lond) ; 138(13): 777-795, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38860674

RESUMO

Renal tubular injury is considered as the main pathological feature of acute kidney injury (AKI), and mitochondrial dysfunction in renal tubular cells is implicated in the pathogenesis of AKI. The estrogen-related receptor γ (ERRγ) is a member of orphan nuclear receptors which plays a regulatory role in mitochondrial biosynthesis, energy metabolism and many metabolic pathways. Online datasets showed a dominant expression of ERRγ in renal tubules, but the role of ERRγ in AKI is still unknown. In the present study, we investigated the role of ERRγ in the pathogenesis of AKI and the therapeutic efficacy of ERRγ agonist DY131 in several murine models of AKI. ERRγ expression was reduced in kidneys of AKI patients and AKI murine models along with a negative correlation to the severity of AKI. Consistently, silencing ERRγ in vitro enhanced cisplatin-induced tubular cells apoptosis, while ERRγ overexpression in vivo utilizing hydrodynamic-based tail vein plasmid delivery approach alleviated cisplatin-induced AKI. ERRγ agonist DY131 could enhance the transcriptional activity of ERRγ and ameliorate AKI in various murine models. Moreover, DY131 attenuated the mitochondrial dysfunction of renal tubular cells and metabolic disorders of kidneys in AKI, and promoted the expression of the mitochondrial transcriptional factor A (TFAM). Further investigation showed that TFAM could be a target gene of ERRγ and DY131 might ameliorate AKI by enhancing ERRγ-mediated TFAM expression protecting mitochondria. These findings highlighted the protective effect of DY131 on AKI, thus providing a promising therapeutic strategy for AKI.


Assuntos
Injúria Renal Aguda , Receptores de Estrogênio , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/genética , Animais , Receptores de Estrogênio/metabolismo , Humanos , Masculino , Camundongos , Mitocôndrias/metabolismo , Camundongos Endogâmicos C57BL , Doenças Metabólicas/metabolismo , Apoptose , Modelos Animais de Doenças , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Cisplatino , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética
10.
Neurochem Res ; 49(4): 847-871, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38244132

RESUMO

A significant rise in metabolic disorders, frequently brought on by lifestyle choices, is alarming. A wide range of preliminary studies indicates the significance of the gut-brain axis, which regulates bidirectional signaling between the gastrointestinal tract and the cognitive system, and is crucial for regulating host metabolism and cognition. Intimate connections between the brain and the gastrointestinal tract provide a network of neurohumoral transmission that can transmit in both directions. The gut-brain axis successfully establishes that the wellness of the brain is always correlated with the extent to which the gut operates. Research on the gut-brain axis has historically concentrated on how psychological health affects how well the gastrointestinal system works. The latest studies, however, revealed that the gut microbiota interacts with the brain via the gut-brain axis to control phenotypic changes in the brain and in behavior. This study addresses the significance of the gut microbiota, the role of the gut-brain axis in management of various metabolic disorders, the hormonal and neural signaling pathways and the therapeutic treatments available. Its objective is to establish the significance of the gut-brain axis in metabolic disorders accurately and examine the link between the two while evaluating the therapeutic strategies to be incorporated in the future.


Assuntos
Microbioma Gastrointestinal , Doenças Metabólicas , Humanos , Eixo Encéfalo-Intestino , Encéfalo/metabolismo , Microbioma Gastrointestinal/fisiologia , Doenças Metabólicas/terapia , Doenças Metabólicas/metabolismo , Cognição
11.
Crit Rev Food Sci Nutr ; : 1-20, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38189263

RESUMO

Tryptophan (TRP) contributes to individual immune homeostasis and good condition via three complex metabolism pathways (5-hydroxytryptamine (5-HT), kynurenine (KP), and gut microbiota pathway). Indole propionic acid (IPA), one of the TRP derivatives of the microbiota pathway, has raised more attention because of its impact on metabolic disorders. Here, we retrospect increasing evidence that TRP metabolites/IPA derived from its proteolysis impact host health and disease. IPA can activate the immune system through aryl hydrocarbon receptor (AHR) and/or Pregnane X receptor (PXR) as a vital mediator among diet-caused host and microbe cross-talk. Different levels of IPA in systemic circulation can predict the risk of NAFLD, T2DM, and CVD. IPA is suggested to alleviate cognitive impairment from oxidative damage, reduce gut inflammation, inhibit lipid accumulation and attenuate the symptoms of NAFLD, putatively enhance the intestinal epithelial barrier, and maintain intestinal homeostasis. Now, we provide a general description of the relationships between IPA and various physiological and pathological processes, which support an opportunity for diet intervention for metabolic diseases.

12.
Diabetes Obes Metab ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38747214

RESUMO

Obesity has become a major global problem that significantly confers an increased risk of developing life-threatening complications, including type 2 diabetes mellitus, fatty liver disease and cardiovascular diseases. Protein arginine methyltransferases (PRMTs) are enzymes that catalyse the methylation of target proteins. They are ubiquitous in eukaryotes and regulate transcription, splicing, cell metabolism and RNA biology. As a key, epigenetically modified enzyme, protein arginine methyltransferase 1 (PRMT1) is involved in obesity-related metabolic processes, such as lipid metabolism, the insulin signalling pathway, energy balance and inflammation, and plays an important role in the pathology of obesity-related metabolic disorders. This review summarizes recent research on the role of PRMT1 in obesity-related metabolic disorders. The primary objective was to comprehensively elucidate the functional role and regulatory mechanisms of PRMT1. Moreover, this study attempts to review the pathogenesis of PRMT1-mediated obesity-related metabolic disorders, thereby offering pivotal information for further studies and clinical treatment.

13.
Diabetes Obes Metab ; 26(1): 3-15, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37726973

RESUMO

Emerging evidence suggests that the ubiquitin-mediated degradation of insulin-signalling-related proteins may be involved in the development of insulin resistance and its related disorders. Tripartite motif-containing (TRIM) proteins, a superfamily belonging to the E3 ubiquitin ligases, are capable of controlling protein levels and function by ubiquitination, which is essential for the modulation of insulin sensitivity. Recent research has indicated that some of these TRIMs act as key regulatory factors of metabolic disorders such as type 2 diabetes mellitus, obesity, nonalcoholic fatty liver disease, and atherosclerosis. This review provides a comprehensive overview of the latest evidence linking TRIMs to the regulation of insulin resistance and its related disorders, their roles in regulating multiple signalling pathways or cellular processes, such as insulin signalling pathways, peroxisome proliferator-activated receptor signalling pathways, glucose and lipid metabolism, the inflammatory response, and cell cycle control, as well as recent advances in the development of TRIM-targeted drugs.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Insulinas , Humanos , Ubiquitinação , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina/metabolismo , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo Tripartido/metabolismo
14.
J Pediatr Gastroenterol Nutr ; 78(6): 1251-1260, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38682389

RESUMO

OBJECTIVES: Adverse food reactions, often underestimated, encompass congenital monosaccharide-disaccharide metabolism disorders, yielding diverse outcomes such as abdominal pain, diarrhea, bleeding disorders, and even death. This study retrospectively scrutinized genetic variants linked to these disorders in a cohort subjected to whole-exome sequence analysis (WES), determining carrier frequencies and genotype-phenotype correlations. METHODS: Data from 484 patients, were retrospectively analyzed using a gene panel (ALDOB, FBP1, GALE, GALK1, GALM, GALT, LCT, SLC2A2, SLC5A1, SI) for congenital monosaccharide-disaccharide metabolism disorders. WES was performed on patients using the xGen Exome Research Panel v2 kit, utilizing Next Generation Sequence Analysis (NGS). The study encompassed pathogenic, likely pathogenic, and variant of uncertain significance (VUS) variants. RESULTS: Among 484 patients (244 female, 240 male), 17.35% carried 99 variants (67 distinct) in the analyzed genes. Pathogenic/likely pathogenic allele frequency stood at 0.013, while VUS allele frequency was 0.088. Notably, 44% (37/84) of patients harboring mutations manifested at least one relevant phenotype. Carriage frequencies ranged from 1:25 (SI gene) to 1:968 (GALE gene), with the estimated disease frequency spanning from 1:2500 to 1:3748000. CONCLUSIONS: Our study underscores clinical manifestations in heterozygous carriers of recessive genetic disorders, addressing gaps in carrier frequencies and phenotypic effects for congenital monosaccharide-disaccharide metabolism disorders. This knowledge can improve these conditions' diagnosis and management, potentially preventing adverse food reactions and their associated complications.


Assuntos
Fenótipo , Humanos , Feminino , Masculino , Estudos Retrospectivos , Sequenciamento do Exoma , Erros Inatos do Metabolismo dos Carboidratos/genética , Variação Genética , Criança , Lactente , Pré-Escolar , Dissacarídeos , Mutação , Estudos de Associação Genética , Monossacarídeos , Frequência do Gene , Heterozigoto , Recém-Nascido , Adolescente
15.
Jpn J Clin Oncol ; 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38807545

RESUMO

BACKGROUND: The purpose of this study is to evaluate the effects of neoadjuvant therapy on glucose and lipid metabolism, bone mineral density (BMD) and muscle, and to explore the relationship between metabolic disorders and changes in body composition, so as to provide better health management strategies for breast cancer survivors. METHODS: The clinical data of 43 patients with breast cancer who received neoadjuvant therapy in Xuanwu Hospital from January 2020 to June 2021 were analyzed retrospectively. The biochemical results, including albumin, blood glucose, triglyceride and cholesterol, were collected before neoadjuvant therapy and before surgery. The pectoral muscle area, pectoral muscle density and cancellous bone mineral density of the 12th thoracic vertebra were also measured by chest CT. RESULTS: After neoadjuvant therapy, fasting blood glucose, triglyceride and cholesterol were significantly increased, albumin was decreased. At the same time, pectoral muscle area, pectoral muscle density and T12 BMD were decreased. After treatment, BMD was positively correlated with pectoral muscle area, R2 = 0.319, P = 0.037, and BMD was also positively correlated with pectoral muscle density, R2 = 0.329, P = 0.031. Multivariate analysis showed that BMD and pectoral muscle density were correlated with menstrual status, and pectoral muscle area was correlated with body mass index before treatment, none of which was related to glucose and lipid metabolism. CONCLUSION: Neoadjuvant therapy can cause glucose and lipid metabolism disorder, BMD decrease and muscle reduction. BMD was positively correlated with muscle area and density after treatment, suggesting that patients had an increased chance of developing osteosarcopenia.

16.
Acta Pharmacol Sin ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992120

RESUMO

Fecal microbiota transplant (FMT) is becoming as a promising area of interest for treating refractory diseases. In this study, we investigated the effects of FMT on diabetes-associated cognitive defects in mice as well as the underlying mechanisms. Fecal microbiota was prepared from 8-week-aged healthy mice. Late-stage type 1 diabetics (T1D) mice with a 30-week history of streptozotocin-induced diabetics were treated with antibiotics for 7 days, and then were transplanted with bacterial suspension (100 µL, i.g.) once a day for 14 days. We found that FMT from healthy young mice significantly alleviated cognitive defects of late-stage T1D mice assessed in Morris water maze test. We revealed that FMT significantly reduced the relative abundance of Gram-negative bacteria in the gut microbiota and enhanced intestinal barrier integrity, mitigating LPS translocation into the bloodstream and NLRP3 inflammasome activation in the hippocampus, thereby reducing T1D-induced neuronal loss and astrocytic proliferation. FMT also reshaped the metabolic phenotypes in the hippocampus of T1D mice especially for alanine, aspartate and glutamate metabolism. Moreover, we showed that application of aspartate (0.1 mM) significantly inhibited NLRP3 inflammasome activation and IL-1ß production in BV2 cells under a HG/LPS condition. We conclude that FMT can effectively relieve T1D-associated cognitive decline via reducing the gut-brain metabolic disorders and neuroinflammation, providing a potential therapeutic approach for diabetes-related brain disorders in clinic.

17.
Lipids Health Dis ; 23(1): 174, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38851752

RESUMO

BACKGROUND: Obesity is a metabolic syndrome where allelic and environmental variations together determine the susceptibility of an individual to the disease. Caloric restriction (CR) is a nutritional dietary strategy recognized to be beneficial as a weight loss regime in obese individuals. Preconceptional parental CR is proven to have detrimental effects on the health and development of their offspring. As yet studies on maternal CR effect on their offspring are well established but paternal CR studies are not progressing. In current study, the impact of different paternal CR regimes in diet-induced obese male Wistar rats (WNIN), on their offspring concerning metabolic syndrome are addressed. METHODS: High-fat diet-induced obese male Wistar rats were subjected to caloric restriction of 50% (HFCR-I) and 40% (HFCR-II) and then they were mated with normal females. The male parent's reproductive function was assessed by sperm parameters and their DNMT's mRNA expression levels were also examined. The offspring's metabolic function was assessed by physiological, biochemical and molecular parameters. RESULTS: The HFCR-I male parents have shown reduced body weights, compromised male fertility and reduced DNA methylation activity. Further, the HFCR-I offspring showed attenuation of the AMPK/SIRT1 pathway, which is associated with the progression of proinflammatory status and oxidative stress. In line, the HFCR-I offspring also developed altered glucose and lipid homeostasis by exhibiting impaired glucose tolerance & insulin sensitivity, dyslipidemia and steatosis. However, these effects were largely mitigated in HFCR-II offspring. Regarding the obesogenic effects, female offspring exhibited greater susceptibility than male offspring, suggesting that females are more prone to the influences of the paternal diet. CONCLUSION: The findings highlight that HFCR-I resulted in paternal undernutrition, impacting the health of offspring, whereas HFCR-II largely restored the effects of a high-fat diet on their offspring. As a result, moderate caloric restriction has emerged as an effective weight loss strategy with minimal implications on future generations. This underscores the shared responsibility of fathers in contributing to sperm-specific epigenetic imprints that influence the health of adult offspring.


Assuntos
Restrição Calórica , Metilação de DNA , Dieta Hiperlipídica , Obesidade , Ratos Wistar , Sirtuína 1 , Animais , Sirtuína 1/metabolismo , Sirtuína 1/genética , Dieta Hiperlipídica/efeitos adversos , Obesidade/metabolismo , Obesidade/etiologia , Masculino , Feminino , Ratos , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Transdução de Sinais , Gravidez
18.
BMC Public Health ; 24(1): 1002, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600553

RESUMO

BACKGROUND: Maintaining good health is vital not only for own well-being, but also to ensure high-quality patient care. The aim of this study was to evaluate the prevalence of dyslipidaemia and to determine the factors responsible for the development of this disorder among Polish nurses. Lipid profile disorders are the most prevalent and challenging risk factors for the development of cardiovascular disease. Nurses have significant potential and play a crucial role in providing care and treatment services. METHODS: This cross-sectional study involved nurses and included measurements of body weight composition (Tanita MC-980), body mass index, waist circumference, blood pressure (Welch Allyn 4200B), lipid profile, and fasting blood glucose (CardioChek PA). RESULTS: The results revealed that more than half of the nurses (60.09%) were overweight or obese, with 57.28% exhibiting elevated blood pressure, 32.25% having fasting glucose levels, and 69.14% experiencing dyslipidaemia. Multiple model evaluation using ROC curves demonstrated that multiple models accurately predicted hypercholesterolemia (AUC = 0.715), elevated LDL (AUC = 0.727), and elevated TC (AUC = 0.723) among Polish nurses. CONCLUSION: Comprehensive education programmes should be implemented that include the latest advances in cardiovascular disease prevention. Regular check-ups, as well as the promotion and availability of healthy food in hospital canteens, are essential.


Assuntos
Doenças Cardiovasculares , Dislipidemias , Humanos , Estudos Transversais , Curva ROC , Prevalência , Polônia/epidemiologia , Modelos Lineares , Fatores de Risco , Índice de Massa Corporal , Dislipidemias/epidemiologia , Lipídeos
19.
Postgrad Med J ; 100(1183): 319-326, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38272486

RESUMO

BACKGROUND: The evaluation of patients with fatty liver as defined by metabolic dysfunction-associated fatty liver disease (MAFLD) in the real world remains poorly researched. This study aimed to analyse the clinical and histological features of patients with MAFLD and nonalcoholic fatty liver disease (NAFLD) and to characterize each metabolic subgroup of MAFLD. METHODS: A total of 2563 patients with fatty liver confirmed by ultrasonography and/or magnetic resonance tomography and/or liver biopsy-proven from three hospitals in China were included in the study. Patients were divided into different groups according to diagnostic criteria for MAFLD and NAFLD, and MAFLD into different subgroups. RESULTS: There were 2337 (91.2%) patients fitting the MAFLD criteria, and 2095 (81.7%) fitting the NAFLD criteria. Compared to patients with NAFLD, those with MAFLD were more likely to be male, had more metabolic traits, higher liver enzyme levels, and noninvasive fibrosis scores. Among the patients with liver biopsy, the extent of advanced fibrosis in cases with MAFLD was significantly higher than those with NAFLD, 31.8% versus 5.2% (P < .001); there was no significant difference in advanced fibrosis between obese cases and lean individuals in MAFLD (P > .05); MAFLD complicated with diabetes had significantly higher advanced fibrosis than those without diabetes (43.3% and 17.2%, respectively; P < .001). CONCLUSIONS: Patients with MAFLD have a higher degree of liver fibrosis than NAFLD patients. In addition, diabetic patients should be screened for fatty liver and liver fibrosis degree.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Masculino , Feminino , Estudos Transversais , Hepatopatia Gordurosa não Alcoólica/patologia , Hepatopatia Gordurosa não Alcoólica/complicações , Pessoa de Meia-Idade , China/epidemiologia , Biópsia , Adulto , Fígado Gorduroso/patologia , Cirrose Hepática/patologia , Ultrassonografia , Fígado/patologia , Fígado/diagnóstico por imagem , Imageamento por Ressonância Magnética
20.
Biochem Genet ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619706

RESUMO

Glycogen storage diseases (GSDs) are a group of rare inherited metabolic disorders characterized by clinical, locus, and allele heterogeneity. This study aims to investigate the phenotype and genotype spectrum of GSDs in a cohort of 14 families from Iran using whole-exome sequencing (WES) and variant analysis. WES was performed on 14 patients clinically suspected of GSDs. Variant analysis was performed to identify genetic variants associated with GSDs. A total of 13 variants were identified, including six novel variants, and seven previously reported pathogenic variants in genes such as AGL, G6PC, GAA, PYGL, PYGM, GBE1, SLC37A4, and PHKA2. Most types of GSDs observed in the cohort were associated with hepatomegaly, which was the most common clinical presentation. This study provides valuable insights into the phenotype and genotype spectrum of GSDs in a cohort of Iranian patients. The identification of novel variants adds to the growing body of knowledge regarding the genetic landscape of GSDs and has implications for genetic counseling and future therapeutic interventions. The diverse nature of GSDs underscores the need for comprehensive genetic testing methods to improve diagnostic accuracy. Continued research in this field will enhance our understanding of GSDs, ultimately leading to improved management and outcomes for individuals affected by these rare metabolic disorders.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA