Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-39023692

RESUMO

Blood is commonly discovered at crime scenes in various forms, including stains, dried residue, pools, and fingerprints on assorted surfaces. Estimating the age of bloodstains is a crucial aspect of reconstructing crime scenes. This research aimed to investigate how the nature of different surfaces affects the estimation of bloodstain age, utilizing a reliable and non-destructive approach. The study employed ATR-FTIR spectroscopy in conjunction with Chemometric techniques such as PCA (Principal Component Analysis) and OPLSR (Orthogonal Signal Correction Partial Least Square Regression Analysis) to analyze spectral data and develop regression models for estimating bloodstain age on cement, metal, and wooden surfaces for up to eleven days. The chemometric models for bloodstains on all three substrates demonstrated strong performance, with predictive Root Mean Square Error (RMSE) values ranging from 1.1 to 1.43 and R2 values from 0.84 to 0.89. Notably, the model developed for metal surfaces was found to be the most accurate with minimal prediction error. The findings of the study showed that the porosity of the substrates upon which bloodstains were found had a discernible influence on the age-related transformations observed in bloodstains; the majority of which occured within the spectral range of 2800 cm- 1 to 3500 cm- 1.

2.
Sensors (Basel) ; 22(14)2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35891129

RESUMO

We studied the surface-enhanced Raman spectra of amino acids D-alanine and DL-serine and their mixture on silver nanoisland films (SNF) immersed in phosphate-buffered saline (PBS) solution at millimolar amino acid concentrations. It is shown that the spectra from the amino acid solutions differ from the reference spectra for microcrystallites due to the electrostatic orientation of amino acid zwitterions by the metal nanoisland film. Moreover, non-additive peaks are observed in the spectrum of the mixture of amino acids adsorbed on SNF, which means that intermolecular interactions between adsorbed amino acids are very significant. The results indicate the need for a thorough analysis of the Raman spectra from amino acid solutions, particularly, in PBS, in the presence of a nanostructured silver surface, and may also be of interest for studying molecular properties and intermolecular interactions.


Assuntos
Nanoestruturas , Prata , Aminoácidos/química , Prata/química , Análise Espectral Raman
3.
Molecules ; 27(12)2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35744999

RESUMO

In this study, we demonstrate the structural evolution of a two-dimensional (2D) supramolecular assembly system, which is steered by the thermally activated deprotonation of the primary organic building blocks on a Ag(111) surface. Scanning tunneling microscopy revealed that a variety of structures, featuring distinct structural, chiral, and intermolecular bonding characters, emerged with the gradual thermal treatments. According to our structural analysis, in combination with density function theory calculations, the structural evolution can be attributed to the successive deprotonation of the organic building blocks due to the inductive effect. Our finding offers a facile strategy towards controlling the supramolecular assembly pathways and provides a comprehensive understanding of the 2D crystal engineering on surfaces.

4.
Nanotechnology ; 32(42)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34256355

RESUMO

The mysterious properties of individual U atoms on transition metal surfaces play indispensable parts in supplementing our understanding of uranium-transition metal systems, which are important subjects for both nuclear energy applications and fundamental scientific studies. By using scanning tunneling microscopy and density functional theory calculations, the adsorptions, reactions and electronic properties of individual U atoms on Cu(111), Ag(111), Au(111) and Ru(0001) surfaces were comparatively studied for the first time in this work. Upon the deposition of a small amount of U onto Cu(111) or Ag(111) at 8 K, individual U atoms show relatively high activity and can either be adsorbed on intact substrate surfaces or induce various surface vacancies surrounded by clusters of substrate atoms. By contrast, the majority of U atoms tend to dispersedly adsorb on intact surfaces of Au(111) and Ru(0001) rather than producing surface vacancies at the same temperature. In all cases, Kondo resonance manifested as asymmetric dip feature around Fermi energy is only observed in the differential tunneling conductance spectra of single U adatoms on Ag(111).

5.
Forensic Sci Med Pathol ; 17(2): 199-207, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33180274

RESUMO

PURPOSE: We investigated the recovery and extraction efficiency of DNA from three metal surfaces (brass, copper, steel) relevant to forensic casework, and plastic (control) using two different swabbing systems; Rayon and Isohelix™ swabs, with sterile water and isopropyl alcohol respectively, as the wetting solutions. METHODS: Twenty nanograms of human genomic DNA were applied directly to Isohelix™ and Rayon swabs; and to the metal and plastic substrates. All substrates were left to dry for 24 h, followed by single wet swabbing and extraction with the DNA IQ™ System. DNA extracts were quantified using real time quantitative PCR assays with SYBR green chemistry. RESULTS: DNA was extracted from directly seeded Isohelix™ swabs with a high efficiency of 98%, indicating effective DNA-release from the swab into the extraction buffer. In contrast, only 58% of input DNA was recovered from seeded Rayon swabs, indicating higher DNA retention by these swabs. Isohelix™ swabs recovered 32 - 53% of DNA from metal surfaces, whilst the Rayon swabs recovered 11-29%. DNA recovery was lowest from copper and highest from brass. Interestingly, Rayon swabs appeared to collect more DNA from the plastic surface than Isohelix™ swabs, however, due to the lower release of DNA from Rayon swabs they returned less DNA overall following extraction than Isohelix™ swabs. CONCLUSION: These results demonstrate that DNA samples deposited on metal surfaces can be more efficiently recovered using Isohelix™ swabs wetted with isopropyl alcohol than Rayon swabs wetted with sterile water, although recovery is affected by the substrate type.


Assuntos
Celulose , Genética Forense , Manejo de Espécimes , Celulose/química , DNA/análise , Genética Forense/instrumentação , Genética Forense/métodos , Manejo de Espécimes/instrumentação , Manejo de Espécimes/normas
6.
Angew Chem Int Ed Engl ; 60(40): 21966-21972, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34350689

RESUMO

Electrocatalytic denitrification is a promising technology for removing NOx species (NO3- , NO2- and NO). For NOx electroreduction (NOx RR), there is a desire for understanding the catalytic parameters that control the product distribution. Here, we elucidate selectivity and activity of catalyst for NOx RR. At low potential we classify metals by the binding of *NO versus *H. Analogous to classifying CO2 reduction by *CO vs. *H, Cu is able to bind *NO while not binding *H giving rise to a selective NH3 formation. Besides being selective, Cu is active for the reaction found by an activity-volcano. For metals that does not bind NO the reaction stops at NO, similar to CO2 -to-CO. At potential above 0.3 V vs. RHE, we speculate a low barrier for N coupling with NO causing N2 O formation. The work provides a clear strategy for selectivity and aims to inspire future research on NOx RR.

7.
Chemphyschem ; 21(21): 2407-2410, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-32965758

RESUMO

Density functional theory calculations of atomic and molecular adsorption on (111) and (100) metal surfaces reveal marked surface and structure dependent effects of strain. Adsorption in three-fold hollow sites is found to be destabilized by compressive strain whereas the reversed trend is commonly valid for adsorption in four-fold sites. The effects, which are qualitatively explained using a simple two-orbital model, provide insights on how to modify chemical properties by strain design.

8.
Chemistry ; 25(49): 11555-11559, 2019 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-31291023

RESUMO

The modification of metal electrode surfaces with functional organic molecules is an important part of organic electronics. The interaction of the buckminsterfullerene fragment molecule pentaindenocorannulene with a Cu(100) surface is studied by scanning tunneling microscopy, dispersion-enabled density functional theory, and force field calculations. Experimental and theoretical methods suggest that two adjacent indeno groups become oriented parallel to the surface upon adsorption under mild distortion of the molecular frame. The binding mechanism between molecule and surface is dominated by strong electrostatic interaction owing to Pauli repulsion. Two-dimensional aggregation at room temperature leads to a single lattice structure in which all molecules are oriented unidirectionally. Their relative arrangement in the lattice suggests noncovalent intermolecular interaction through C-H⋅⋅⋅π bonding.

9.
Biotechnol Lett ; 41(4-5): 503-510, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30820710

RESUMO

OBJECTIVES: To evaluate the effects of the surface modification of 316L stainless steel (SS) by low-temperature plasma nitriding on endothelial cells for stent applications. RESULTS: X-ray diffraction (XRD) confirmed the incorporation of nitrogen into the treated steel. The surface treatment significantly increased SS roughness and hydrophilic characteristics. After 4 h the cells adhered to the nitride surfaces and formed clusters. During the 24 h incubation period, cell viability on the nitrided surface was higher compared to the polished surface. Nitriding reduced late apoptosis of rabbit aorta endothelial cell (RAEC) on the SS surface. CONCLUSION: Low temperature plasma nitriding improved the biocompatible of stainless steel for use in stents.


Assuntos
Materiais Biocompatíveis/química , Fenômenos Químicos , Células Endoteliais/fisiologia , Nitrogênio/metabolismo , Gases em Plasma , Aço Inoxidável/química , Propriedades de Superfície , Adesão Celular , Sobrevivência Celular , Interações Hidrofóbicas e Hidrofílicas , Teste de Materiais , Stents , Difração de Raios X
10.
Angew Chem Int Ed Engl ; 58(3): 821-824, 2019 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-30422385

RESUMO

Inert metal surfaces present more chances of hosting organic intact radicals than other substrates, but large amounts of delocalized electronic states favor charge transfer and thus spin quenching. Lowering the molecule-substrate interaction is a usual strategy to stabilize radicals on surfaces. In some works, thin insulating layers were introduced to provide a controllable degree of electronic decoupling. Recently, retinoid molecules adsorbed on gold have been manipulated with a scanning tunneling microscope (STM) to exhibit a localized spin, but calculations failed to find a radical derivative of the molecule on the surface. Now the formation of a neutral radical spatially localized in a tilted and lifted cyclic end of the molecule is presented. An allene moiety provokes a perpendicular tilt of the cyclic end relative to the rest of the conjugated chain, thus localizing the spin of the dehydrogenated allene in its lifted subpart. DFT calculations and STM manipulations give support to the proposed mechanism.

11.
Int J Environ Health Res ; 28(1): 55-63, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29232959

RESUMO

The aim of this study was to analyze the impact of hydrodynamic forces on the multiplication of E. coli, and biofilm formation and dispersion. The experiments were provided in a flow chamber simulating a cleaning-in-place system. Biofilm biomass was measured using a crystal violet dye method. The results show that hydrodynamic forces affect not only biofilm formation and dispersion but the multiplication of E. coli in the first place. We found more biofilm biomass on the rough surface than on the smooth one. The results of the biofilm formation test show that laminar flow promotes the biofilm growth over 72 h, meanwhile turbulent flow after 48 h causes decrease in biomass. The results of the biofilm dispersion test, in contrast, show that laminar flow removed less biofilm from both materials that turbulent flow did. Therefore, taking into account these findings in cleaning-in-place technology can substantially reduce E. coli multiplication and biofilm formation.


Assuntos
Biofilmes/crescimento & desenvolvimento , Escherichia coli/fisiologia , Aço Inoxidável , Hidrodinâmica
12.
Angew Chem Int Ed Engl ; 57(40): 13057-13061, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29719103

RESUMO

Multimetallic clusters have long been investigated as molecular surrogates for reactive sites on metal surfaces. In the case of the µ4 -nitrido cluster [Fe4 (µ4 -N)(CO)12 ]- , this analogy is limited owing to the electron-withdrawing effect of carbonyl ligands on the iron nitride core. Described here is the synthesis and reactivity of [Fe4 (µ4 -N)(CO)8 (CNArMes2 )4 ]- , an electron-rich analogue of [Fe4 (µ4 -N)(CO)12 ]- , where the interstitial nitride displays significant nucleophilicity. This characteristic enables rational expansion with main-group and transition-metal centers to yield unsaturated sites. The resulting clusters display surface-like reactivity through coordination-sphere-dependent atom rearrangement and metal-metal cooperativity.

13.
Chemistry ; 20(34): 10616-25, 2014 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-25044189

RESUMO

Carbon monoxide is a ubiquitous molecule in surface science, materials chemistry, catalysis and nanotechnology. Its interaction with a number of metal surfaces is at the heart of major processes, such as Fischer-Tropsch synthesis or fuel-cell optimization. Recent works, coupling structural and nanoscale in situ analytic tools have highlighted the ability of metal surfaces and nanoparticles to undergo restructuring after exposure to CO under fairly mild conditions, generating nanostructures. This Minireview proposes a brief overview of recent examples of such nanostructuring, which leads to a discussion about the driving force in reversible and non-reversible situations.


Assuntos
Monóxido de Carbono/química , Metais/química , Nanoestruturas/química , Nanopartículas Metálicas/química , Propriedades de Superfície
14.
Materials (Basel) ; 17(8)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38673077

RESUMO

The laser surface texturing (LST) technique has recently been used to enhance adhesion bond strength in various coating applications and to create structures with controlled hydrophobic or superhydrophobic surfaces. The texturing processing parameters can be adjusted to tune the surface's polarity, thereby controlling the ratio between the polar and dispersed components of the surface free energy and determining its hydrophobic character. The aim of this work is to systematically select appropriate laser and scan head parameters for high-quality surface topography of metal-based materials. A correlation between texturing parameters and wetting properties was made in view of several technological applications, i.e., for the proper growth of conformal layers onto laser-textured metal surfaces. Surface analyses, carried out by scanning electron microscopy and profilometry, reveal the presence of periodic microchannels decorated with laser-induced periodic surface structures (LIPSS) in the direction parallel to the microchannels. The water contact angle varies widely from about 20° to 100°, depending on the treated material (titanium, nickel, etc.). Nowadays, reducing the wettability transition time from hydrophilicity to hydrophobicity, while also changing environmental conditions, remains a challenge. Therefore, the characteristics of environmental dust and its influence on the properties of the picosecond laser-textured surface (e.g., chemical bonding of samples) have been studied while monitoring ambient conditions.

15.
ACS Nano ; 17(11): 9938-9952, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37260141

RESUMO

Understanding molecular interactions with metal surfaces in high reliability is critical for the development of catalysts, sensors, and therapeutics. Obtaining accurate experimental data for a wide range of surfaces remains a critical bottleneck and quantum-mechanical data remain speculative due to high uncertainties and limitations in scale. We report molecular dynamics simulations of adsorption energies and assembly of organic molecules on elemental metal surfaces using the INTERFACE force field (IFF). The force field-based simulations reach up to 8 times higher accuracy than density functional calculations at a million-fold faster speed, as well as more than 1 order of magnitude higher accuracy than other force fields relative to accurate measurements by single-crystal adsorption calorimetry. Uncertainties of prior computational methods are effectively reduced from on the order of 100% to less than 10% and validated by experimental data from multiple sources. Specifically, we describe the molecular interactions of benzene and naphthalene with even and defective platinum surfaces across a wide range of surface coverage in depth. We discuss molecular-scale influences on the heat of adsorption and clarify the definition of surface coverage. The methods can be applied to 18 metals to accurately predict binding and assembly of organic molecules, ligands, electrolytes, biological molecules, and gases without additional fit parameters.

16.
World J Orthop ; 13(6): 578-586, 2022 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-35949710

RESUMO

BACKGROUND: Orthopedic implant-related infection remains one of the most serious complications after orthopedic surgery. In recent years, there has been an increased scientific interest to improve prevention and treatment strategies. However, many of these strategies have focused on chemical measures. AIM: To analyze the effect of alternating current electrical fields on bacterial adherence to titanium surfaces. METHODS: Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) were exposed to 6.5 V electrical currents at different frequencies: 0.5 Hz, 0.1 Hz, and 0.05 Hz. After exposure, a bacterial count was then performed and compared to the control model. Other variables registered included the presence of electrocoagulation of the medium, electrode oxidation and/or corrosion, and changes in pH of the medium. RESULTS: The most effective electrical model for reducing S. aureus adhesion was 6.5 V alternating current at 0.05 Hz achieving a 90% adhesion reduction rate. For E. coli, the 0.05 Hz frequency model also showed the most effective results with a 53% adhesion reduction rate, although these were significantly lower than S. aureus. Notable adhesion reduction rates were observed for S. aureus and E.coli in the studied conditions. However, the presence of electrode oxidation makes us presume these conditions are not optimal for in vivo use. CONCLUSION: Although our findings suggest electrical currents may be useful in preventing bacterial adhesion to metal surfaces, further research using other electrical conditions must be examined to consider their use for in vivo trials.

17.
Top Catal ; 65(1-4): 196-206, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35185306

RESUMO

In order to estimate the reactivity of a large number of potentially complex heterogeneous catalysts while searching for novel and more efficient materials, physical as well as data-centric models have been developed for a faster evaluation of adsorption energies compared to first-principles calculations. However, global models designed to describe as many materials as possible might overlook the very few compounds that have the appropriate adsorption properties to be suitable for a given catalytic process. Here, the subgroup-discovery (SGD) local artificial-intelligence approach is used to identify the key descriptive parameters and constrains on their values, the so-called SG rules, which particularly describe transition-metal surfaces with outstanding adsorption properties for the oxygen-reduction and -evolution reactions. We start from a data set of 95 oxygen adsorption-energy values evaluated by density-functional-theory calculations for several monometallic surfaces along with 16 atomic, bulk and surface properties as candidate descriptive parameters. From this data set, SGD identifies constraints on the most relevant parameters describing materials and adsorption sites that (i) result in O adsorption energies within the Sabatier-optimal range required for the oxygen-reduction reaction and (ii) present the largest deviations from the linear-scaling relations between O and OH adsorption energies, which limit the catalyst performance in the oxygen-evolution reaction. The SG rules not only reflect the local underlying physicochemical phenomena that result in the desired adsorption properties, but also guide the challenging design of alloy catalysts. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11244-021-01502-4.

18.
Beilstein J Nanotechnol ; 11: 1157-1167, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32821640

RESUMO

Rubrene (C42H28) was adsorbed with submonolayer coverage on Pt(111), Au(111), and graphene-covered Pt(111). Adsorption phases and vibronic properties of C42H28 consistently reflect the progressive reduction of the molecule-substrate hybridization. Separate C42H28 clusters are observed on Pt(111) as well as broad molecular resonances. On Au(111) and graphene-covered Pt(111) compact molecular islands with similar unit cells of the superstructure characterize the adsorption phase. The highest occupied molecular orbital of C42H28 on Au(111) exhibits weak vibronic progression while unoccupied molecular resonances appear with a broad line shape. In contrast, vibronic subbands are present for both frontier orbitals of C42H28 on graphene. They are due to different molecular vibrational quanta with distinct Huang-Rhys factors.

19.
J Hazard Mater ; 361: 357-366, 2019 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-30261460

RESUMO

The decontamination of noncompactable radioactive wastes, such as tools and equipment, aims to reduce the waste volume to be conditioned and stored. The electrocoagulation (EC) application in the decontamination of noncompactable radioactive waste from stainless steel containing uranium, was studied to evaluate its technical viability. The first studies were carried out with stainless steel plates coated with WO3 to simulate a fixed contamination and to determine the best tungsten removal conditions via EC considering pH, electrolyte support, distance between the electrodes, cell potential and counter-electrode material. The best removal conditions for WO3 were applied to plates contaminated with UO2(NO3)2 to evaluate the viability of the EC decontamination process. Uranium removal efficiencies of 90% were obtained in 1 h, at pH of 1, 2.4 V and 1 cm of distance between anode / cathode in a circular array. The EC process, under the previously obtained conditions, was applied to two metallic pieces contaminated with U. It proved feasible to decontaminate metallic pieces through the EC process, thus being able to obtain up to 90% U removal efficiency; however, it is important that the surfaces of the parts are free of grease and dust.

20.
Forensic Sci Int ; 291: 44-52, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30138750

RESUMO

Most traditional techniques to recover latent fingermarks from metallic surfaces do not consider the metal surface properties and instead focus on the fingermark chemistry. The scanning Kelvin probe (SKP) technique is a non-contact, non-destructive method, used under ambient conditions, which can be utilised to recover latent prints from metallic surfaces and does not require any enhancement techniques or prevent subsequent forensic analysis. Where a fingermark ridge contacted the metal, the contact potential difference (CPD) contrast between the background surface and the fingermark contact area was 10-50mV. Measurements were performed on the untreated brass, nickel-coated brass and copper metal surfaces and compared to traditional forensic enhancement techniques such as Vacuum Metal Deposition (VMD) using Au-Zn and Au-Ag. Using VMD, the CPD change ranged from 0 to 150mV between the dissimilar metal surfaces affected by the fingermark. In general, SKP worked best without additional enhancement techniques. Scanning Electron Microscope (SEM) scans were used to identify the fingermark contact areas through a sodium, chlorine and oxygen electron probe micro-analyzer (EPMA). The fingermark was observed in the backscattered electron image as the carbon deposits scattered the electrons less than the surrounding metal surface. The fingermark is shown clearly in a Cathodoluminescence scan on the copper sample as it blocks the photon emission at band gap (2.17eV) from the underlying copper oxide (Cu2O) surface. For the first time, SEM, EPMA and Cathodoluminescence techniques were compared to SKP data. Visible and latent fingermarks were tested with latent, eccrinous fingermarks more easily imaged by SKP. Results obtained were very encouraging and suggest that the scanning Kelvin probe technique, which does not need vacuum, could have a place as a first stage analysis tool in serious crime investigation.


Assuntos
Dermatoglifia , Metais Pesados , Microscopia Eletrônica de Varredura , Microscopia/métodos , Medicina Legal/instrumentação , Medicina Legal/métodos , Humanos , Microscopia/instrumentação , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA