Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 81(1): 284, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38967794

RESUMO

Hepatocellular carcinoma (HCC) is a malignancy that occurs worldwide and is generally associated with poor prognosis. The development of resistance to targeted therapies such as sorafenib is a major challenge in clinical cancer treatment. In the present study, Ten-eleven translocation protein 1 (TET1) was found to be highly expressed in sorafenib-resistant HCC cells and knockdown of TET1 can substantially improve the therapeutic effect of sorafenib on HCC, indicating the potential important roles of TET1 in sorafenib resistance in HCC. Mechanistic studies determined that TET1 and Yes-associated protein 1 (YAP1) synergistically regulate the promoter methylation and gene expression of DNA repair-related genes in sorafenib-resistant HCC cells. RNA sequencing indicated the activation of DNA damage repair signaling was extensively suppressed by the TET1 inhibitor Bobcat339. We also identified TET1 as a direct transcriptional target of YAP1 by promoter analysis and chromatin-immunoprecipitation assays in sorafenib-resistant HCC cells. Furthermore, we showed that Bobcat339 can overcome sorafenib resistance and synergized with sorafenib to induce tumor eradication in HCC cells and mouse models. Finally, immunostaining showed a positive correlation between TET1 and YAP1 in clinical samples. Our findings have identified a previously unrecognized molecular pathway underlying HCC sorafenib resistance, thus revealing a promising strategy for cancer therapy.


Assuntos
Carcinoma Hepatocelular , Reparo do DNA , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas , Transdução de Sinais , Sorafenibe , Animais , Humanos , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Metilação de DNA/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/genética , Resistencia a Medicamentos Antineoplásicos/genética , Epigênese Genética/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Via de Sinalização Hippo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Camundongos Endogâmicos BALB C , Camundongos Nus , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/genética , Transdução de Sinais/efeitos dos fármacos , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas de Sinalização YAP/metabolismo
2.
J Cell Mol Med ; 28(8): e18216, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38652219

RESUMO

We tried to elucidate the possible roles of maternal embryonic leucine pull chain kinase (MELK) in lung adenocarcinoma (LUAD) growth and metastasis. Differentially expressed genes in LUAD samples were analysed by the GEPIA database. Clinical tissue samples and cells were collected for MELK, EZH2 and LATS2 expression determination. Co-IP assay was used to verify the interaction between EZH2 and MELK; CHX tracking assay and ubiquitination assay detected the degradation of MELK on EZH2 ubiquitination. ChIP assay detected the enrichment of EZH2 and H3K27me3 on the LATS2 promoter region. LUAD cells were selected for in vitro validation, and the tumorigenic ability of LUAD cells was also observed in a transplantation tumour model of LUAD nude mice. MELK and EZH2 were highly expressed in LUAD samples, while LATS2 was lowly expressed. MELK interacted with EZH2 to inhibit its ubiquitination degradation; EZH2 elevated H3K27me3 modification in the LATS2 promoter to lower LATS2 expression. Silencing MELK or EZH2 or overexpressing LATS2 restrained LUAD cell proliferation and invasion, and facilitated their apoptosis. Silencing MELK or EZH2 or overexpressing LATS2 suppressed tumour formation in nude mice. This study demonstrated that MELK aggravated LUAD by upregulating EZH2 and downregulating LATS2.


Assuntos
Adenocarcinoma de Pulmão , Proliferação de Células , Proteína Potenciadora do Homólogo 2 de Zeste , Regulação Neoplásica da Expressão Gênica , Histonas , Neoplasias Pulmonares , Camundongos Nus , Proteínas Serina-Treonina Quinases , Proteínas Supressoras de Tumor , Ubiquitinação , Humanos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Animais , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/genética , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Histonas/metabolismo , Camundongos , Proliferação de Células/genética , Metilação , Linhagem Celular Tumoral , Regiões Promotoras Genéticas/genética , Apoptose/genética , Feminino , Masculino
3.
BMC Genomics ; 25(1): 345, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580917

RESUMO

BACKGROUND: High-mobility group B1 (HMGB1) is both a DNA binding nuclear factor modulating transcription and a crucial cytokine that mediates the response to both infectious and noninfectious inflammation such as autoimmunity, cancer, trauma, and ischemia reperfusion injury. HMGB1 has been proposed to control ribosome biogenesis, similar as the other members of a class of HMGB proteins. RESULTS: Here, we report that HMGB1 selectively promotes transcription of genes involved in the regulation of transcription, osteoclast differentiation and apoptotic process. Improved RNA immunoprecipitation by UV cross-linking and deep sequencing (iRIP-seq) experiment revealed that HMGB1 selectively bound to mRNAs functioning not only in signal transduction and gene expression, but also in axon guidance, focal adhesion, and extracellular matrix organization. Importantly, HMGB1-bound reads were strongly enriched in specific structured RNAs, including the domain II of 28S rRNA, H/ACA box snoRNAs including snoRNA63 and scaRNAs. RTL-P experiment showed that overexpression of HMGB1 led to a decreased methylation modification of 28S rRNA at position Am2388, Cm2409, and Gm2411. We further showed that HMGB1 overexpression increased ribosome RNA expression levels and enhanced protein synthesis. CONCLUSION: Taken together, our results support a model in which HMGB1 binds to multiple RNA species in human cancer cells, which could at least partially contribute to HMGB1-modulated rRNA modification, protein synthesis function of ribosomes, and differential gene expression including rRNA genes. These findings provide additional mechanistic clues to HMGB1 functions in cancers and cell differentiation.


Assuntos
Proteína HMGB1 , Metilação de RNA , Humanos , Células HeLa , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Metilação , RNA Ribossômico 28S/metabolismo , RNA Nucleolar Pequeno/química , RNA Nucleolar Pequeno/genética , RNA Nucleolar Pequeno/metabolismo , Metilação de RNA/genética
4.
J Gene Med ; 26(2): e3666, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38391150

RESUMO

BACKGROUND: Proliferation, metabolism, tumor occurrence and development in gliomas are greatly influenced by RNA modifications. However, no research has integrated the four RNA methylation regulators of m6A, m1A, m5C and m7G in gliomas to analyze their relationship with glioma prognosis and intratumoral heterogeneity. METHODS: Based on three in-house single-cell RNA-sequencing (scRNA-seq) data, the glioma heterogeneity and characteristics of m6A/m1A/m5C/m7G-related regulators were elucidated. Based on publicly available bulk RNA-sequencing (RNA-seq) data, a risk-score system for predicting the overall survival (OS) for gliomas was established by three machine learning methods and multivariate Cox regression analysis, and validated in an independent cohort. RESULTS: Seven cell types were identified in gliomas by three scRNA-seq data, and 22 m6A/m1A/m5C/m7G-related regulators among the marker genes of different cell subtypes were discovered. Three m6A/m1A/m5C/m7G-related regulators were selected to construct prognostic risk-score model, including EIFA, NSUN6 and TET1. The high-risk patients showed higher immune checkpoint expression, higher tumor microenvironment scores, as well as higher tumor mutation burden and poorer prognosis compared with low-risk patients. Additionally, the area under the curve values of the risk score and nomogram were 0.833 and 0.922 for 3 year survival and 0.759 and 0.885 for 5 year survival for gliomas. EIF3A was significantly highly expressed in glioma tissues in our in-house RNA-sequencing data (p < 0.05). CONCLUSION: These findings may contribute to further understanding of the role of m6A/m1A/m5C/m7G-related regulators in gliomas, and provide novel and reliable biomarkers for gliomas prognosis and treatment.


Assuntos
Adenina/análogos & derivados , Glioma , Análise da Expressão Gênica de Célula Única , Humanos , RNA-Seq , Glioma/genética , RNA , Microambiente Tumoral/genética , Oxigenases de Função Mista , Proteínas Proto-Oncogênicas , tRNA Metiltransferases
5.
Pharmacol Res ; 205: 107222, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38782147

RESUMO

5-methylcytosine (m5C) is among the most common epigenetic modification in DNA and RNA molecules, and plays an important role in the animal development and disease pathogenesis. Interestingly, unlike other m5C DNA methyltransferases (DNMTs), DNMT2/TRDMT1 has the double-substrate specificity and adopts a DNMT-similar catalytic mechanism to methylate RNA. Moreover, it is widely involved in a variety of physiological regulatory processes, such as the gene expression, precise protein synthesis, immune response, and disease occurrence. Thus, comprehending the epigenetic mechanism and function of DNMT2/TRDMT1 will probably provide new strategies to treat some refractory diseases. Here, we discuss recent studies on the spatiotemporal expression pattern and post-translational modifications of DNMT2/TRDMT1, and summarize the research advances in substrate characteristics, catalytic recognition mechanism, DNMT2/TRDMT1-related genes or proteins, pharmacological application, and inhibitor development. This review will shed light on the pharmacological design by targeting DNMT2/TRDMT1 to treat parasitic, viral and oncologic diseases.


Assuntos
DNA (Citosina-5-)-Metiltransferases , Humanos , Animais , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA (Citosina-5-)-Metiltransferases/antagonistas & inibidores , DNA (Citosina-5-)-Metiltransferases/genética , Epigênese Genética/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Metilação de DNA/efeitos dos fármacos
6.
Ecotoxicol Environ Saf ; 272: 116071, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38354435

RESUMO

Bisphenol A (BPA) is an endocrine disruptor of potential reproductive toxicities. Increasingly research elucidated that BPA exposure to the environment would change the epigenetic modifications of transcriptome, but the mechanism by which BPA affects m6A methylation in interfering with female reproductive health remains uncertain. Therefore, this study preliminarily proposed and tested the hypothesis that BPA exposure alters the m6A modification level in transcripts in female ovarian granulosa cells. After BPA was exposed to granulosa cells for 24 h, RNA methylation related regulatory genes (such as METTL3, METTL14, ALKBH5, FTO) and the global m6A levels showed significant differences. Next, we applied MERIP-seq analysis to obtain information on the genome-wide m6A modification changes and identified 1595 differentially methylated mRNA transcripts, and 50 differentially methylated lncRNA transcripts. Further joint analysis of gene common expression showed that 33 genes were hypermethylated and up-regulated, 71 were hypermethylated and down-regulated, 49 were hypomethylated and up-regulated, and 20 were hypomethylated and down-regulated. Enriched Gene Ontology (GO) and biological pathway analysis revealed that these unique genes were mainly enriched in lipid metabolism, cell proliferation, and apoptosis related pathways. Six of these genes (mRNAs IMPA1, MCOLN1, DCTN3, BRCA2, and lncRNAs MALAT1, XIST) were validated using RT-qPCR and IGV software. Through comprehensive analysis of epitranscriptome and protein-protein interaction (PPI) data, lncRNAs MALAT1 and XIST are expected to serve as new markers for BPA interfering with the female reproductive system. In brief, these data show a novel and necessary connection between the damage of BPA exposure on female ovarian granulosa cells and RNA methylation modification.


Assuntos
Fenóis , RNA Longo não Codificante , Feminino , Humanos , RNA Longo não Codificante/genética , Transcriptoma , Compostos Benzidrílicos/toxicidade , Metilação de RNA
7.
BMC Bioinformatics ; 24(1): 257, 2023 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-37330481

RESUMO

BACKGROUND: This study aims to deeply explore the relationship between m6A methylation modification and peripheral immune cells in patients with advanced sepsis and mine potential epigenetic therapeutic targets by analyzing the differential expression patterns of m6A-related genes in healthy subjects and advanced sepsis patients. METHODS: A single cell expression dataset of peripheral immune cells containing blood samples from 4 patients with advanced sepsis and 5 healthy subjects was obtained from the gene expression comprehensive database (GSE175453). Differential expression analysis and cluster analysis were performed on 21 m6A-related genes. The characteristic gene was identified based on random forest  algorithm, and the correlation between the characteristic gene METTL16 and 23 immune cells in patients with advanced sepsis was evaluated using single-sample gene set enrichment analysis. RESULTS: IGFBP1, IGFBP2, IGF2BP1, and WTAP were highly expressed in patients with advanced sepsis and m6A cluster B. IGFBP1, IGFBP2, and IGF2BP1 were positively correlated with Th17 helper T cells. The characteristic gene METTL16 exhibited a significant positive correlation with the proportion of various immune cells. CONCLUSION: IGFBP1, IGFBP2, IGF2BP1, WTAP, and METTL16 may accelerate the development of advanced sepsis by regulating m6A methylation modification and promoting immune cell infiltration. The discovery of these characteristic genes related to advanced sepsis provides potential therapeutic targets for the diagnosis and treatment of sepsis.


Assuntos
Imunoterapia , Sepse , Humanos , Metilação , Sepse/genética , Sepse/terapia , Análise por Conglomerados , Epigênese Genética , Metiltransferases
8.
Cancer Sci ; 114(11): 4329-4342, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37705317

RESUMO

This study aimed to determine the upstream regulatory factors affecting ribosome biogenesis regulator 1 homolog (RRS1) expression and the development and prognosis of liver hepatocellular carcinoma (LIHC). The expression profiles of RRS1 were evaluated in pan-cancer tissues and liver tumor cell lines. The associations of RRS1 with pan-cancer survival, immune infiltrations, immune checkpoints, and drug sensitivity were identified. We explored the potential upstream regulatory mechanisms of RRS1 expression. Hsa-miR-132-3p knockdown, CCK-8 assays, transwell, and wound healing assays were performed to validate the regulatory effect of hsa-miR-132-3p on RRS1 expression and the development of LIHC. Our findings demonstrated that RRS1 was significantly elevated in 27 types of cancers. RRS1 predicts a poor outcome of LIHC, lung adenocarcinoma, head and neck cancer, and kidney papillary cell carcinoma. RRS1 expression showed a significant association with immune cell infiltrates and the expression of immune checkpoints-related genes in LIHC tissues. Increased RRS1 expression may have a negative effect on these anticancer drugs of LIHC. Low methylation of the RRS1 promoter and its genomic gain may elevate RRS1 expression and predict poor prognosis for LIHC. Increased hsa-miR-132-3p expression may elevate RRS1 expression and result in poor prognosis for LIHC. Hsa-miR-132-3p inhibition can decrease RRS1 expression and the development of liver tumor cell lines. Low methylation of the RRS1 promoter, RRS1 genomic gain, and hsa-miR-132-3p upregulation in LIHC may promote RRS1 upregulation and thus lead to the development and poor prognosis for LIHC. RRS1 is a promising therapeutic target for LIHC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Humanos , Carcinoma Hepatocelular/patologia , Metilação , Neoplasias Hepáticas/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Genômica , Regulação Neoplásica da Expressão Gênica , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
9.
J Transl Med ; 21(1): 810, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37964279

RESUMO

Epitranscriptomic abnormalities, which are highly prevalent in primary central nervous system malignancies, have been identified as crucial contributors to the development and progression of gliomas. RNA epitranscriptomic modifications, particularly the reversible modification methylation, have been observed throughout the RNA cycle. Epitranscriptomic modifications, which regulate RNA transcription and translation, have profound biological implications. These modifications are associated with the development of several cancer types. Notably, three main protein types-writers, erasers, and readers, in conjunction with other related proteins, mediate these epitranscriptomic changes. This review primarily focuses on the role of recently identified RNA methylation modifications in gliomas, such as N6-methyladenosine (m6A), 5-methylcytosine (m5C), N7-methylguanosine (m7G), and N1-methyladenosine (m1A). We delved into their corresponding writers, erasers, readers, and related binding proteins to propose new approaches and prognostic indicators for patients with glioma.


Assuntos
Glioma , Transcriptoma , Humanos , Metilação , RNA/metabolismo , 5-Metilcitosina/metabolismo , Glioma/genética
10.
Cell Commun Signal ; 21(1): 121, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37231451

RESUMO

BACKGROUND: It is well-established that most Hepatocellular carcinoma (HCC) patients die of metastasis, yet the potential mechanisms orchestrating metastasis remain poorly understood. Current evidence suggests that the dysregulation of METTL3-mediated m6A methylation modification is closely associated with cancer progression. STAT3 is an oncogenic transcription factor that reportedly plays a central role in the occurrence and development of HCC. However, the relationship between METTL3 and STAT3 in HCC metastasis remains unclear. METHODS: The relationship between METTL3 expression and the survival of HCC patients was assessed by online tools GEPIA and Kaplan-Meier Plotter. Western blotting, Tissue microarray (TMA), and immunohistochemistry (IHC) staining were used to evaluate the expression levels of METTL3 and STAT3 in HCC cell lines and metastatic and non-metastatic tissues. Methylated RNA immunoprecipitation (MeRIP), MeRIP sequencing (MeRIP-seq), qRT-PCR, RNA immunoprecipitation (RIP), Western blotting and luciferase reporter gene assay were utilized to clarify the mechanism of METTL3 regulating STAT3 expression. Immunofluorescence staining, Western blotting, qRT-PCR, Co-immunoprecipitation (Co-IP), IHC staining, TMA and Chromatin immunoprecipitation (ChIP) assay were performed to explore the mechanism of STAT3 modulating METTL3 localization. Cell viability, wound healing and transwell assay, and orthotopic xenograft model were used to evaluate the role of METTL3-STAT3 feedback loop in the promotion of HCC metastasis in vitro and in vivo. RESULTS: METTL3 and STAT3 are both abundantly expressed in high-metastatic HCC cells and tissues. Moreover, a positive correlation was found between the expression of STAT3 and METTL3 in HCC tissues. Mechanistically, METTL3 could induce the m6A modification of STAT3 mRNA, and then promote the translation of m6A-contained STAT3 mRNA by interacting with the translation initiation machinery. In contrast, STAT3 promoted nuclear localization of METTL3 via transcriptionally upregulating WTAP, a vital member of the methyltransferase complex, and facilitated the methyltransferase function of METTL3. METTL3 and STAT3 form a positive feedback loop to accelerate HCC metastasis in vitro and in vivo. CONCLUSIONS: Our findings reveal a novel mechanism of HCC metastasis and uncover the METTL3-STAT3 feedback signaling as a potential target for the anti-metastatic treatment of HCC. Video Abstract.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Retroalimentação , Linhagem Celular Tumoral , Metiltransferases/genética , RNA , RNA Mensageiro/genética , Fator de Transcrição STAT3/metabolismo
11.
J Periodontal Res ; 58(2): 444-455, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36733232

RESUMO

OBJECTIVE: To investigate the changes in the m6A methylation modification profile of human periodontal ligament cells (hPDLCs) in response to inflammatory conditions. BACKGROUND: Periodontitis is an infectious disease of the periodontal support tissue that leads to the loss of alveolar bone. HPDLCs are primary cells that can repair periodontal tissue defects caused by periodontitis. However, the inflammatory conditions induce inflammatory damage and decrease ossification of hPDLCs. This inflammatory response depends on genetic and epigenetic mechanisms, including m6A methylation. METHODS: HPDLCs were cultured with osteogenic induction medium (NC group), while TNF-α (10 ng/mL) and IL-1ß (5 ng/mL) were added to simulate inflammatory conditions (Inflam group). Then RNA-seq and MeRIP-seq analyses were performed to identify m6A methylation modification in the transcriptome range of hPDLCs. RESULTS: The results showed that the osteogenic differentiation of hPDLCs was inhibited under inflammatory conditions. RNA-seq analysis also revealed that the decreased genes in response to inflammatory conditions were primarily annotated in processes associated with ossification. Compared with the NC group, differentially m6A-methylated genes were primarily enriched in histone modification processes. Among 145 histone modification genes, 25 genes have been reported to be involved in the regulation of osteogenic differentiation, and they include KAT6B, EP300, BMI1, and KDMs (KDM1A, KDM2A, KDM3A, KDM4B, and KDM5A). CONCLUSION: This study demonstrated that the m6A landscape of hPDLCs was changed in response to inflammation. M6A methylation differences among histone modification genes may act on the osteogenic differentiation of hPDLCs.


Assuntos
Osteogênese , Periodontite , Humanos , Osteogênese/genética , Células Cultivadas , RNA , Ligamento Periodontal , Epigenoma , Periodontite/genética , Proteína 2 de Ligação ao Retinoblastoma/genética , Histona Acetiltransferases/genética , Histona Desmetilases/genética , Histona Desmetilases com o Domínio Jumonji/genética
12.
Int J Mol Sci ; 24(15)2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37569280

RESUMO

Mixed-lineage leukemia 1 (MLL1) introduces 1-, 2- and 3-methylation into histone H3K4 through the evolutionarily conserved set domain. In this study, bovine embryonic stem cells (bESCs, known as bESCs-F7) were established from in vitro-fertilized (IVF) embryos via Wnt signaling inhibition; however, their contribution to the endoderm in vivo is limited. To improve the quality of bESCs, MM-102, an inhibitor of MLL1, was applied to the culture. The results showed that MLL1 inhibition along with GSK3 and MAP2K inhibition (3i) at the embryonic stage did not affect bESCs' establishment and pluripotency. MLL1 inhibition improved the pluripotency and differentiation potential of bESCs via the up-regulation of stem cell signaling pathways such as PI3K-Akt and WNT. MLL1 inhibition decreased H3K4me1 modification at the promoters and altered the distribution of DNA methylation in bESCs. In summary, MLL1 inhibition gives bESCs better pluripotency, and its application may provide high-quality pluripotent stem cells for domestic animals.


Assuntos
Leucemia , Proteína de Leucina Linfoide-Mieloide , Animais , Bovinos , Proteína de Leucina Linfoide-Mieloide/genética , Proteína de Leucina Linfoide-Mieloide/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Diferenciação Celular , Células-Tronco Embrionárias/metabolismo , Metilação de DNA , Leucemia/genética
13.
Yi Chuan ; 45(6): 472-487, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37340962

RESUMO

In recent years, the rate of female infertility in China has been increasing, posing an urgent challenge to improve fertility. A healthy reproductive system is essential for successful reproduction, and N6-methyladenosine (m6A) is the most abundant chemical modification in eukaryotes and plays a critical role in cellular processes. Recent studies have shown that m6A modifications also have a keying effect in various physiological and pathological processes in the female reproductive system, although their regulatory mechanisms and biological functions remain unclear. In this review, we first introduce the reversible regulatory mechanisms of m6A and its functions, discuss the role of m6A in female reproductive function and disorders of the reproductive system, and present recent advances in m6A detection technologies and methods. Our review provides new insights into the biological role of m6A and its potential application in the treatment of female reproductive disorders.


Assuntos
Adenosina , Eucariotos , Feminino , Humanos , China , Genitália Feminina
14.
Int J Med Sci ; 19(7): 1184-1197, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35919817

RESUMO

More and more reports have pointed out that rotenone, as an insecticide, has high neurotoxicity and reproductive toxicity to livestock and mammals. As a highly physiological correlation system of internal organs, quasi-organs have great potential in the fields of drug toxicity and efficacy test, toxicology research, developmental biology and so on. In this study, brain organs (mBOs) derived from mouse neural stem cells were used to investigate the effects of rotenone on the physiological activity and epigenetic modification of mBOs. At the same time, Rotenone could significantly stimulate the increase of the concentration of LPO, lactic acid and hydroxyl radical in mBOs, and inhibit the expression of neuronal marker Tuj1, CHAT, PAX6 and so on. Further analysis showed that Rotenonem could induce mitochondrial damage in mBOs. The results of qPCR and Western blot showed that Rotenone could up-regulate the expressions of ferroptosis promoting protein p53, Cox2 and so on, while inhibit the expressions of negative regulatory protein of ferroptosis GPX4, FTH1, SLC7A11. In addition, the results of RRBS-Seq sequencing showed that the methylation modification at DMR level in Rotenone-treated mBOs group was significantly higher than that in Ctrl group. The results of KEGG analysis showed that compared with Ctrl, the genes with hypermethylation of promoter and Genebody in Rotenone-treated mBOs were mainly located in the Neuro active ligand-receptor interaction signal transduction pathway. In summary, rotenone can significantly lead to abnormal methylation of mouse brain organs, and lead to the loss of normal physiological function of neurons by inducing ferroptosis.


Assuntos
Ferroptose , Rotenona , Animais , Encéfalo , Ferroptose/genética , Mamíferos , Metilação , Camundongos , Organoides , Rotenona/toxicidade
15.
Int J Mol Sci ; 23(14)2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35886919

RESUMO

RNA plays an important role in biology, and more than 170 RNA modifications have been identified so far. Post-transcriptional modification of RNA in cells plays a crucial role in the regulation of its stability, transport, processing, and gene expression. So far, the research on RNA modification and the exact role of its enzymes is becoming more and more comprehensive. Human immunodeficiency virus 1 (HIV-1) is an RNA virus and the causative agent of acquired immunodeficiency syndrome (AIDS), which is one of the most devastating viral pandemics in history. More and more studies have shown that HIV has RNA modifications and regulation of its gene expression during infection and replication. This review focuses on several RNA modifications and their regulatory roles as well as the roles that different RNA modifications play during HIV-1 infection, in order to find new approaches for the development of anti-HIV-1 therapeutics.


Assuntos
Síndrome da Imunodeficiência Adquirida , Infecções por HIV , HIV-1 , Síndrome da Imunodeficiência Adquirida/terapia , Regulação Viral da Expressão Gênica , HIV-1/fisiologia , Humanos , RNA/metabolismo , Processamento Pós-Transcricional do RNA , RNA Viral/genética , RNA Viral/metabolismo , Replicação Viral/genética
16.
Int J Mol Sci ; 23(12)2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35742899

RESUMO

Gastric cancer (GC) is the fifth most common cancer and the third deadliest cancer in the world, and the occurrence and development of GC are influenced by epigenetics. Methyltransferase-like 3 (METTL3) is a prominent RNA n6-adenosine methyltransferase (m6A) that plays an important role in tumor growth by controlling the work of RNA. This study aimed to reveal the biological function and molecular mechanism of METTL3 in GC. The expression level of METTL3 in GC tissues and cells was detected by qPCR, Western blot and immunohistochemistry, and the expression level and prognosis of METTL3 were predicted in public databases. CCK-8, colony formation, transwell and wound healing assays were used to study the effect of METTL3 on GC cell proliferation and migration. In addition, the enrichment effect of METTL3 on DEK mRNA was detected by the RIP experiment, the m6A modification effect of METTL3 on DEK was verified by the MeRIP experiment and the mRNA half-life of DEK when METTL3 was overexpressed was detected. The dot blot assay detects m6A modification at the mRNA level. The effect of METTL3 on cell migration ability in vivo was examined by tail vein injection of luciferase-labeled cells. The experimental results showed that METTL3 was highly expressed in GC tissues and cells, and the high expression of METTL3 was associated with a poor prognosis. In addition, the m6A modification level of mRNA was higher in GC tissues and GC cell lines. Overexpression of METTL3 in MGC80-3 cells and AGS promoted cell proliferation and migration, while the knockdown of METTL3 inhibited cell proliferation and migration. The results of in vitro rescue experiments showed that the knockdown of DEK reversed the promoting effects of METTL3 on cell proliferation and migration. In vivo experiments showed that the knockdown of DEK reversed the increase in lung metastases caused by the overexpression of METTL3 in mice. Mechanistically, the results of the RIP experiment showed that METTL3 could enrich DEK mRNA, and the results of the MePIP and RNA half-life experiments indicated that METTL3 binds to the 3'UTR of DEK, participates in the m6A modification of DEK and promotes the stability of DEK mRNA. Ultimately, we concluded that METTL3 promotes GC cell proliferation and migration by stabilizing DEK mRNA expression. Therefore, METTL3 is a potential biomarker for GC prognosis and a therapeutic target.


Assuntos
Neoplasias Gástricas , Adenosina/análogos & derivados , Adenosina/metabolismo , Animais , Transformação Celular Neoplásica , Metiltransferases/genética , Metiltransferases/metabolismo , Camundongos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Neoplasias Gástricas/patologia
17.
BMC Bioinformatics ; 22(1): 288, 2021 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-34051729

RESUMO

BACKGROUND: As a common and abundant RNA methylation modification, N6-methyladenosine (m6A) is widely spread in various species' transcriptomes, and it is closely related to the occurrence and development of various life processes and diseases. Thus, accurate identification of m6A methylation sites has become a hot topic. Most biological methods rely on high-throughput sequencing technology, which places great demands on the sequencing library preparation and data analysis. Thus, various machine learning methods have been proposed to extract various types of features based on sequences, then occupied conventional classifiers, such as SVM, RF, etc., for m6A methylation site identification. However, the identification performance relies heavily on the extracted features, which still need to be improved. RESULTS: This paper mainly studies feature extraction and classification of m6A methylation sites in a natural language processing way, which manages to organically integrate the feature extraction and classification simultaneously, with consideration of upstream and downstream information of m6A sites. One-hot, RNA word embedding, and Word2vec are adopted to depict sites from the perspectives of the base as well as its upstream and downstream sequence. The BiLSTM model, a well-known sequence model, was then constructed to discriminate the sequences with potential m6A sites. Since the above-mentioned three feature extraction methods focus on different perspectives of m6A sites, an ensemble deep learning predictor (EDLm6APred) was finally constructed for m6A site prediction. Experimental results on human and mouse data sets show that EDLm6APred outperforms the other single ones, indicating that base, upstream, and downstream information are all essential for m6A site detection. Compared with the existing m6A methylation site prediction models without genomic features, EDLm6APred obtains 86.6% of the area under receiver operating curve on the human data sets, indicating the effectiveness of sequential modeling on RNA. To maximize user convenience, a webserver was developed as an implementation of EDLm6APred and made publicly available at www.xjtlu.edu.cn/biologicalsciences/EDLm6APred . CONCLUSIONS: Our proposed EDLm6APred method is a reliable predictor for m6A methylation sites.


Assuntos
Aprendizado Profundo , Adenosina/metabolismo , Animais , Metilação , Camundongos , RNA/metabolismo , RNA Mensageiro
18.
Cancer Sci ; 112(11): 4543-4552, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34390075

RESUMO

Improving the chemotherapy resistance of temozolomide (TMZ) is of great significance in the treatment of glioblastoma multiforme (GBM). Long non-coding RNA just proximal to the X-inactive specific transcript (JPX) has been proven to be involved in cancer progression. However, the intrinsic significance and molecular mechanism by which JPX orchestrates GBM progression and TMZ chemotherapy resistance remain poorly understood. Here, JPX was found to be significantly elevated in GBM tissues and cell lines, and patients with high expressions of JPX showed significantly worse prognoses. Functional experiments revealed its carcinogenic roles in GBM cell proliferation, TMZ chemoresistance, anti-apoptosis, DNA damage repair, and aerobic glycolysis. Mechanistically, JPX formed a complex with phosphoinositide dependent kinase-1 (PDK1) messenger RNA (mRNA) and promoted its stability and expression. Furthermore, an RNA immunoprecipitation (RIP) experiment showed that JPX interacted with N6-methyladenosine (m6A) demethylase FTO alpha-ketoglutarate dependent dioxygenase (FTO) and enhanced FTO-mediated PDK1 mRNA demethylation. JPX exerted its GBM-promotion effects through the FTO/PDK1 axis. Taken together, these findings reveal the key role of JPX in promoting GBM aerobic glycolysis and TMZ chemoresistance in an m6A-dependent manner. Thus, it comprises a promising novel therapeutic target for GBM chemotherapy.


Assuntos
Antineoplásicos Alquilantes/farmacologia , Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , RNA Longo não Codificante/metabolismo , Temozolomida/farmacologia , Adenosina/análogos & derivados , Adenosina/metabolismo , Aerobiose , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Desmetilação , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos , Glioblastoma/tratamento farmacológico , Glioblastoma/mortalidade , Glioblastoma/patologia , Glicólise , Humanos , Proteínas de Neoplasias/metabolismo , Prognóstico , RNA Mensageiro/metabolismo
19.
Int J Neurosci ; 131(5): 468-477, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-32241207

RESUMO

OBJECTIVE: Neural tube defects (NTDs) are one of the most common and serious birth defects in human beings caused by genetic and environmental factors. Folate insufficiency is involved in the occurrence of NTDs and folic acid supplementation can prevent NTDs occurrence, however, the underlying mechanism remains poorly understood. METHODS: We established cell and animal models of folic acid deficiency to detect the methylation modification and expression levels of genes by MassARRAY and real-time PCR, respectively. Results and conclusion: In the present study, we found firstly that in human folic acid-insufficient NTDs, the methylation level of imprinted gene Mest/Peg1 was decreased. By using a folic acid-deficient cell model, we demonstrated that Mest/Peg1 methylation was descended. Meanwhile, the mRNA level of Mest/Peg1 was up-regulated via hypomethylation modification under low folic acid conditions. Consistent with the results in cell models, Mest/Peg1 expression was elevated through hypomethylation regulation in folate-deficient animal models. Furthermore, the up-regulation of Mest/Peg1 inhibited the expression of Lrp6 gene, a crucial component of Wnt pathway. Similar results with Lrp6 down-regulation of fetal brain were verified in animal models under folic acid-deficient condition. Taken together, our findings indicated folic acid increased the expression of Mest/Peg1 via hypomethylation modification, and then inhibited Lrp6 expression, which may ultimately impact on the development of nervous system through the inactivation of Wnt pathway.


Assuntos
Encéfalo/metabolismo , Deficiência de Ácido Fólico/metabolismo , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Defeitos do Tubo Neural/metabolismo , Proteínas/metabolismo , Via de Sinalização Wnt/genética , Animais , Células Cultivadas , Modelos Animais de Doenças , Feminino , Feto , Deficiência de Ácido Fólico/complicações , Regulação da Expressão Gênica , Humanos , Metilação , Camundongos , Camundongos Endogâmicos C57BL , Defeitos do Tubo Neural/etiologia
20.
FASEB J ; 33(4): 4688-4702, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30592646

RESUMO

Folate deficiency in early development leads to disturbance in multiple processes, including neurogenesis during which fibroblast growth factor (FGF) pathway is one of the crucial pathways. Whether folic acid (FA) directly affects FGF pathways to influence neurodevelopment and the possible mechanism remains unclear. In this study, we presented evidence that in human FA-insufficient encephalocele, the FGF pathway was interfered. Furthermore, in Brachyury knockout mice devoid of such T-box transcription factors regulating embryonic neuromesodermal bipotency and a key component of FGF pathway, change in expression of Brachyury downstream targets, activator Fgf8 and suppressor dual specificity phosphatase 6 was detected, along with the reduction in expression of other key FGF pathway genes. By using a FA-deficient cell model, we further demonstrated that decrease in Brachyury expression was through alteration in hypermethylation at the Brachyury promoter region under FA deficiency conditions, and suppression of Brachyury promoted the inactivation of the FGF pathway. Correspondingly, FA supplementation partially reverses the effects seen in FA-deficient embryoid bodies. Lastly, in mice with maternal folate-deficient diets, aberrant FGF pathway activity was found in fetal brain dysplasia. Taken together, our findings highlight the effect of FA on FGF pathways during neurogenesis, and the mechanism may be due to the low expression of Brachyury gene via hypermethylation under FA-insufficient conditions.-Chang, S., Lu, X., Wang, S., Wang, Z., Huo, J., Huang, J., Shangguan, S., Li, S., Zou, J., Bao, Y., Guo, J., Wang, F., Niu, B., Zhang, T., Qiu, Z., Wu, J., Wang, L. The effect of folic acid deficiency on FGF pathway via Brachyury regulation in neural tube defects.


Assuntos
Proteínas Fetais/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Deficiência de Ácido Fólico/metabolismo , Ácido Fólico/uso terapêutico , Defeitos do Tubo Neural/tratamento farmacológico , Defeitos do Tubo Neural/metabolismo , Proteínas com Domínio T/metabolismo , Animais , Apoptose/efeitos dos fármacos , Western Blotting , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Imunoprecipitação da Cromatina , Encefalocele/metabolismo , Feminino , Deficiência de Ácido Fólico/fisiopatologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Regiões Promotoras Genéticas , Transdução de Sinais/efeitos dos fármacos , Sulfitos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA