RESUMO
Cold-induced nonshivering thermogenesis has contributed to the improvement of several metabolic syndromes caused by obesity. Several long noncoding RNAs (lncRNAs) have been shown to play a role in brown fat biogenesis and thermogenesis. Here we show that the lncRNA lnc266 is induced by cold exposure in inguinal white adipose tissue (iWAT). In vitro functional studies reveal that lnc266 promotes brown adipocyte differentiation and thermogenic gene expression. At room temperature, lnc266 has no effects on white fat browning and systemic energy consumption. However, in a cold environment, lnc266 promotes white fat browning and thermogenic gene expression in obese mice. Moreover, lnc266 increases core body temperature and reduces body weight gain. Mechanistically, lnc266 does not directly regulate Ucp1 expression. Instead, lnc266 sponges miR-16-1-3p and thus abolishes the repression of miR-16-1-3p on Ucp1 expression. As a result, lnc266 promotes preadipocyte differentiation toward brown-like adipocytes and stimulates thermogenic gene expression. Overall, lnc266 is a cold-inducible lncRNA in iWAT, with a key role in white fat browning and the thermogenic program.
Assuntos
MicroRNAs , RNA Longo não Codificante , Termogênese , Animais , Camundongos , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Termogênese/genéticaRESUMO
BACKGROUND: Coronary microvascular dysfunction (CMD) is a frequent complication of diabetes mellitus (DM) characterized by challenges in both diagnosis and intervention. Circulating levels of microRNAs are increasingly recognized as potential biomarkers for cardiovascular diseases. METHODS: Serum exosomes from patients with DM, DM with coronary microvascular dysfunction (DM-CMD) or DM with coronary artery disease (DM-CAD) were extracted for miRNA sequencing. The expression of miR-16-2-3p was assessed in high glucose-treated human aortic endothelial cells and human cardiac microvascular endothelial cells. Fluorescence in situ hybridization (FISH) was used to detect miR-16-2-3p within the myocardium of db/db mice. Intramyocardial injection of lentivirus overexpressing miR-16-2-3p was used to explore the function of the resulting gene in vivo. Bioinformatic analysis and in vitro assays were carried out to explore the downstream function and mechanism of miR-16-2-3p. Wound healing and tube formation assays were used to explore the effect of miR-16-2-3p on endothelial cell function. RESULTS: miR-16-2-3p was upregulated in circulating exosomes from DM-CMD, high glucose-treated human cardiac microvascular endothelial cells and the hearts of db/db mice. Cardiac miR-16-2-3p overexpression improved cardiac systolic and diastolic function and coronary microvascular reperfusion. In vitro experiments revealed that miR-16-2-3p could regulate fatty acid degradation in endothelial cells, and ACADM was identified as a potential downstream target. MiR-16-2-3p increased cell migration and tube formation in microvascular endothelial cells. CONCLUSIONS: Our findings suggest that circulating miR-16-2-3p may serve as a biomarker for individuals with DM-CMD. Additionally, miR-16-2-3p appears to alleviate coronary microvascular dysfunction in diabetes by modulating ACADM-mediated fatty acid degradation in endothelial cells.
Assuntos
Biomarcadores , Diabetes Mellitus , Exossomos , MicroRNAs , Animais , Humanos , Camundongos , Biomarcadores/metabolismo , Diabetes Mellitus/metabolismo , Células Endoteliais/metabolismo , Exossomos/genética , Exossomos/metabolismo , Ácidos Graxos/metabolismo , Glucose/metabolismo , Hibridização in Situ Fluorescente , MicroRNAs/metabolismoRESUMO
Investigations on placental P-glycoprotein (P-gp) regulation could provide more therapeutic targets for individualized and safe pharmacotherapy during pregnancy. The role of long noncoding RNA (lncRNA) on placental P-gp regulation is lacking. The present study was carried out to investigate the regulation and underlying mechanisms of lncRNA urothelial carcinoma associated 1 (UCA1) on P-gp in Bewo cells. lncRNA UCA1 inhibition or overexpression could decrease or increase ABCB1 mRNA expression, P-gp expression and its cellular efflux function, respectively. RNA-FISH revealed that lncRNA UCA1 was mainly located in the cytoplasm of Bewo cells. MicroRNA array was applied and 10 significant miRNAs was identified after lncRNA UCA1 inhibition. Databases of LncTarD, LncRNA2Target, and miRcode were further used to search potential target miRNAs of lncRNA UCA1 and miR-16-5p was screened out. Thereafter, we confirmed that miR-16-5p expression was significantly upregulated or reduced after lncRNA UCA1 knockdown or overexpression, respectively. Furthermore, we also proved that ABCB1 mRNA expression, P-gp expression and its cellular efflux function was enhanced or reduced after miR-16-5p inhibition or overexpression, respectively. The rescue experiment further indicated that miR-16-5p was involved in the positive regulation of lncRNA UCA1 on the expression and function of P-gp. Lastly, dual-luciferase reporter system, RNA-binding protein immunoprecipitation and RNA pull-down assays were performed to explore the relationships among lncRNA UCA1, miR-16-5p, and ABCB1. It was found that lncRNA UCA1(1103-1125) could directly interact with miR-16-5p and miR-16-5p could directly target ABCB1 coding DNA sequence region (882-907). In conclusion, LncRNA UCA1 could promote the expression and function of P-gp by sponging miR-16-5p in BeWo cells.
Assuntos
Carcinoma de Células de Transição , MicroRNAs , RNA Longo não Codificante , Neoplasias da Bexiga Urinária , Gravidez , Humanos , Feminino , RNA Longo não Codificante/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Placenta , Subfamília B de Transportador de Cassetes de Ligação de ATP , MicroRNAs/genética , RNA MensageiroRESUMO
BACKGROUND: Breast cancer has become a major public health problem in the current society, and its incidence rate ranks the first among Chinese female malignant tumors. This paper once again confirmed the efficacy of lncRNA in tumor regulation by introducing the mechanism of the diagnosis of breast cancer by the MIR497HG/miR-16-5p axis. METHODS: The abnormal expression of MIR497HG in breast cancer was determined by RT-qPCR method, and the correlation between MIR497HG expression and clinicopathological characteristics of breast cancer patients was analyzed via Chi-square test. To understand the diagnostic potential of MIR497HG in breast cancer by drawing the receiver operating characteristic curve (ROC). The overexpressed MIR497HG (pcDNA3.1-MIR497HG) was designed and constructed to explore the regulation of elevated MIR497HG on biological function of BT549 and Hs 578T cells through Transwell assays. Additionally, the luciferase gene reporter assay and Pearson analysis evaluated the targeting relationship of MIR497HG to miR-16-5p. RESULTS: MIR497HG was decreased in breast cancer and had high diagnostic function, while elevated MIR497HG inhibited the migration and invasion of BT549 and Hs 578T cells. In terms of functional mechanism, miR-16-5p was the target of MIR497HG, and MIR497HG reversely regulated the miR-16-5p. miR-16-5p mimic reversed the effects of upregulated MIR497HG on cell biological function. CONCLUSIONS: In general, MIR497HG was decreased in breast cancer, and the MIR497HG/miR-16-5p axis regulated breast cancer tumorigenesis, providing effective insights for the diagnosis of patients.
Assuntos
Neoplasias da Mama , MicroRNAs , RNA Longo não Codificante , Humanos , MicroRNAs/genética , Feminino , Neoplasias da Mama/genética , RNA Longo não Codificante/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Movimento Celular/genética , Pessoa de Meia-Idade , Proliferação de Células/genéticaRESUMO
Sepsis-associated acute kidney injury (S-AKI) is a common disease in pediatric intensive care units (ICU) with high morbidity and mortality. The newly discovered results indicate that microRNAs (miRNAs) play an important role in the diagnosis and treatment of S-AKI and can be used as markers for early diagnosis. In this study, the expression level of miR-16-5p was found to be significantly upregulated about 20-fold in S-AKI patients, and it also increased by 1.9 times in the renal tissue of S-AKI mice. Receiver operating characteristic (ROC) curve analysis showed that miR-16-5p had the highest predictive accuracy in the diagnosis of S-AKI (AUC = 0.9188). In vitro, the expression level of miR-16-5p in HK-2 cells treated with 10 µg/mL lipopolysaccharide (LPS) increased by more than 2 times. In addition, LPS-exposed renal tissue and HK-2 cells lead to upregulation of inflammatory cytokines IL-6, IL-1ß, TNF-a, and kidney damage molecules kidney injury molecule-1 (KIM-1), neutrophil gelatinase-associated lipocalin (NGAL). However, inhibition of miR-16-5p significantly mitigated LPS expose-mediated kidney injury and inflammation. Furthermore, LPS-exposed HK-2 cells increased more than 1.7-fold the expression levels of Bax and caspase-3, decreased 3.2-fold the expression level of B-cell lymphoma-2 (Bcl-2), and significantly promoted the occurrence of apoptosis. MiR-16-5p mimic further increased LPS-induced apoptosis in HK-2 cells. Nevertheless, inhibition of miR-16-5p significantly attenuated this effect. In summary, up-regulation of miR-16-5p expression can significantly aggravate renal injury and apoptosis in S-AKI, which also proves that miR-16-5p can be used as a potential biomarker to promote early identification of S-AKI.
Assuntos
Injúria Renal Aguda , MicroRNAs , Sepse , Animais , Criança , Humanos , Camundongos , Injúria Renal Aguda/genética , Apoptose , Lipopolissacarídeos , Sepse/complicações , Sepse/genéticaRESUMO
Endometriosis (EMS) is a chronic inflammatory disorder of high incidence that causes serious reproductive consequences. High estrogen production is a consistently observed endocrine feature of EMS. The present study aims to probe the molecular mechanism of G protein-coupled estrogen receptor 1 (GPER) in the invasion and migration of ectopic endometrial stromal cells (Ect-ESCs) and provides a new rationale for EMS treatment. Eutopic and ectopic endometrial tissues were collected from 41 EMS patients, and primary ESCs were separated. GPER, miR-16-5p, and miR-103a-3p levels in cells and tissues were determined by qRT-PCR or Western blot assay. Cell viability, proliferation, invasion, and migration were evaluated by CCK-8, colony formation, and Transwell assays. The upstream miRNAs of GPER were predicted by databases, and dual-luciferase assay was performed to validate the binding of miR-16-5p and miR-103a-3p to GPER 3'UTR. GPER was highly expressed in EMS tissues and Ect-ESCs. Inhibition of GPER mitigated the proliferation, invasion, and migration of Ect-ESCs. GPER was regulated by miR-16-5p and miR-103a-3p. Overexpression of miR-16-5p and miR-103a-3p negatively regulated GPER expression and inhibited the invasion and migration of Ect-ESC. In conclusion, GPER promoted the invasion and migration of Ect-ESCs, which can be reversed by upstream miR-16-5p and miR-103a-3p.
Assuntos
Endometriose , MicroRNAs , Feminino , Humanos , Movimento Celular/genética , Estrogênios , MicroRNAs/genética , MicroRNAs/metabolismo , Células Estromais/metabolismoRESUMO
MicroRNAs (miRNAs), particularly miR-16 and miR-21, play a crucial role in multiple myeloma (MM) pathogenesis by regulating gene expression. This study evaluated the prognostic significance of circulating miR-16 and miR-21 expression levels in 48 patients with MM at diagnosis treated with lenalidomide-dexamethasone (LD) compared with 15 healthy individuals (HI). All patients were treated with LD, 13 at first line and 35 at relapse, of whom 21 were tested twice at diagnosis and before LD initiation. The results revealed significantly lower levels of miR-16 and miR-21 in patients than in HIs, both at diagnosis and relapse, with decreased miR-16 levels at diagnosis, indicating improved overall survival (OS) (p value 0.024). Furthermore, miR-16 and miR-21 levels were associated with disease markers, while both correlated with the depth of response and mir-16 with sustained response to LD treatment. Ratios of both miR-16 and miR-21 expression levels (prior to LD treatment/diagnosis) below two predicted a shorter time to response (p = 0.027) and a longer time to next treatment (p = 0.042), respectively. These findings suggested a prognostic value for serum miR-16 and miR-21 levels in MM, as their expression levels correlated with disease variables and treatment outcomes.
Assuntos
Lenalidomida , MicroRNAs , Mieloma Múltiplo , Talidomida , Humanos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Mieloma Múltiplo/sangue , Mieloma Múltiplo/mortalidade , MicroRNAs/sangue , MicroRNAs/genética , Lenalidomida/uso terapêutico , Masculino , Feminino , Idoso , Pessoa de Meia-Idade , Prognóstico , Talidomida/análogos & derivados , Talidomida/uso terapêutico , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/genética , Dexametasona/uso terapêutico , Idoso de 80 Anos ou mais , Adulto , Regulação Neoplásica da Expressão Gênica , MicroRNA Circulante/sangue , Resultado do TratamentoRESUMO
Traumatic brain injury (TBI) is the leading cause of traumatic death worldwide and is a public health problem associated with high mortality and morbidity rates, with a significant socioeconomic burden. The diagnosis of brain injury may be difficult in some cases or may leave diagnostic doubts, especially in mild trauma with insignificant pathological brain changes or in cases where instrumental tests are negative. Therefore, in recent years, an important area of research has been directed towards the study of new biomarkers, such as micro-RNAs (miRNAs), which can assist clinicians in the diagnosis, staging, and prognostic evaluation of TBI, as well as forensic pathologists in the assessment of TBI and in the estimation of additional relevant data, such as survival time. The aim of this study is to investigate the expression profiles (down- and upregulation) of a panel of miRNAs in subjects deceased with TBI in order to assess, verify, and define the role played by non-coding RNA molecules in the different pathophysiological mechanisms of brain damage. This study also aims to correlate the detected expression profiles with survival time, defined as the time elapsed between the traumatic event and death, and with the severity of the trauma. This study was conducted on 40 cases of subjects deceased with TBI (study group) and 10 cases of subjects deceased suddenly from non-traumatic causes (control group). The study group was stratified according to the survival time and the severity of the trauma. The selection of miRNAs to be examined was based on a thorough literature review. Analyses were performed on formalin-fixed, paraffin-embedded (FFPE) brain tissue samples, with a first step of total RNA extraction and a second step of quantification of the selected miRNAs of interest. This study showed higher expression levels in cases compared to controls for miR-16, miR-21, miR-130a, and miR-155. In contrast, lower expression levels were found in cases compared to controls for miR-23a-3p. There were no statistically significant differences in the expression levels between cases and controls for miR-19a. In cases with short survival, the expression levels of miR-16-5p and miR-21-5p were significantly higher. In cases with long survival, miR-21-5p was significantly lower. The expression levels of miR-130a were significantly higher in TBI cases with short and middle survival. In relation to TBI severity, miR-16-5p and miR-21-5p expression levels were significantly higher in the critical-fatal TBI subgroup. Conclusions: This study provides evidence for the potential of the investigated miRNAs as predictive biomarkers to discriminate between TBI cases and controls. These miRNAs could improve the postmortem diagnosis of TBI and also offer the possibility to define the survival time and the severity of the trauma. The analysis of miRNAs could become a key tool in forensic investigations, providing more precise and detailed information on the nature and extent of TBI and helping to define the circumstances of death.
Assuntos
Lesões Encefálicas Traumáticas , MicroRNAs , Humanos , Lesões Encefálicas Traumáticas/genética , Lesões Encefálicas Traumáticas/mortalidade , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/patologia , Lesões Encefálicas Traumáticas/diagnóstico , MicroRNAs/genética , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Perfilação da Expressão Gênica , Biomarcadores , Idoso , Prognóstico , TranscriptomaRESUMO
1. The development of chicken skeletal muscle is directly relevant to poultry husbandry production. Numerous studies have suggested that circular RNA play pivotal roles in muscle development. However, the functions and mechanisms of most circRNA in chicken myogenesis remain largely unknown.2. This study identified a novel circSESN1 based on existing sequencing data and examined its authenticity and subcellular localisation by enzyme digestion and RNA fluorescence in situ hybridisation. Additionally, there was a positive correlation between the expression levels of circSESN1 and the developmental stage of chicken muscle.3. Mechanistically, knockdown or overexpression of circSESN1 was performed in primary myoblasts to validate its function. The interactions between circSESN1, miR-16-5p, and the target gene sestrin 1 (SESN1) were investigated using bioinformatics analysis and a dual fluorescein reporter system. Real-time qPCR, a cell proliferation assay, and immunofluorescence staining techniques were used to investigate the promotion effect of circSESN1 on myoblast proliferation and differentiation by miR-16-5p/SESN1 pathway.4. The results demonstrated that the newly identified chicken circSESN1 directly sponges gga-miR-16-5p to regulate SESN1 gene expression, promoting myoblast proliferation and differentiation.
Assuntos
Proteínas Aviárias , Diferenciação Celular , Proliferação de Células , Galinhas , Mioblastos , Sestrinas , Animais , Proteínas Aviárias/genética , Proteínas Aviárias/metabolismo , Galinhas/genética , Galinhas/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Desenvolvimento Muscular/genética , Mioblastos/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Sestrinas/metabolismoRESUMO
BACKGROUND: Cell-based therapy has been recognized as a novel technique for the management of diabetic foot ulcers, and cell-sheet engineering leads to improved efficacy in cell transplantation. This study aims to explore the possible molecular mechanism of the rat adipose-derived stem cell (ASC) sheet loaded with exosomal interferon regulatory factor 1 (IRF1) in foot wound healing. METHODS: Rats were rendered diabetic with streptozotocin, followed by measurement of miR-16-5p expression in wound tissues. Relationship between IRF1, microRNA (miR)-16-5p, and trans-acting transcription factor 5 (SP5) was analyzed using luciferase activity, RNA pull-down, and chromatin immunoprecipitation assays. IRF1 was overexpressed in rat ASCs (rASCs) or loaded onto the rASC sheet, and then exosomes were extracted from rASCs. Accordingly, we assessed the effects of IRF1-exosome or IRF1-rASC sheet on the proliferation and migration of the fibroblasts along with endothelial cell angiogenesis. RESULTS: miR-16-5p was poorly expressed in the wound tissues of diabetic rats. Overexpression of miR-16-5p promoted fibroblast proliferation and migration as well as endothelial cell angiogenesis, thus expediting wound healing. IRF1 was an upstream transcription factor that could bind to the miR-16-5p promoter and increase its expression. In addition, SP5 was a downstream target gene of miR-16-5p. IRF1-exosome from rASCs or the IRF1-rASC sheet facilitated the foot wound healing in diabetic rats through miR-16-5p-dependent inhibition of SP5. CONCLUSION: The present study demonstrates that exosomal IRF1-loaded rASC sheet regulates miR-16-5p/SP5 axis to facilitate wound healing in diabetic rats, which aids in development of stem cell-based therapeutic strategies for diabetic foot wounds.
Assuntos
Diabetes Mellitus Experimental , Pé Diabético , Exossomos , MicroRNAs , Ratos , Animais , Diabetes Mellitus Experimental/metabolismo , Pé Diabético/genética , Fator Regulador 1 de Interferon/genética , Fator Regulador 1 de Interferon/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Cicatrização/fisiologia , Células-Tronco/metabolismo , Exossomos/metabolismoRESUMO
BACKGROUND: Sepsis is identified as a severe inflammatory disease. Epigallocatechin-3-gallate (EGCG) has been reported to be a powerful anti-inflammatory chemical substance in numerous diseases. However, the underlying mechanism of the anti-inflammatory effects of EGCG in sepsis remains to be elucidated. METHODS: The surgery for cecal ligation and puncture (CLP) was performed on male C57BL/6J mice aged 8 weeks. THP-1 cells were treated with 1 µg/ml lipopolysaccharide (LPS) for 24 h to imitate sepsis in vitro. Haematoxylene-Eosin (HE) staining of the sections of liver, lung and kidney was performed to evaluate the pathological changes. The inflammatory cytokines were quantitated by ELISA. qRT-PCR was performed to measure the expression levels of PVT1, miR-16-5p, and TLR4. The protein level of TLR4 was also assessed by Western blotting. Double luciferase reporter assay and RIP assay were performed to validate the interactions among PVT1, miR-16-5p, and TLR4. RESULTS: EGCG inhibited the expression levels of PVT1 and TLR4 and enhanced miR-16-5p expression in CLP-operated mice and LPS-treated THP-1 cells. EGCG reduced the levels of inflammatory cytokines, which were restored by PVT1 overexpression. Mechanistically, PVT1 bound with miR-16-5p to activate TLR4 signaling. Further experiments demonstrated that miR-16-5p silencing or TLR4 overexpression antagonized sh-PVT1 or miR-16-5p mimics-mediated inhibitory effects on inflammatory cytokines, respectively. Knockdown of PVT1 alleviated inflammatory injury in CLP-induced sepsis in mice. CONCLUSION: EGCG may effectively lower the levels of sepsis-induced inflammatory cytokines by targeting the PVT1/miR-16-5p/TLR4 axis.
Assuntos
MicroRNAs , RNA Longo não Codificante , Sepse , Masculino , Animais , Camundongos , RNA Longo não Codificante/genética , Receptor 4 Toll-Like/metabolismo , Lipopolissacarídeos/efeitos adversos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , Citocinas/metabolismo , Anti-Inflamatórios/efeitos adversos , Sepse/genética , Apoptose/genéticaRESUMO
BACKGROUND: Colon cancer (CC) belongs to a common cancer of digestive system. Long non-coding RNAs (lncRNAs) are dysregulated in numerous cancers and affect their development. The function of lncRNA CERS6 antisense RNA 1 (CERS6-AS1) in CC remains unclear. MATERIALS AND METHODS: CERS6-AS1 expression in colon adenocarcinoma tissues and CC cell lines was assessed by The Cancer Genome Atlas database and quantitative real-time polymerase chain reaction analysis. The function of CERS6-AS1 in CC was analysed by 5-ethynyl-2'-deoxyuridine, colony formation, flow cytometry, terminal deoxynucleotidyl transferase dUTP nick end labelling, wound healing, Transwell and immunofluorescence assays. Mechanistic analyses including RNA pull down, RNA-binding protein immunoprecipitation and luciferase reporter assay revealed the interaction between RNAs. RESULTS: CERS6-AS1 expression was aberrantly upregulated in colon adenocarcinoma tissues and CC cell lines. CERS6-AS1 knockdown inhibited CC cell malignant phenotypes and in vivo tumour growth. CERS6-AS1 served as the competing endogenous RNA of microRNA-16-5p in CC, and microRNA-16-5p inhibition partly rescued the effects of CERS6-AS1 depletion on CC development. Mitochondrial calcium uniporter was targeted by microRNA-16-5p. Mitochondrial calcium uniporter upregulation completely remedied the influence of CERS6-AS1 silencing in CC progression. Moreover, CERS6-AS1 enhanced the stability of mitochondrial calcium uniporter messenger RNA via recruiting RNA-binding protein embryonic lethal abnormal vision like 1. CONCLUSION: CERS6-AS1 promotes the development of CC via upregulating mitochondrial calcium uniporter expression.
Assuntos
Adenocarcinoma , Neoplasias do Colo , MicroRNAs , Humanos , Linhagem Celular Tumoral , Adenocarcinoma/genética , Neoplasias do Colo/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Esfingosina N-Aciltransferase/genética , Esfingosina N-Aciltransferase/metabolismoRESUMO
OBJECTIVE: Coronary heart disease (CHD) is a notable contributor to the burden of human health. Dysregulated long non-coding RNAs (lncRNAs) are implicated in the pathogenesis of CHD. This study investigated the expression pattern of lncRNA LOXL1-AS1 in CHD and its regulatory mechanism in oxidized low-density lipoprotein (ox-LDL)-induced human coronary artery endothelial cell (HCAEC) pyroptosis. METHODS: Serum was collected from 62 CHD patients and 62 healthy volunteers for the detection of LOXL1-AS1 expression. The value of LOXL1-AS1 in CHD diagnosis and major cardiovascular adverse event (MACE) prediction was analyzed using the ROC curve. LOXL1-AS1, miR-16-5p, and SNX16 expressions in ox-LDL-treated HCAECs were determined using RT-qPCR. NLPR3, cleaved-caspase-1, and GSDMD-N protein levels were measured using Western blot. IL-1ß and IL-18 concentrations were measured using ELISA. The binding relationships between LOXL1-AS1 and miR-16-5p and miR-16-5p and SNX16 were verified. Functional rescue experiment was performed to verify the role of miR-16-5p in HCAEC pyroptosis. RESULTS: LOXL1-AS1 was highly expressed in CHD patients. LOXL1-AS1 had diagnostic value for CHD and predictive value for MACE occurrence. ox-LDL-treated HCAECs showed reduced viability, increased IL-1ß and IL-18 concentrations, and elevated NLPR3, cleaved-caspase-1, and GSDMD-N levels. LOXL1-AS1 silencing promoted cell viability and reduced pyroptosis. LOXL1-AS1 bound to miR-16-5p and miR-16-5p targeted SNX16. Inhibition of miR-16-5p reversed the inhibitory effect of LOXL1-AS1 silencing on HCAEC pyroptosis. CONCLUSION: LOXL1-AS1 was elevated in CHD patients with a good diagnostic value for CHD and predictive value for MACE. LOXL1-AS1 downregulated miR-16-5p expression by binding to miR-16-5p to enhance ox-LDL-induced HCAEC pyroptosis, which may be associated with upregulation of SNX16 transcription.
Assuntos
Doença das Coronárias , MicroRNAs , Humanos , Piroptose , Interleucina-18 , Vasos Coronários , MicroRNAs/genética , MicroRNAs/metabolismo , Lipoproteínas LDL/farmacologia , Células Endoteliais/metabolismo , Doença das Coronárias/diagnóstico , Doença das Coronárias/genética , Caspases , Proliferação de Células , Aminoácido Oxirredutases/genética , Nexinas de ClassificaçãoRESUMO
Acute lymphoblastic leukemia (ALL) is a debilitating illness that easily occurs in adolescents. microRNAs (miRNAs) are potential biomarkers for multiple diseases. This paper was to elaborate on the expression of miR-16-2-3p in childhood ALL and its clinical values on ALL diagnosis and prognosis. First, serum miR-16-2-3p expression in ALL children and healthy volunteers was measured using RT-qPCR. Next, diagnostic potential and prognostic values of miR-16-2-3p on ALL were analyzed through receiver operating characteristic (ROC) curve, Kaplan-Meier survival curve, and multivariate Cox regression analysis, respectively. No significant difference was observed in the clinical baseline data between ALL patients and healthy children. ALL patients showed downregulated serum miR-16-2-3p (0.65 ± 0.27) (p < .01), whose area under the ROC curve was 0.837 with a cut-off value of 0.745 (67.92% sensitivity, 96.94% specificity). ALL patients with higher miR-16-2-3p expression had higher survival rates than those with lower miR-16-2-3p expression. Low miR-16-2-3p expression predicted poor prognosis of ALL patients. After adjusting LDH and lymphomyelocyte proportion (p = 0.003, HR = 0.003, 95%CI = 0.000-0.145), miR-16-2-3p was recognized as an independent prognostic factor for ALL patient survival. Briefly, low serum miR-16-2-3p expression in ALL children could aid ALL diagnosis and predict poor prognosis.
Assuntos
MicroRNAs , Leucemia-Linfoma Linfoblástico de Células Precursoras , Criança , Adolescente , Humanos , Prognóstico , Biomarcadores Tumorais/genética , MicroRNAs/genética , Curva ROC , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genéticaRESUMO
Muscle development is closely related to meat quality and production. CircRNAs, with a closed-ring structure, have been identified as a key regulator of muscle development. However, the roles and mechanisms of circRNAs in myogenesis are largely unknown. Hence, in order to unravel the functions of circRNAs in myogenesis, the present study explored circRNA profiling in skeletal muscle between Mashen and Large White pigs. The results showed that a total of 362 circRNAs, which included circIGF1R, were differentially expressed between the two pig breeds. Functional assays showed that circIGF1R promoted myoblast differentiation of porcine skeletal muscle satellite cells (SMSCs), while it had no effect on cell proliferation. In consideration of circRNA acting as a miRNA sponge, dual-luciferase reporter and RIP assays were performed and the results showed that circIGF1R could bind miR-16. Furthermore, the rescue experiments showed that circIGF1R could counteract the inhibitory effect of miR-16 on cell myoblast differentiation. Thus, circIGF1R may regulate myogenesis by acting as a miR-16 sponge. In conclusion, this study successfully screened candidate circRNAs involved in the regulation of porcine myogenesis and demonstrated that circIGF1R promotes myoblast differentiation via miR-16, which lays a theoretical foundation for understanding the role and mechanism of circRNAs in regulating porcine myoblast differentiation.
Assuntos
Diferenciação Celular , MicroRNAs , RNA Circular , Células Satélites de Músculo Esquelético , Animais , Diferenciação Celular/genética , Proliferação de Células/genética , MicroRNAs/genética , Desenvolvimento Muscular/genética , Músculo Esquelético/metabolismo , RNA Circular/metabolismo , Células Satélites de Músculo Esquelético/metabolismo , Suínos , Mioblastos Esqueléticos/metabolismoRESUMO
Prostate cancer (PCa) is one of the most common malignancies among men worldwide. Inevitably, all advanced PCa patients develop metastatic castration-resistant prostate cancer (mCRPC), an aggressive phase of the disease. Treating mCRPC is challenging, and prognostic tools are needed for disease management. MicroRNA (miRNA) deregulation has been reported in PCa, constituting potential non-invasive prognostic biomarkers. As such, this study aimed to evaluate the prognostic potential of nine miRNAs in the liquid biopsies (plasma) of mCRPC patients treated with second-generation androgen receptor axis-targeted (ARAT) agents, abiraterone acetate (AbA) and enzalutamide (ENZ). Low expression levels of miR-16-5p and miR-145-5p in mCRPC patients treated with AbA were significantly associated with lower progression-free survival (PFS). The two miRNAs were the only predictors of the risk of disease progression in AbA-stratified analyses. Low miR-20a-5p levels in mCRPC patients with Gleason scores of <8 were associated with worse overall survival (OS). The transcript seems to predict the risk of death regardless of the ARAT agent. According to the in silico analyses, miR-16-5p, miR-145-5p, and miR-20a-5p seem to be implicated in several processes, namely, cell cycle, proliferation, migration, survival, metabolism, and angiogenesis, suggesting an epigenetic mechanism related to treatment outcome. These miRNAs may represent attractive prognostic tools to be used in mCRPC management, as well as a step further in the identification of new potential therapeutic targets, to use in combination with ARAT for an improved treatment outcome. Despite the promising results, real-world validation is necessary.
Assuntos
MicroRNAs , Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , MicroRNAs/genética , MicroRNAs/uso terapêutico , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Estudos de Coortes , Estudos Retrospectivos , Acetato de Abiraterona/uso terapêutico , Resultado do Tratamento , Nitrilas/uso terapêuticoRESUMO
Circular RNAs are implicated in the pathogenesis of ischemic stroke. In this work, we explored the modulation and potential mechanisms of action of circ_0005585 in ischemic stroke. Expression of circ_0005585 and miR-16-5p was assessed by quantitative real-time reverse transcription PCR. Ischemic stroke was modeled in mice by middle cerebral artery occlusion (MCAO). The infarct volume was assessed by triphenyl tetrazolium chloride staining. Neurological deficits were evaluated according to Neurological Severity Score. The permeability of the blood-brain barrier was assessed by Evan's blue leakage and brain water content. Apoptosis in brain tissues was measured by the TUNEL test. Relative expression of apoptosis-related proteins was evaluated by Western blotting. The direct interaction between circ_0005585 and miR-16-5p was verified by dual-luciferase reporter assay. The expression of circ_0005585 was lower in mice with MCAO. Lentivirus-mediated overexpression of circ_0005585 ameliorated the neurological deficits and decreased the infarction volume in MCAO mice. The brain water content and Evan's blue leakage through the blood-brain barrier were reduced. In addition, overexpression of circ_0005585 inhibited apoptosis in the cerebral tissues. Our results revealed direct interaction between circ_0005585 and miR-16-5p. Hence, circ_0005585 protects mouse brain during ischemic stroke by targeting miR-16-5p, which uncovers the pathogenesis of this pathology and opens new vitas for its therapy.
Assuntos
Isquemia Encefálica , AVC Isquêmico , MicroRNAs , Traumatismo por Reperfusão , Camundongos , Animais , Isquemia Encefálica/metabolismo , Azul Evans , MicroRNAs/genética , MicroRNAs/metabolismo , Infarto da Artéria Cerebral Média/metabolismo , Apoptose/genética , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/metabolismoRESUMO
miR-16-5p is microRNA with important roles in the development of diverse malignancies including neuroblastoma, osteosarcoma, hepatocellular carcinoma, cervical cancer, breast cancer, brain tumors, gastrointestinal cancers, lung cancer and bladder cancer. This miRNA has 22 nucleotides. hsa-miR-16-5p is produced by MIR16-1 gene. First evidence for its participation in the carcinogenesis has been obtained by studies reporting deletion and/or down-regulation of these miRNAs in chronic lymphocytic leukemia. Subsequent studies have shown down-regulation of miR-16-5p in a variety of cancer cell lines and clinical samples. Besides, tumor suppressor role of miR-16-5p has been verified in animal models of different types of cancers. Studies in these models have shown that over-expression of this miRNA or modulation of expression of lncRNAs that sponge this miRNA can block carcinogenic processes. In the current review, we summarize function of miR-16-5p in the development and progression of different cancers.
RESUMO
BACKGROUND: Spinal cord injury (SCI) is a devastating neurological event that leads to severe motor and sensory dysfunction. Exosome-mediated transfer of circular RNAs (circRNAs) was associated with SCI, and exosomes have been reported to be produced by mesenchymal stem cells (MSCs). This study is designed to explore the mechanism of exosomal circZFHX3 on LPS-induced MSCs injury in SCI. METHODS: Exosomes were detected by transmission electron microscope and nanoparticle tracking analysis. CD9, CD63, CD81, and TSC101, B-cell lymphoma-2 (Bcl-2), Bcl-2 related X protein (Bax), Cleaved caspase 3, and Insulin-like growth factor 1 (IGF-1) protein levels were measured by western blot assay. CircZFHX3, microRNA-16-5p (miR-16-5p), and IGF-1 level were detected by real-time quantitative polymerase chain reaction (RT-qPCR). Cell viability and apoptosis were detected by Cell Counting Kit-8 (CCK-8) and flow cytometry assay. Levels of IL-1ß, IL-6, and TNF-α were assessed using Enzyme-linked immunosorbent assays (ELISA). ROS, LDH, and SOD levels were measured by the special kits. The binding between miR-16-5p and circZFHX3 or IGF-1 was predicted by Starbase and DianaTools and then verified by a dual-luciferase reporter and RNA Immunoprecipitation (RIP) assays. The biological role of exosomal circZFHX3 on SCI mice was examined in vivo. RESULTS: CircZFHX3 and IGF-1 were decreased, and miR-16-5p was increased in SCI mice. Also, exosomal circZFHX3 boosted cell viability and repress apoptosis, inflammation, and oxidative stress in LPS-treated BV-2 cells in vitro. Mechanically, circZFHX3 acted as a sponge of miR-16-5p to regulate IGF-1 expression. Exosomal circZFHX3 reduced cell injury of SCI in vivo. CONCLUSIONS: Exosomal circZFHX3 inhibited LPS-induced BV-2 cell injury partly by regulating the miR-16-5p/ IGF-1 axis, hinting at a promising therapeutic strategy for the SCI treatment.
Assuntos
Exossomos , Células-Tronco Mesenquimais , MicroRNAs , Traumatismos da Medula Espinal , Animais , Exossomos/metabolismo , Fator de Crescimento Insulin-Like I , Lipopolissacarídeos , Células-Tronco Mesenquimais/metabolismo , Camundongos , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Traumatismos da Medula Espinal/metabolismoRESUMO
Sepsis is a life-threatening condition, and treatment for sepsis in clinic is often not available, partially due to insufficient understanding of the pathogenesis of sepsis. Extensive study to elucidate the pathogenesis is required to improve the clinical management and outcome of sepsis. In this study, we investigated the pathogenesis of sepsis using peripheral blood mononuclear cells (PBMCs) from septic patients and studied the underlying mechanism of miR-16-5p on aerobic glycolysis in lipopolysaccharide (LPS)-treated THP1 and Raw264.7 cells. The levels of RNA and protein were determined by real-time quantitative PCR and immunoblotting assay, respectively. The production of high mobility group box 1 (HMGB1) was measured by enzyme-linked immunosorbent assay. The levels of succinate and lactate were determined using colorimetric kits. The extracellular acidification rate (ECAR) and oxygen consumption rate (OCR) were measured by extracellular flux analyzer. The results showed that the expression of miR-16-5p was elevated, while sirtuin 3 (SIRT3) was decreased in PBMCs from septic patients and LPS-treated cells, along with accumulation of acetylated succinate dehydrogenase complex, subunit A. Concomitantly, an increase in HMGB1, succinate, lactate, as well as ECAR and a decrease in OCR were observed. Knockdown of miR-16-5p upregulated SIRT3 expression, facilitated SDHA deacetylation, and attenuated sepsis-related aerobic glycolysis. Further study identified that SIRT3 is targeted by miR-16-5p, and overexpression of SIRT3 rescued LPS-induced responses via deacetylation of SDHA. Our findings revealed a novel miR-16-5p-regulated SIRT3-SDHA axis in sepsis and provided novel insights for sepsis treatment.