Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Carcinog ; 63(8): 1542-1558, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38751015

RESUMO

Ovarian cancer (OC) is among the most common and deadly solid malignancies in women. Despite many advances in OC research, the incidence of OC continues to rise, and its pathogenesis remains largely unknown. Herein, we elucidated the function of hsa_circ_0061179 in OC. The levels of hsa_circ_0061179, miR-143-3p, TIMELESS, and DNA damage repair-related proteins in OC or normal ovarian tissues and cells were measured using real-time quantitative polymerase chain reaction and immunoblotting. The biological effects of hsa_circ_0061179 and miR-143-3p on proliferation, clone formation, DNA damage, and apoptosis of OC cells were detected by the cell counting kit-8 assay, 5-methylethyl-2'-deoxyuridine, flow cytometry, the comet assay, and immunofluorescence staining combined with the confocal microscopy. The interaction among hsa_circ_0061179, miR-143-3p, and TIMELESS was validated by the luciferase reporter assay. Mice tumor xenograft models were used to evaluate the influence of hsa_circ_0061179 on OC growth in vivo. We found that human OC biospecimens expressed higher levels of hsa_circ_0061179 and lower levels of miR-143-3p. Hsa_circ_0061179 was found to bind with miR-143-3p, which directly targets TIMELESS. Hsa_circ_0061179 knockdown or miR-143-3p overexpression suppressed the proliferation and clone formation of OC cells and increased DNA damage and apoptosis of OC cells via the miR-143-3p/TIMELESS axis. Furthermore, we demonstrated that METTL3 could direct the formation of has_circ_0061179 through a specific m6A modification site. YTHDC1 facilitated the cytoplasmic transfer of has_circ_0061179 by directly binding to the modified m6A site. Our findings suggest that hsa_circ_0061179 acts as the sponge of miR-143-3p to activate TIMELESS signaling and inhibits DNA damage and apoptosis in OC cells.


Assuntos
Apoptose , Proliferação de Células , Dano ao DNA , Regulação Neoplásica da Expressão Gênica , MicroRNAs , Neoplasias Ovarianas , RNA Circular , Humanos , MicroRNAs/genética , Feminino , Animais , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/metabolismo , Camundongos , Linhagem Celular Tumoral , RNA Circular/genética , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos Endogâmicos BALB C , Adenosina/análogos & derivados , Metiltransferases
2.
Stem Cells ; 41(2): 184-199, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36520505

RESUMO

Macrophage polarization plays an important role in the progression of inflammation. Exosomes derived from stem cells are promising candidates for macrophage immunoregulation. However, how exosomes derived from periodontal ligament stem cells (PDLSCs) in an inflammatory environment influence macrophage polarization has yet to be fully elucidated. In this study, inflammatory PDLSCs were found to downregulate M2 macrophage polarization at the mRNA and protein levels in a Transwell coculture system of PDLSCs and THP-1-derived M0 macrophages. Furthermore, inflammatory PDLSC-derived exosomes shifted macrophages toward the M1 phenotype. The inhibition of inflammatory PDLSC-derived exosomes by GW4869 weakened inflammatory PDLSC-mediated M1 macrophage polarization. A miRNA microarray was used to determine the differential miRNAs shuttled by healthy and inflammatory PDLSC-derived exosomes. Compared with healthy exosomes, miR-143-3p was enriched in inflammatory PDLSC-derived exosomes, which targeted and inhibited the expression of PI3Kγ and promoted M1 macrophage polarization by suppressing PI3K/AKT signaling and activating NF-κB signaling, while an agonist of the PI3K pathway reversed this effect. Moreover, exosome-shuttled miR-143-3p from PDLSCs drove M1 macrophage polarization and aggravated periodontal inflammation in a mouse periodontitis model. In conclusion, these results demonstrate that inflammatory PDLSCs facilitate M1 macrophage polarization through the exosomal miR-143-3p-mediated regulation of PI3K/AKT/NF-κB signaling, providing a potential new target for periodontitis treatment.


Assuntos
Exossomos , MicroRNAs , Periodontite , Animais , Camundongos , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Ligamento Periodontal , MicroRNAs/genética , MicroRNAs/metabolismo , Células-Tronco/metabolismo , Macrófagos/metabolismo , Exossomos/metabolismo , Periodontite/metabolismo , Inflamação/metabolismo
3.
J Oral Rehabil ; 51(8): 1507-1520, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38717032

RESUMO

BACKGROUND: Mesenchymal stem cells (MSCs) derived from the synovium, known as synovium mesenchymal stem cells (SMSCs), exhibit significant potential for articular cartilage regeneration owing to their capacity for chondrogenic differentiation. However, the microRNAs (miRNAs) governing this process and the associated mechanisms remain unclear. While mechanical stress positively influences chondrogenesis in MSCs, the miRNA-mediated response of SMSCs to mechanical stimuli is not well understood. OBJECTIVE: This study explores the miRNA-driven mechano-transduction in SMSCs chondrogenesis under mechanical stress. METHODS: The surface phenotype of SMSCs was analysed by flow cytometry. Chondrogenesis capacities of SMSCs were examined by Alcian blue staining. High throughput sequencing was used to screen mechano-sensitive miRNAs of SMSCs. The RNA expression level of COL2A1, ACAN, SOX9, BMPR2 and miR-143-3p of SMSCs were tested by quantitative real-time polymerase chain reaction (qRT-PCR). The interaction between miR-143-3p and TLR4 was confirmed by luciferase reporter assays. The protein expression levels of related genes were assessed by western blot. RESULTS: High-throughput sequencing revealed a notable reduction in miR-143-3p levels in mechanically stressed SMSCs. Gain- or loss-of-function strategies introduced by lentivirus demonstrated that miR-143-3p overexpression hindered chondrogenic differentiation, whereas its knockdown promoted this process. Bioinformatics scrutiny and luciferase reporter assays pinpointed a potential binding site for miR-143-3p within the 3'-UTR of bone morphogenetic protein receptor type 2 (BMPR2). MiR-143-3p overexpression decreased BMPR2 expression and phosphorylated Smad1, 5 and 8 levels, while its inhibition activated BMPR2-Smad pathway. CONCLUSION: This study elucidated that miR-143-3p negatively regulates SMSCs chondrogenic differentiation through the BMPR2-Smad pathway under mechanical tensile stress. The direct targeting of BMPR2 by miR-143-3p established a novel dimension to our understanding of mechano-transduction mechanism during SMSC chondrogenesis. This understanding is crucial for advancing strategies in articular cartilage regeneration.


Assuntos
Receptores de Proteínas Morfogenéticas Ósseas Tipo II , Diferenciação Celular , Condrogênese , Células-Tronco Mesenquimais , MicroRNAs , Transdução de Sinais , Estresse Mecânico , Membrana Sinovial , Humanos , Agrecanas/metabolismo , Agrecanas/genética , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/metabolismo , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Diferenciação Celular/fisiologia , Células Cultivadas , Condrogênese/fisiologia , Colágeno Tipo II/metabolismo , Colágeno Tipo II/genética , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/metabolismo , MicroRNAs/genética , Transdução de Sinais/fisiologia , Proteínas Smad/metabolismo , Fatores de Transcrição SOX9/metabolismo , Fatores de Transcrição SOX9/genética , Membrana Sinovial/citologia , Membrana Sinovial/metabolismo
4.
Int J Mol Sci ; 25(11)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38892269

RESUMO

We aimed to determine whether monitoring tumor-derived exosomal microRNAs (miRNAs) could be used to assess radiotherapeutic sensitivity in patients with locally advanced esophageal squamous cell carcinoma (ESCC). RNA sequencing was employed to conduct a comparative analysis of miRNA expression levels during radiotherapy, focusing on identifying miRNAs associated with progression. Electron microscopy confirmed the existence of exosomes, and co-cultivation assays and immunofluorescence validated their capacity to infiltrate macrophages. To determine the mechanism by which exosomal miR-143-3p regulates the interplay between ESCC cells and M2 macrophages, ESCC cell-derived exosomes were co-cultured with macrophages. Serum miR-143-3p and miR-223-3p were elevated during radiotherapy, suggesting resistance to radiation and an unfavorable prognosis for ESCC. Increased levels of both miRNAs independently predicted shorter progression-free survival (p = 0.015). We developed a diagnostic model for ESCC using serum microRNAs, resulting in an area under the curve of 0.751. Radiotherapy enhanced the release of miR-143-3p from ESCC cell-derived exosomes. Immune cell infiltration analysis at the Cancer Genome Atlas (TCGA) database revealed that ESCC cell-derived miR-143-3p triggered M2 macrophage polarization. Mechanistically, miR-143-3p upregulation affected chemokine activity and cytokine signaling pathways. Furthermore, ESCC cell exosomal miR-143-3p could be transferred to macrophages, thereby promoting their polarization. Serum miR-143-3p and miR-223-3p could represent diagnostic and prognostic markers for patients with ESCC undergoing radiotherapy. Unfavorable prognosis could be linked to the increased levels of ESCC cell-derived exosomal miR-143-3p, which might promote tumor progression by interacting with macrophages.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Exossomos , Regulação Neoplásica da Expressão Gênica , Macrófagos , MicroRNAs , Tolerância a Radiação , MicroRNAs/genética , Humanos , Exossomos/metabolismo , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Carcinoma de Células Escamosas do Esôfago/radioterapia , Carcinoma de Células Escamosas do Esôfago/metabolismo , Macrófagos/metabolismo , Tolerância a Radiação/genética , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/radioterapia , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/metabolismo , Linhagem Celular Tumoral , Masculino , Feminino , Pessoa de Meia-Idade , Prognóstico , Idoso , Ativação de Macrófagos/genética
5.
Mol Hum Reprod ; 29(8)2023 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-37369038

RESUMO

The remodeling of uterine spiral arteries is a complex process requiring the dynamic action of various cell types. During early pregnancy, extravillous trophoblast (EVT) cells differentiate and invade the vascular wall, replacing the vascular smooth muscle cells (VSMCs). Several in vitro studies have shown that EVT cells play an important role in promoting VSMC apoptosis, however, the mechanism underlying this process is not fully understood. In this study, we demonstrated that EVT-conditioned media and EVT-derived exosomes could induce VSMC apoptosis. Through data mining and experimental verification, it was demonstrated that the EVT exosome miR-143-3p induced VSMC apoptosis in both VSMCs and a chorionic plate artery (CPA) model. Furthermore, FAS ligand was also expressed on the EVT exosomes and may play a co-ordinated role in apoptosis induction. These data clearly demonstrated that VSMC apoptosis is mediated by EVT-derived exosomes and their cargo of miR-143-3p as well as their cell surface presentation of FASL. This finding increases our understanding of the molecular mechanisms underlying the regulation of VSMC apoptosis during spiral artery remodeling.


Assuntos
Exossomos , MicroRNAs , Gravidez , Feminino , Humanos , Trofoblastos/metabolismo , Músculo Liso Vascular/metabolismo , Exossomos/genética , Artéria Uterina/metabolismo , Apoptose/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Miócitos de Músculo Liso/metabolismo
6.
Cell Tissue Res ; 391(3): 561-575, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36602629

RESUMO

Increasing evidence suggests that insulin resistance in type 2 diabetes mellitus (T2DM) is associated with mitochondrial dysfunction in skeletal muscle, while the underlying molecular mechanisms remain elusive. This study aims to construct a ceRNA regulatory network that is involved in mitochondrial dysfunction of skeletal muscle in T2DM. Based on GEO database analysis, differentially expressed lncRNA and mRNA profiles were identified in skeletal muscle tissues of T2DM. Next, LASSO regression analysis was conducted to predict the key lncRNAs related to T2DM, which was validated by receiver operating characteristic (ROC) analysis. Moreover, the miRNAs related to skeletal muscle in T2DM were identified by WGCNA, followed by construction of gene-gene interaction network and GO and KEGG enrichment analyses. It was found that 12 lncRNAs and 6 miRNAs were related to skeletal muscle in T2DM. Moreover, the lncRNA-miRNA-mRNA ceRNA network involving UCA1, miR-143-3p, and FGF21 was constructed. UCA1, and FGF21 were downregulated, while miR-143-3p was upregulated in skeletal muscle cells (SkMCs) exposed to palmitic acid. Additionally, ectopic expression experiments were performed in SkMCs to confirm the effects of UCA1/miR-143-3p/FGF21 on mitochondrial dysfunction by determining mitochondrial ROS, oxygen consumption rate (OCR), membrane potential, and ATP level. Overexpression of miR-143-3p increased ROS accumulation and reduced the OCR, fluorescence ratio of JC-1, and ATP level, which were reversed by upregulation of UCA1 or FGF21. Collectively, lncRNA UCA1 inhibited mitochondrial dysfunction of skeletal muscle in T2DM by sequestering miR-143-3p away from FGF21, therefore providing a potential therapeutic target for alleviating mitochondrial dysfunction of skeletal muscle in T2DM.


Assuntos
Diabetes Mellitus Tipo 2 , MicroRNAs , RNA Longo não Codificante , Humanos , Trifosfato de Adenosina/metabolismo , Diabetes Mellitus Tipo 2/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Espécies Reativas de Oxigênio/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética
7.
Pulm Pharmacol Ther ; 83: 102251, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37666296

RESUMO

BACKGROUND: Airway epithelial cells epithelial mesenchymal transition (EMT) and lung fibroblasts extracellular matrix (ECM) production are the key steps in airway remodeling. Our previous study demonstrated that miR-143-3p has the ability to impede airway smooth muscle cell proliferation and ECM deposition. However, the function of miR-143-3p in airway epithelial cells and lung fibroblasts remains unclear. METHODS: Cell viability was determined using MTT method, while cell migration was evaluated through scratch assay. EMT and ECM proteins were detected by western blot, RT-qPCR, and ELISA. To determine the level of miR-143-3p m6A methylation, we employed the meRIP-qPCR assay. Additionally, the binding of miR-143-3p with Smad3 were projected by bioinformatics and validated by dual luciferase reporter assays. RESULTS: It was discovered that the expression of miR-143-3p were lower in both asthma patients and TGF-ß1-treated human bronchial epithelial 16HBE cells and human lung fibroblast HPF cells. Upregulation of miR-143-3p restrained 16HBE cell migration, and decreased EMT mesenchymal markers and increased epithelial markers. And upregulation of miR-143-3p impaired cell viability and ECM protein production in HPF cells. Mechanistically, interfering with METTL3 resulted in decreased m6A modification of miR-143-3p and led to lower levels of miR-143-3p. Moreover, miR-143-3p were verified to directly target and downregulate Smad3. Upregulation of Smad3 attenuated the effects of miR-143-3p on cell EMT and ECM production. CONCLUSION: MiR-143-3p inhibits airway epithelial cell EMT as well as lung fibroblast ECM production by downregulating Smad3. Therefore, miR-143-3p may be a promising target to reduce airway remodeling in asthma.


Assuntos
Asma , MicroRNAs , Humanos , Remodelação das Vias Aéreas , Asma/metabolismo , Movimento Celular , Proliferação de Células , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal , Matriz Extracelular/metabolismo , Pulmão/metabolismo , Metiltransferases/metabolismo , MicroRNAs/genética , Fator de Crescimento Transformador beta1/metabolismo
8.
Cardiovasc Drugs Ther ; 37(3): 435-448, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-35066738

RESUMO

OBJECTIVE: Myocardial ischemia/reperfusion (MI/R) injury is a complicated pathophysiological process associated with cardiomyocyte pyroptosis. Methyltransferase-like protein 3 (METTL3) catalyzes the formation of N6-methyl-adenosine (m6A) and participates in various biological processes. This study probed into the mechanism of METTL3 in cardiomyocyte pyroptosis in MI/R injury. METHODS: A rat model of MI/R was established. Rat cardiomyocytes were subjected to oxygen-glucose deprivation/reoxygenation (OGD/R) treatment for the establishment of a cell model in vitro. METTL3 expression in myocardial tissues of MI/R rats and OGD/R-treated cardiomyocytes was determined using RT-qPCR and Western blot. The pathological changes of rat myocardial tissues were observed using hematoxylin and eosin staining. The positive expression of NLRP3 in myocardial tissues or cardiomyocytes was observed through immunohistochemistry or immunofluorescence. The activity of caspase-1 was measured using the colorimetric method. The expressions of GSDMD and cleaved caspase-1, as well as the levels of IL-1ß and IL-18 in rat myocardial tissues or cardiomyocytes were determined. m6A modification level was quantified. The binding relationship between pri-miR-143-3p and DGCR8 and the enrichment of m6A on pri-miR-143-3p were detected. The binding relationship between miR-143-3p and protein kinase C epsilon (PRKCE) was verified. RESULTS: METTL3 expression was elevated in MI/R rats and OGD/R cardiomyocytes. METTL3 silencing alleviated myocardial injury, reduced the number of NLRP3-positive cardiomyocytes, suppressed caspase-1 activity, decreased the protein levels of GSDMD-N and cleaved caspase-1, and decreased IL-1ß and IL-18 levels. METTL3 increased the total m6A level in MI/R rats and injured cardiomyocytes, promoted DGCR8 binding to pri-miR-143-3p, and enhanced miR-143-3p expression. miR-143-3p suppressed PRKCE transcription, and miR-143-3p overexpression reversed the inhibitory effect of METTL3 silencing on cardiomyocyte pyroptosis. CONCLUSION: METTL3 promoted DGCR8 binding to pri-miR-143-3p through m6A modification, thus enhancing miR-143-3p expression to inhibit PRKCE transcription and further aggravating cardiomyocyte pyroptosis and MI/R injury.


Assuntos
Traumatismo por Reperfusão Miocárdica , Animais , Ratos , Caspase 1/metabolismo , Interleucina-18/metabolismo , Interleucina-18/farmacologia , MicroRNAs/genética , MicroRNAs/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piroptose , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/farmacologia
9.
J Clin Lab Anal ; 37(5): e24845, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36861291

RESUMO

BACKGROUND: Rheumatoid arthritis (RA) is a persistent and systemic autoimmunity disease. The abnormal differentiation of Treg cells is important in pathogenesis. Despite previous studies showed that microRNAs (miRNAs, miR) are pivotal modulators of Treg cells, the effect of miRNAs on Treg cell differentiation and function is not clear. Our study wants to reveal the relationship of miR-143-3p with the differentiative ability and biofunction of Treg cells during the development of RA. METHODS: The Expressing level of miR-143-3p and cell factor generation in peripheral blood (PB) of RA sufferers were identified by ELISA or RT-qPCR. The roles of miR-143-3p in Treg cell differentiation were studied via ShRNA/lentivirus transfection. Male DBA/1 J mice were separated into control, model, control mimics, and miR-143-3p mimics groups to analyze the anti-arthritis efficacy, the differentiative ability of Treg cells, and the expression level of miR-143-3p. RESULTS: Our team discovered that the Expressing level of miR-143-3p was related to RA disease activities in a negative manner, and remarkably related to antiinflammation cell factor IL-10. In vitro, the expression of miR-143-3p in the CD4+ T cells upregulated the percentage of CD4+ CD25+ Fxop3+ cells (Tregs) and forkhead box protein 3 (Foxp3) mRNA expression. Evidently, miR-143-3p mimic intervention considerably upregulated the content of Treg cells in vivo, validly avoided CIA progression, and remarkably suppressed the inflammatory events of joints in mice. CONCLUSION: Our findings indicated that miR-143-3p could ameliorate CIA through polarizing naive CD4+ T cells into Treg cells, which may be a novel strategy to treat autoimmune diseases such as RA.


Assuntos
Artrite Experimental , Artrite Reumatoide , MicroRNAs , Masculino , Camundongos , Animais , Linfócitos T Reguladores , Artrite Experimental/genética , Artrite Experimental/terapia , Camundongos Endogâmicos DBA , MicroRNAs/metabolismo
10.
Int J Mol Sci ; 24(16)2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37628741

RESUMO

The ovary is a highly susceptible organ to senescence, and granulosa cells (GCs) have a crucial role in oocyte development promotion and overall ovarian function maintenance. As age advances, GCs apoptosis and dysfunction escalate, leading to ovarian aging. However, the molecular mechanisms underpinning ovarian aging remain poorly understood. In this study, we observed a correlation between the age-related decline of fertility and elevated expression levels of miR-143-3p in female mice. Moreover, miR-143-3p was highly expressed in senescent ovarian GCs. The overexpression of miR-143-3p in GCs not only hindered their proliferation and induced senescence-associated secretory phenotype (SASP) but also impeded steroid hormone synthesis by targeting ubiquitin-conjugating enzyme E2 E3 (Ube2e3) and luteinizing hormone and human chorionic gonadotropin receptor (Lhcgr). These findings suggest that miR-143-3p plays a substantial role in senescence and steroid hormone synthesis in GCs, indicating its potential as a therapeutic target for interventions in the ovarian aging process.


Assuntos
Estradiol , MicroRNAs , Humanos , Feminino , Animais , Camundongos , Ovário , Receptores Acoplados a Proteínas G , Células da Granulosa , Fenótipo Secretor Associado à Senescência , MicroRNAs/genética
11.
Turk J Med Sci ; 53(1): 130-141, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36945942

RESUMO

BACKGROUND: Pulmonary arterial hypertension (PAH) is characterized by maladaptation of pulmonary vasculature which is leading to right ventricular hypertrophy and heart failure. miRNAs play a crucial role in the regulation of many diseases such as viral infection, cancer, cardiovascular diseases, and pulmonary hypertension (PH). In this study, we aimed to investigate the expression pattern of eight human plasma miRNAs (hsa-miR-21-3p, hsa-miR-143- 3p, hsa-miR-138-5p, hsa-miR-145-3p, hsa-miR-190a, hsa-miR-204-3p, hsamiR-206, hsa-miR-210-3p) in mild-to-severe PH patients and healthy controls. METHODS: : miRNAs were extracted from the peripheral plasma of the PH patients (n: 44) and healthy individuals (n: 30) by using the miRNA Isolation Kit. cDNA was synthesized using All in-One First strand cDNA Synthesis Kit. Expression of the human plasma hsa-miR- 21-3p, hsa-miR-143-3p, hsa-miR-138-5p, hsa-miR-145-3p, hsa-miR-190a, hsa-miR-204- 3p, hsa-miR-206, hsa-miR210-3p, and miRNAs were analyzed by qRT-PCR. RESULTS: According to our results, in PH patients hsa-miR-21-3p and hsa-miR-143-3p expression levels were decreased by 4.7 and 2.3 times, respectively. No significant changes were detected in hsa-miR-138-5p, hsa-miR-145-3p, hsa-miR-190a, hsa-miR-204-3p, hsamiR-206, and hsa-miR-210-3p expression levels between PH and control groups. In addition, considering the severity of the disease, it was observed that the decrease in miR-138, miR-143, miR-145, miR-190, mir-204, mir-206 and miR-208 expressions was significant in patients with severe PH. DISCUSSION: : In the early diagnosis of PAH, hsa-miR-21-3p and especially hsa-miR-143-3p in peripheral plasma can be considered as potential biomarkers.


Assuntos
Hipertensão Pulmonar , Humanos , Masculino , Feminino , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Hipertensão Pulmonar/genética , RNA Circular/genética , Biomarcadores , Regulação da Expressão Gênica
12.
Funct Integr Genomics ; 22(5): 891-903, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35624316

RESUMO

Oral squamous cell carcinoma (OSCC) is a common malignant tumor occurring in the oral cavity. Circular RNAs (circRNAs) play a crucial regulatory role in many cancers. This study aimed to investigate the function of circRNA plasmacytoma variant translocation 1 (PVT1) (circPVT1) in OSCC and its potential mechanism. The levels of circPVT1, solute carrier family 7 member 11 (SLC7A11), and microRNA-143-3p (miR-143-3p) were examined by quantitative real-time PCR (qRT-PCR) or western blot assay. Cell proliferation, apoptosis, migration, and invasion were evaluated by Cell Counting Kit-8 (CCK-8), colony formation assay, flow cytometry, and transwell assay. The levels of apoptosis and proliferation-related proteins were examined by western blot. The targeting relationship between miR-143-3p and circPVT1 or SLC7A11 was verified by dual-luciferase reporter, RNA immunoprecipitation (RIP), and RNA pull-down assays. The levels of mitogen-activated protein kinase (MAPK) pathway-related proteins were measured by western blot. Xenograft assay was used to assess tumor growth in vivo. CircPVT1 and SLC7A11 were upregulated, while miR-143-3p was downregulated in OSCC tissues and cells. Silencing of circPVT1 or SLC7A11 suppressed proliferation, migration, and invasion and promoted apoptosis in OSCC cells. CircPVT1 upregulated SLC7A11 expression via sponging miR-143-3p. SLC7A11 upregulation alleviated the effect of circPVT1 knockdown on OSCC cell progression. Besides, circPVT1 modulated MAPK signaling pathway by regulating miR-143-3p. Moreover, circPVT1 knockdown inhibited tumor growth in vivo. Knockdown of circPVT1 impeded OSCC progression via the miR-143-3p/SLC7A11 axis through MAPK signaling pathway.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , MicroRNAs , Neoplasias Bucais , Sistema y+ de Transporte de Aminoácidos/genética , Sistema y+ de Transporte de Aminoácidos/metabolismo , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço/genética , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Neoplasias Bucais/genética , Neoplasias Bucais/patologia , RNA Circular/genética , Transdução de Sinais , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética
13.
Exp Physiol ; 107(8): 892-905, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35765992

RESUMO

NEW FINDINGS: What is the central question of this study? What is the effect of an obesogenic diet on the expression of microRNAs (miRNAs) involved in cardiac hypertrophy in female mice? What is the main finding and its importance? Female mice fed an obesogenic diet exhibited cardiac hypertrophy associated with increased levels of miRNA-143-3p, decreased mRNA levels of Sox6 and increased mRNA levels of Myh7. Inhibition of miRNA-143-3p increased Sox6 mRNA levels and reduced Myh7 expression in cardiomyocytes, and prevented angiotensin II-induced cardiomyocyte hypertrophy. The results indicate that the miRNA-143-3p-Sox6-Myh7 pathway may play a key role in obesity-induced cardiac hypertrophy. ABSTRACT: Obesity induces cardiometabolic disorders associated with a high risk of mortality. We have previously shown that the microRNA (miRNA) expression profile is changed in obesity-induced cardiac hypertrophy in male mice. Here, we investigated the effect of an obesogenic diet on the expression of miRNAs involved in cardiac hypertrophy in female mice. Female mice fed an obesogenic diet displayed an increased body weight gain, glucose intolerance, insulin resistance and dyslipidaemia. In addition, obese female mice exhibited cardiac hypertrophy associated with increased levels of several miRNAs, including miR-143-3p. Bioinformatic analysis identified Sox6, regulator of Myh7 gene transcription, as a predicted target of miR-143-3p. Female mice fed an obesogenic diet exhibited decreased mRNA levels of Sox6 and increased expression of Myh7 in the heart. Loss-of-function studies in cardiomyocytes revealed that inhibition of miR-143-3p increased Sox6 mRNA levels and reduced Myh7 expression. Collectively, our results indicate that obesity-associated cardiac hypertrophy in female mice is accompanied by alterations in diverse miRNAs, and suggest that the miR-143-3p-Sox6-Myh7 pathway may play a key role in obesity-induced cardiac hypertrophy.


Assuntos
Cardiomegalia , MicroRNAs , Animais , Cardiomegalia/metabolismo , Dieta , Feminino , Masculino , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Miócitos Cardíacos/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Obesidade/metabolismo , RNA Mensageiro/metabolismo , Fatores de Transcrição SOXD/metabolismo
14.
Cell Commun Signal ; 20(1): 61, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35534864

RESUMO

OBJECTIVE: Polycystic ovary syndrome (PCOS) is characterized by follicular dysplasia. An insufficient glycolysis-derived energy supply of granulosa cells (GCs) is an important cause of follicular dysplasia in PCOS. Follicular fluid (FF) exosomal microRNAs (miRNAs) have been proven to regulate the function of GCs. In this study, exosomes extracted from clinical FF samples were used for transcriptome sequencing (RNA-seq) analysis, and a human ovarian granulocyte tumour cell line (KGN cells) was used for in vitro mechanistic studies. METHODS AND RESULTS: In FF exosomal RNA-seq analysis, a decrease in glycolysis-related pathways was identified as an important feature of the PCOS group, and the differentially expressed miR-143-3p and miR-155-5p may be regulatory factors of glycolysis. By determining the effects of miR-143-3p and miR-155-5p on hexokinase (HK) 2, pyruvate kinase muscle isozyme M2 (PKM2), lactate dehydrogenase A (LDHA), pyruvate, lactate and apoptosis in KGN cells, we found that upregulated miR-143-3p expression in exosomes from the PCOS group inhibited glycolysis in KGN cells; knockdown of miR-143-3p significantly alleviated the decrease in glycolysis in KGN cells in PCOS. MiR-155-5p silencing attenuated glycolytic activation in KGN cells; overexpression of miR-155-5p significantly promoted glycolysis in KGN cells in PCOS. In this study, HK2 was found to be the mediator of miR-143-3p and miR-155-5p in FF-derived exosome-mediated regulation of glycolysis in KGN cells. Reduced glycolysis accelerated apoptosis of KGN cells, which mediated follicular dysplasia through ATP, lactate and apoptotic pathways. CONCLUSIONS: In conclusion, these results indicate that miR-143-3p and miR-155-5p in FF-derived exosomes antagonistically regulate glycolytic-mediated follicular dysplasia of GCs in PCOS. Video Abstract.


Assuntos
MicroRNAs , Síndrome do Ovário Policístico , Proliferação de Células , Feminino , Líquido Folicular/metabolismo , Glicólise , Células da Granulosa/metabolismo , Células da Granulosa/patologia , Humanos , Lactatos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Síndrome do Ovário Policístico/genética , Síndrome do Ovário Policístico/metabolismo , Síndrome do Ovário Policístico/patologia
15.
Biochem Genet ; 60(6): 2570-2586, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35639219

RESUMO

Recently, long non-coding RNA (lncRNA) is proved to play critical roles in non-small cell lung cancer (NSCLC) progression. However, the detailed effects of LINC01426 in NSCLC and its functional mechanism remain unknown. The expression of LINC01426, microRNA-143-3p (miR-143-3p), and Ubiquitin-specific peptidase 28 (USP28) was assessed by quantitative real-time polymerase chain reaction (RT-qPCR). The colony-forming ability was determined by colony-forming assay. 5-ethynyl-2'-deoxyuridine (EdU) staining assay was performed to evaluate cell proliferation. The migrated and invaded abilities of cells were measured by transwell assays. Flow cytometry was used to examine cell apoptosis. The protein expression was analyzed by Western blot analysis. The glycolysis ability was analyzed by commercial kits. Dual-luciferase reporter assay, RNA immunoprecipitation (RIP) assay, and RNA pull-down assay were used to confirm relationship among LINC01426, miR-143-3p, and USP28. A xenograft experiment was conducted to explore the effects of LINC01426 inhibition in vivo. Our results confirmed that LINC01426 and USP28 expression were increased, while miR-143-3p expression was decreased in NSCLC tissues and cells. Further functional experiments demonstrated that LINC01426 inhibition markedly impaired cell proliferation, migration, invasion, autophagy, and glycolysis while induced apoptosis in NSCLC cells, and LINC01426 derived malignant behaviors of NSCLC cells by sponging miR-143-3p. Additionally, LINC01426 regulated USP28 expression by sponging miR-143-3p. USP28 overexpression partly overturned the inhibitory effect of miR-143-3p on NSCLC progression. Consistently, silencing of LINC01426 significantly inhibited the growth of NSCLC tumor in vivo. LINC01426 accelerated the malignant progression of NSCLC. Mechanistically, LINC01426 acted as a competing endogenous RNA (ceRNA) for miR-143-3p to upregulate USP28 expression.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , RNA Longo não Codificante , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias Pulmonares/patologia , MicroRNAs/metabolismo , Proliferação de Células , Linhagem Celular Tumoral , Ubiquitina Tiolesterase
16.
Int J Mol Sci ; 23(18)2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36142173

RESUMO

(1) Background: Cardiovascular diseases (CVDs) are the main cause of death in developed countries, being atherosclerosis, a recurring process underlying their apparition. MicroRNAs (miRNAs) modulate the expression of their targets and have emerged as key players in CVDs; (2) Methods: 18 miRNAs were selected (Pubmed and GEO database) for their possible role in promoting atherosclerosis and were analysed by RT-qPCR in the aorta from apolipoprotein E-deficient (ApoE-/-) mice. Afterwards, the altered miRNAs in the aorta from 18 weeks-ApoE-/- mice were studied in human aortic and carotid samples; (3) Results: miR-155-5p was overexpressed and miR-143-3p was downregulated in mouse and human atherosclerotic lesions. In addition, a significant decrease in protein kinase B (AKT), target of miR-155-5p, and an increase in insulin-like growth factor type II receptor (IGF-IIR), target of miR-143-3p, were noted in aortic roots from ApoE-/- mice and in carotid plaques from patients with advanced carotid atherosclerosis (ACA). Finally, the overexpression of miR-155-5p reduced AKT levels and its phosphorylation in vascular smooth muscle cells, while miR-143-3p overexpression decreased IGF-IIR reducing apoptosis in vascular cells; (4) Conclusions: Our results suggest that miR-155-5p and miR-143-3p may be implicated in insulin resistance and plaque instability by the modulation of their targets AKT and IGF-IIR, contributing to the progression of atherosclerosis.


Assuntos
Aterosclerose , Resistência à Insulina , MicroRNAs , Placa Aterosclerótica , Animais , Apolipoproteínas E/genética , Aterosclerose/metabolismo , Humanos , Insulina , Resistência à Insulina/genética , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Placa Aterosclerótica/genética , Placa Aterosclerótica/patologia , Proteínas Proto-Oncogênicas c-akt/genética , Somatomedinas
17.
Int J Mol Sci ; 23(17)2022 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-36077521

RESUMO

We aimed to identify miRNAs and pathways specifically deregulated in adolescent and young adult (AYA) T-ALL patients. Small RNA-seq showed no major differences between AYA and pediatric T-ALL, but it revealed downregulation of miR-143-3p in T-ALL patients. Prediction algorithms identified several known and putative oncogenes targeted by this miRNA, including KRAS, FGF1, and FGF9. Pathway analysis indicated signaling pathways related to cell growth and proliferation, including FGFR signaling and PI3K-AKT signaling, with the majority of genes overrepresented in these pathways being predicted targets of hsa-miR-143-3p. By luciferase reporter assays, we validated direct interactions of this miRNA with KRAS, FGF1 and FGF9. In cell proliferation assays, we showed reduction of cell growth upon miR-143-3p overexpression in two T-ALL cell lines. Our study is the first description of the miRNA transcriptome in AYA T-ALL patients and the first report on tumor suppressor potential of miR-143-3p in T-ALL. Downregulation of this miRNA in T-ALL patients might contribute to enhanced growth and viability of leukemic cells. We also discuss the potential role of miR-143-3p in FGFR signaling. Although this requires more extensive validation, it might be an interesting direction, since FGFR inhibition proved promising in preclinical studies in various cancers.


Assuntos
MicroRNAs , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Adolescente , Criança , Fator 1 de Crescimento de Fibroblastos/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , RNA-Seq , Transcriptoma , Adulto Jovem
18.
J Cell Physiol ; 236(2): 889-899, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33020901

RESUMO

Long intergenic noncoding RNAs (lincRNAs) play a vital role in the occurrence and progression of cancer. The mechanism of lincRNAs in colorectal cancer (CRC) has not been fully elucidated. In this context, an integrated comparative long noncoding RNA (lncRNA) microarray technology was used to determine the expression profile of lncRNAs in CRC. The roles of LINC00908 are unclear. We found that LINC00908 was significantly upregulated in CRC. Inhibition of LINC00908 resulted in reduced cell proliferation and G1 cell cycle arrest, which was mediated by cyclin D1, cyclin-dependent kinase 4, and phosphorylated retinoblastoma. Moreover, inhibition of LINC00908-induced apoptosis through the intrinsic apoptosis signaling pathway, as shown by the activation of caspase-9 and caspase-3. Mechanistically, miR-143-3p directly bound to LINC00908. miR-143-3p expression was negatively correlated with LINC00908 expression in CRC tissue. Functional experiments revealed opposing roles for miR-143-3p and LINC00908, suggesting that LINC00908 negatively regulates miR-143-3p. Mechanistically, miR-143-3p directly targets LINC00908. The KLF5 inhibitor ML264 affected proliferation and apoptosis, indicating that LINC00908 may act as a competing endogenous RNA to facilitate the expression of the miR-143-3p target gene KLF5. Thus, LINC00908 has an important proliferative and antiapoptotic role in CRC by regulating the cell cycle and intrinsic apoptosis. LINC00908 could be a potential biomarker and a new therapeutic target for CRC.


Assuntos
Apoptose/genética , Proliferação de Células/genética , Neoplasias Colorretais/genética , Regulação Neoplásica da Expressão Gênica/genética , Fatores de Transcrição Kruppel-Like/genética , RNA Longo não Codificante/genética , Linhagem Celular , Linhagem Celular Tumoral , Movimento Celular/genética , Neoplasias Colorretais/patologia , Pontos de Checagem da Fase G1 do Ciclo Celular/genética , Células HCT116 , Humanos , Transdução de Sinais/genética , Regulação para Cima/genética
19.
J Hepatol ; 75(6): 1301-1311, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34271004

RESUMO

BACKGROUND & AIMS: Patients with HCV who achieve a sustained virological response (SVR) on direct-acting antiviral (DAA) therapy still need to be monitored for signs of liver disease progression. To this end, the identification of both disease biomarkers and therapeutic targets is necessary. METHODS: Extracellular vesicles (EVs) purified from plasma of 15 healthy donors (HDs), and 16 HCV-infected patients before (T0) and after (T6) DAA treatment were utilized for functional and miRNA cargo analysis. EVs purified from plasma of 17 HDs and 23 HCV-infected patients (T0 and T6) were employed for proteomic and western blot analyses. Functional analysis in LX2 cells measured fibrotic markers (mRNAs and proteins) in response to EVs. Structural analysis was performed by qPCR, label-free liquid chromatography-mass spectrometry and western blot. RESULTS: On the basis of observations indicating functional differences (i.e. modulation of FN-1, ACTA2, Smad2/3 phosphorylation, collagen deposition) of plasma-derived EVs from HDs, T0 and T6, we performed structural analysis of EVs. We found consistent differences in terms of both miRNA and protein cargos: (i) antifibrogenic miR204-5p, miR181a-5p, miR143-3p, miR93-5p and miR122-5p were statistically underrepresented in T0 EVs compared to HD EVs, while miR204-5p and miR143-3p were statistically underrepresented in T6 EVs compared to HD EVs (p <0.05); (ii) proteomic analysis highlighted, in both T0 and T6, the modulation of several proteins with respect to HDs; among them, the fibrogenic protein DIAPH1 was upregulated (Log2 fold change of 4.4). CONCLUSIONS: Taken together, these results highlight structural EV modifications that are conceivably causal for long-term liver disease progression in patients with HCV despite DAA-mediated SVR. LAY SUMMARY: Direct-acting antivirals lead to virological cure in the majority of patients with chronic hepatitis C virus infection. However, the risk of liver disease progression or complications in patients with fibrosis and cirrhosis remains in some patients even after virological cure. Herein, we show that extracellular vesicle modifications could be linked to long-term liver disease progression in patients who have achieved virological cure; these modifications could potentially be used as biomarkers or treatment targets in such patients.


Assuntos
Antivirais/farmacologia , Hepacivirus/fisiologia , Hepatite C/tratamento farmacológico , Resposta Viral Sustentada , Antivirais/uso terapêutico , Comunicação Celular/efeitos dos fármacos , Comunicação Celular/fisiologia , Hepatite C/fisiopatologia , Humanos , Espectrometria de Massas/métodos , Espectrometria de Massas/estatística & dados numéricos
20.
J Gene Med ; 23(8): e3363, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33991434

RESUMO

BACKGROUND: Numerous studies have demonstrated that long noncoding RNAs (lncRNAs) induce osteogenesis in adipose-derived stem cells (ADSCs). This study aimed to explore the role of lncRNAs AC092155 in promoting osteogenic differentiation of ADSCs. METHODS: MicroRNA (miRNA) and lncRNA sequencing were performed in ADSCs that underwent normal or osteogenic induction. Differentially expressed miRNAs and lncRNAs were identified using R software. The relative expression levels of lncRNA AC092155, miR-143-3p, and STMN1 during the process of osteogenic induction were determined by real-time polymerase chain reaction (RT-PCR). ADSCs were then transfected with agomiR-143-3p and pcDNA3.1-sh-lncRNA AC092155. Alkaline phosphatase (ALP) and alizarin red staining (ARS) were used to confirm the regulatory function of the lncRNA AC092155/miR-143-3p/STMN1 axis in osteogenic differentiation of ADSCs. RESULTS: lncRNA AC092155 was significantly upregulated in ADSCs following induction in the osteogenic medium. lncRNA AC092155 and STMN1 mimics increase the markers of osteogenic differentiation in the early and late phases, which was reflected in increased ALP activity as well as the higher deposition of calcium nodules. An miR-143-3p mimic showed the opposite effect. Luciferase reporter gene analysis demonstrated that lncRNA AC092155 directly targets miR-143-3p. Moreover, the lncRNA AC092155/miR-143-3p/STMN1 regulatory axis was found to activate the Wnt/ß-catenin signaling pathway. CONCLUSIONS: lncRNA AC092155 contributes to the osteogenic differentiation of ADSCs. The lncRNA AC092155/miR-143-3p/STMN1 axis may be a new therapeutic target for bone-related diseases.


Assuntos
Tecido Adiposo/citologia , Osteogênese/genética , RNA Longo não Codificante/genética , Estatmina/genética , Células-Tronco/citologia , Diferenciação Celular/genética , Células Cultivadas , Regulação da Expressão Gênica , Humanos , Células-Tronco/fisiologia , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA