Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Glia ; 72(6): 1082-1095, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38385571

RESUMO

Information exchange between neurons and astrocytes mediated by extracellular vesicles (EVs) is known to play a key role in the pathogenesis of central nervous system diseases. A key driver of epilepsy is the dysregulation of intersynaptic excitatory neurotransmitters mediated by astrocytes. Thus, we investigated the potential association between neuronal EV microRNAs (miRNAs) and astrocyte glutamate uptake ability in epilepsy. Here, we showed that astrocytes were able to engulf epileptogenic neuronal EVs, inducing a significant increase in the glutamate concentration in the extracellular fluid of astrocytes, which was linked to a decrease in glutamate transporter-1 (GLT-1) protein expression. Using sequencing and gene ontology (GO) functional analysis, miR-181c-5p was found to be the most significantly upregulated miRNA in epileptogenic neuronal EVs and was linked to glutamate metabolism. Moreover, we found that neuronal EV-derived miR-181c-5p interacted with protein kinase C-delta (PKCδ), downregulated PKCδ and GLT-1 protein expression and increased glutamate concentrations in astrocytes both in vitro and in vivo. Our findings demonstrated that epileptogenic neuronal EVs carrying miR-181c-5p decrease the glutamate uptake ability of astrocytes, thus promoting susceptibility to epilepsy.


Assuntos
Epilepsia , Vesículas Extracelulares , MicroRNAs , Humanos , Astrócitos/metabolismo , Proteína Quinase C-delta/metabolismo , Epilepsia/genética , Epilepsia/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Neurônios/metabolismo , Vesículas Extracelulares/metabolismo , Ácido Glutâmico/metabolismo , Sistema X-AG de Transporte de Aminoácidos/metabolismo
2.
Eur J Clin Invest ; 54(8): e14202, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38553975

RESUMO

BACKGROUND: High-altitude pulmonary oedema (HAPE) is a form of noncardiogenic pulmonary oedema. Studies have found that long noncoding RNA (lncRNA) plays an important role in HAPE. ANRIL is significant in pulmonary illnesses, which implies that alterations in ANRIL expression levels may be involved in the beginning and development of HAPE. However, the specific mechanism is indistinct. The present study is meant to explore the effect and mechanism of ANRIL on hypoxic-induced injury of pulmonary microvascular endothelial cells (PMEVCs). METHODS: In the hypoxic model of PMVECs, overexpression of ANRIL or knockdown of miR-181c-5p was performed to assess cell proliferation, apoptosis, and migration. Furthermore, the levels of apoptosis-related proteins, inflammatory factors, and vascular active factors were also measured. RESULTS: The results showed that, after 24 h of hypoxia, PMVECs proliferation and migration were suppressed in comparison to the control group, along with an increase in apoptosis, a decrease in the expression of ANRIL, and an increase in the expression of miR-181c-5p (all p < .05). The damage caused by hypoxia in PMVECs can be lessened by overexpressing ANRIL, which also inhibits the production of TNF-α, iNOS, and VEGF as well as BAX and cleaved caspase-3 (all p < .05). Further experimental results showed that overexpression of ANRIL and knockdown of miR-181c-5p had the same protection against hypoxic injury in PMVECs (all p < .05). CONCLUSIONS: Our study suggests that ANRIL may prevent hypoxia injury to PMVECs in HAPE through the negative regulation of miR-181c-5p.


Assuntos
Apoptose , Movimento Celular , Proliferação de Células , Células Endoteliais , Pulmão , MicroRNAs , RNA Longo não Codificante , RNA Longo não Codificante/metabolismo , RNA Longo não Codificante/genética , Células Endoteliais/metabolismo , Proliferação de Células/genética , MicroRNAs/metabolismo , MicroRNAs/genética , Movimento Celular/genética , Animais , Pulmão/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Hipóxia Celular/fisiologia , Ratos , Técnicas de Silenciamento de Genes , Fator de Necrose Tumoral alfa/metabolismo , Células Cultivadas , Caspase 3/metabolismo , Proteína X Associada a bcl-2/metabolismo , Proteína X Associada a bcl-2/genética
3.
J Gene Med ; 24(10): e3446, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36027869

RESUMO

OBJECTIVES: The molecular mechanistic actions of tumor-derived extracellular vesicles (EVs) in modulating macrophage polarization in the tumor microenvironment of epithelial ovarian cancer (EOC) is largely unknown. The study was performed to clarify the effect and downstream mechanism of microRNA-181c-5p (miR-181c-5p)-containing EVs from EOC cells in the M2 polarization of tumor-associated macrophages (TAMs). METHODS: EVs were isolated from normoxic and hypoxic human EOC cells SKOV3. Human mononuclear cell THP-1 was induced by phorbol-12-myristate-13-acetate to differentiate into TAMs. The targeting relationship between miR-181c-5p and KAT2B was verified by dual luciferase reporter gene assay. The interaction between KAT2B and HOXA10 was detected by immunofluorescence, Co-IP and ChIP assays. EdU staining, the scratch test and Transwell assay were used to assess the resultant cell proliferation, migration and invasion. The mouse xenograft model and the pulmonary metastasis model were developed through intraperitoneal injection of SKOV3 cells and tail vein injection of THP-1 cells, respectively. RESULTS: Hypoxic SKOV3 cell-derived EVs could be internalized by TAMs. SKOV3 cell-derived EVs induced by hypoxia (H-EVs) promoted M2 polarization of TAMs and facilitated the proliferation, migration and invasion of SKOV3 cells. miR-181c-5p was highly expressed in H-EVs and promoted the M2 polarization of TAMs. Further, miR-181c-5p targeted KAT2B, upregulated HOXA10 and activated the JAK1/STAT3 pathway, thereby promoting the M2 polarization of TAMs. In both mouse models, H-EV-derived miR-181c-5p promoted growth and metastasis of EOC cells. CONCLUSION: The miR-181c-5p-containing EVs from hypoxic EOC cells may upregulate HOXA10 by targeting KAT2B and activate the JAK1/STAT3 pathway to promote the M2 polarization of TAMs, ultimately promoting growth and metastasis of EOC cells in vitro and in vivo.


Assuntos
Vesículas Extracelulares , MicroRNAs , Neoplasias Ovarianas , Acetatos/metabolismo , Animais , Carcinoma Epitelial do Ovário/genética , Carcinoma Epitelial do Ovário/patologia , Linhagem Celular Tumoral , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/patologia , Feminino , Proteínas Homeobox A10 , Humanos , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Ovarianas/genética , Microambiente Tumoral/genética , Macrófagos Associados a Tumor , Fatores de Transcrição de p300-CBP/metabolismo
4.
Inflamm Res ; 71(3): 321-330, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35020000

RESUMO

OBJECTIVE AND DESIGN: Phagocytosis and clearance of apoptotic cells are essential for inflammation resolution, efficient wound healing, and tissue homeostasis. MicroRNAs are critical modulators of macrophage polarization and function. The current study aimed to investigate the role of miR-181c-5p in macrophage phagocytosis. MATERIALS AND METHODS: miR-181c-5p was identified as a potential candidate in microRNA screening of RAW264.7 macrophages fed with apoptotic cells. To investigate the role of miR-181c-5p in phagocytosis, the expression of miR-181c-5p was assessed in phagocyting bone marrow-derived macrophages. Phagocytosis efficiency was measured by fluorescence microscopy. Gain- and loss-of-function studies were performed using miR-181c-5p-specific mimic and inhibitor. The expression of the phagocytosis-associated genes and proteins of interest was evaluated by RT2 profiler PCR array and western blotting, respectively. RESULTS: miR-181c-5p expression was significantly upregulated in the phagocyting macrophages. Furthermore, mimic-induced overexpression of miR-181c-5p resulted in the increased phagocytic ability of macrophages. Moreover, overexpression of miR-181c-5p resulted in upregulation of WAVE-2 in phagocyting macrophages, suggesting that miR-181c-5p may regulate cytoskeletal arrangement during macrophage phagocytosis. CONCLUSION: Altogether, our data provide a novel function of miR-181c-5p in macrophage biology and suggest that targeting macrophage miR-181c-5p in injured tissues might improve clearance of dead cells and lead to efficient inflammation resolution.


Assuntos
MicroRNAs , Humanos , Inflamação , Ativação de Macrófagos , Macrófagos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Fagocitose
5.
Mol Med ; 27(1): 45, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33952191

RESUMO

BACKGROUND: Circular RNA hsa_circ_0008305 (circPTK2), miR-181c-5p and High mobility group box-1 (HMGB1) had a targeted regulatory relationship through bioinformatics analysis. This study explained the effects of these genes in microglia and sepsis mice. METHODS: Lipopolysaccharide (LPS) or Cecal Ligation and Puncture (CLP) was used to induce inflammation cell model or sepsis mouse model, as needed. Gene levels were measured by enzyme linked immunosorbent assay (ELISA), quantitative real-time PCR or Western blot, as required. Apoptosis was detected by TUNEL assay, and RNase R was used to test the stability of circPTK2. Targeting relationships between genes were analyzed using bioinformatics analysis and dual luciferase assay. Morris water maze test and mitochondrial membrane potential (MMP) detection were conducted to analyze the effects of genes on cognitive dysfunction of mice. RESULTS: Lipopolysaccharide induction triggered the release of pro-inflammatory cytokines, the upregulation of HMGB1 and circPTK2, and the downregulation of miR-181c-5p in microglia. Overexpression of HMGB1 enhanced the effect of LPS, while silencing HMGB1 partially counteracted the effect of LPS. Moreover, miR-181c-5p was a target of circPTK2 and bound to HMGB1. MiR-181c-5p mimic partially reversed the functions of LPS and HMGB1 overexpression, reduced the levels of TNF-α, IL-1ß, and HMGB1, and inhibited apoptosis. CircPTK2 knockdown had the same effect as miR-181c-5p up-regulation. In vivo, sicircPTK2 improved cognitive function, restored MMP level, inhibited apoptosis, reduced the levels of inflammatory factors and apoptotic factors, and increased the survival rate of CLP-induced mice. CONCLUSION: Our research reveals that circPTK2 regulates microglia activation and hippocampal neuronal apoptosis induced by sepsis via miR-181c-5p-HMGB1 signaling.


Assuntos
Proteína HMGB1 , Hipocampo/citologia , MicroRNAs , Microglia/metabolismo , Neurônios/metabolismo , RNA Circular , Sepse/genética , Animais , Apoptose , Linhagem Celular , Citocinas/genética , Citocinas/metabolismo , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Aprendizagem , Lipopolissacarídeos/farmacologia , Camundongos Endogâmicos C57BL , Sepse/metabolismo , Transdução de Sinais
6.
Mol Med ; 27(1): 141, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34732133

RESUMO

BACKGROUND: We aimed to investigate the functions and underlying mechanism of lncRNA SNHG1 in bone differentiation and angiogenesis in the development of osteoporosis. METHODS: The differential gene or proteins expressions were measured by qPCR or western blot assays, respectively. The targeted relationships among molecular were confirmed through luciferase reporter, RIP and ChIP assays, respectively. Alkaline phosphatase (ALP), alizarin red S (ARS) and TRAP staining were performed to measure the osteoblast/osteoclast differentiation of BMSCs. The viability, migration and angiogenesis in BM-EPCs were validated by CCK-8, clone formation, transwell and tube formation assays, respectively. Western blot and immunofluorescence detected the cytosolic/nuclear localization of ß-catenin. Ovariectomized (OVX) mice were established to confirm the findings in vitro. RESULTS: SNHG1 was enhanced and miR-181c-5p was decreased in serum and femoral tissue from OVX mice. SNHG1 directly inhibited miR-181c-5p to activate Wnt3a/ß-catenin signaling by upregulating SFRP1. In addition, knockdown of SNHG1 promoted the osteogenic differentiation of BMSCs by increasing miR-181c-5p. In contrast, SNHG1 overexpression advanced the osteoclast differentiation of BMSCs and inhibited the angiogenesis of BM-EPCs, whereas these effects were all reversed by miR-181c-5p overexpression. In vivo experiments indicated that SNHG1 silencing alleviated osteoporosis through stimulating osteoblastogenesis and inhibiting osteoclastogenesis by modulating miR-181c-5p. Importantly, SNHG1 could be induced by SP1 in BMSCs. CONCLUSIONS: Collectively, SP1-induced SNHG1 modulated SFRP1/Wnt/ß-catenin signaling pathway via sponging miR-181c-5p, thereby inhibiting osteoblast differentiation and angiogenesis while promoting osteoclast formation. Further, SNHG1 silence might provide a potential treatment for osteoporosis.


Assuntos
Remodelação Óssea/genética , MicroRNAs , Osteoporose/genética , RNA Longo não Codificante , Fator de Transcrição Sp1/genética , Animais , Diferenciação Celular , Células Cultivadas , Feminino , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Neovascularização Fisiológica , Transdução de Sinais , Células-Tronco/citologia , Proteína Wnt3A/metabolismo
7.
Acta Pharmacol Sin ; 41(1): 22-33, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31431734

RESUMO

Long non-coding RNAs (lncRNAs) have been identified as essential mediators in neurological dysfunction. Our previous study shows that berberine (BBR) hampers the nuclear-to-cytosolic translocation of high-mobility group box 1 (HMGB1) in the process of poststroke inflammation. In this study, we explored the role of lncRNA metastasis-associated lung adenocarcinoma transcript 1 (Malat1) in the process of BBR-induced inhibition of HMGB1 in ischemic brain. Before the 60-min MCAO surgery, the mice were pretreated with BBR (50 mg· kg-1 per day, ig) for 14 days or ICV injected with specific lentiviral vector or shRNA. We showed that MCAO caused marked increase in the expression Malat1 and HMGB1 in the ipsilateral cortex, which was significantly attenuated by pretreatment with BBR. Knockdown of Malat1 attenuated the inflammatory injury after brain ischemia, whereas overexpression of Malat1 exacerbated ischemic brain inflammation. Overexpression of Malat1 also reversed BBR-induced reduction of HMGB1 and proinflammatory cytokines. The above results suggested a potential correlation between Malat1 and stroke inflammation. Based on informatics analysis we predicted that HMGB1 was a direct downstream target of miR-181c-5p, whereas Malat1 acted as a competitive endogenous RNA (ceRNA) for miR-181c-5p targeted the 3'-UTR of HMGB1 to promote inflammation after ischemic stroke. Knockdown of Malat1 significantly decreased HMGB1 level, which could be abrogated by transfection with miR-181c-5p inhibitors. Taken together, our results demonstrate for the first time that Malat1/miR-181c-5p/HMGB1 axis may be a key pathway of BBR-induced antiinflammation effects in stroke, and they may provide a novel avenue for targeted therapy.


Assuntos
Berberina/farmacologia , Proteína HMGB1/antagonistas & inibidores , Inflamação/metabolismo , MicroRNAs/metabolismo , RNA Longo não Codificante/metabolismo , Administração Oral , Animais , Berberina/administração & dosagem , Células Cultivadas , Células HEK293 , Proteína HMGB1/metabolismo , Humanos , Hibridização in Situ Fluorescente , Injeções Intraventriculares , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Imagem Óptica , RNA Longo não Codificante/genética
8.
J Cell Mol Med ; 23(5): 3302-3316, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30761733

RESUMO

Impaired osteoblast proliferation plays fundamental roles in microgravity-induced bone loss, and cell cycle imbalance may result in abnormal osteoblast proliferation. However, whether microgravity exerts an influence on the cell cycle in osteoblasts or what mechanisms may underlie such an effect remains to be fully elucidated. Herein, we confirmed that simulated microgravity inhibits osteoblast proliferation. Then, we investigated the effect of mechanical unloading on the osteoblast cell cycle and found that simulated microgravity arrested the osteoblast cell cycle in the G2 phase. In addition, our data showed that cell cycle arrest in osteoblasts from simulated microgravity was mainly because of decreased cyclin B1 expression. Furthermore, miR-181c-5p directly inhibited cyclin B1 protein translation by binding to a target site in the 3'UTR. Lastly, we demonstrated that inhibition of miR-181c-5p partially counteracted cell cycle arrest and decreased the osteoblast proliferation induced by simulated microgravity. In conclusion, our study demonstrates that simulated microgravity inhibits cell proliferation and induces cell cycle arrest in the G2 phase in primary mouse osteoblasts partially through the miR-181c-5p/cyclin B1 pathway. This work may provide a novel mechanism of microgravity-induced detrimental effects on osteoblasts and offer a new avenue to further investigate bone loss induced by mechanical unloading.


Assuntos
Pontos de Checagem do Ciclo Celular/genética , Fase G2/genética , MicroRNAs/metabolismo , Osteoblastos/citologia , Osteoblastos/metabolismo , Ausência de Peso , Animais , Proteína Quinase CDC2/metabolismo , Proliferação de Células/genética , Células Cultivadas , Ciclina B1/genética , Ciclina B1/metabolismo , Regulação para Baixo/genética , Camundongos , MicroRNAs/genética
9.
J Cell Mol Med ; 23(9): 6120-6130, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31334597

RESUMO

Long non-coding RNAs (lncRNAs) play important roles in the pathogenesis of brain and neurodegenerative disorders. As far as we know, the functions and potential mechanisms of small nucleolar RNA host gene 6 (SNHG6) in ischaemic stroke have not been explored. This study aimed to examine the functional role of SNHG6 in the ischaemic stroke. Middle cerebral artery occlusion (MCAO) in mice and the oxygen glucose deprivation (OGD)-induced injury in neuronal cells were applied to mimic ischaemic stroke. TTC staining, quantitative real-time PCR, cell apoptosis assay, caspase-3 activity assay, Western blot, RNA immunoprecipitation and luciferase reporter assay were performed to evaluate the function and possible mechanisms of SNHG6 in the pathogenesis of ischaemic stroke. The results show that SNHG6 expression was significantly increased both OGD-induced neuronal cells and MCAO model mice. In vitro results showed that inhibition of SNHG6 increased cell viability, inhibited cell apoptosis and caspase-3 activity in OGD-induced neuronal cells. Consistently, knockdown of SNHG6 reduced brain infarct size and improved neurological scores in the MCAO mice. Mechanistic study further revealed that SNHG6 functioned as a competing endogenous RNA (ceRNA) for miR-181c-5p, which in turn repressed its downstream target of Bcl-2 interacting mediator of cell death (BIM) and inhibiting cell apoptosis. This study revealed a novel function of SNHG6 in the modulating neuronal apoptosis in the ischaemic stroke model, and the role of SNHG6 in the regulating of neuronal apoptosis was at least partly via targeting miR-181c-5p/BIM signalling pathway.


Assuntos
Proteína 11 Semelhante a Bcl-2/genética , Isquemia Encefálica/genética , MicroRNAs/genética , RNA Longo não Codificante/genética , Acidente Vascular Cerebral/genética , Animais , Apoptose/genética , Isquemia Encefálica/patologia , Isquemia Encefálica/terapia , Caspase 3 , Sobrevivência Celular/genética , Modelos Animais de Doenças , Humanos , Camundongos , Neurônios/metabolismo , Neurônios/patologia , Cultura Primária de Células , RNA Longo não Codificante/antagonistas & inibidores , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Acidente Vascular Cerebral/patologia , Acidente Vascular Cerebral/terapia
10.
Sci Rep ; 14(1): 11487, 2024 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769091

RESUMO

Alzheimer's disease (AD) is an age-associated neurodegenerative disease. Recently, studies have demonstrated the potential involvement of microRNA-181c-5p (miR-181c-5p) in AD. However, the mechanism through which miR-181c-5p is responsible for the onset and progression of this disease remains unclear, and our study aimed to explore this problem. Differential expression analysis of the AD dataset was performed to identify dysregulated genes. Based on hypergeometric analysis, AD differential the upstream regulation genes miR-181c-5p was found. We constructed a model where SH-SY5Y and BV2 cells were exposed to Aß1-42 to simulate AD. Levels of tumor necrosis factor-alpha, interleukin-6, and IL-1ß were determined using enzyme-linked immunosorbent assay or reverse transcription quantitative polymerase chain reaction. Phosphorylation levels of p-P38 and P38 were detected by Western blot. The level of apoptosis in BV2 cells under Aß1-42 stress was exacerbated by miR-181c-5p mimic. Downregulated miR-181c-5p impaired the phagocytosis and degradation of Aß by BV2 cells. The release of proinflammatory cytokines in BV2 cells with Aß1-42 stress was alleviated by miR-181c-5p upregulation. Additionally, miR-181c-5p downregulation alleviated the phosphorylation of P38 in Aß1-42-induced SH-SY5Y cells. In conclusion, miR-181c-5p improves the phagocytosis of Aß by microglial cells in AD patients, thereby reducing neuroinflammation.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Regulação para Baixo , MicroRNAs , Microglia , Fagocitose , MicroRNAs/genética , MicroRNAs/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Humanos , Peptídeos beta-Amiloides/metabolismo , Microglia/metabolismo , Apoptose , Fragmentos de Peptídeos/farmacologia , Camundongos , Animais , Linhagem Celular Tumoral , Linhagem Celular , Citocinas/metabolismo
11.
Front Cardiovasc Med ; 11: 1383046, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38725830

RESUMO

Aims: MiR-181c-5p overexpression associates with heart failure (HF) and cardiac damage, but the underlying pathophysiology remains unclear. This study investigated the effect of miR-181c-5p inhibition on cardiac function and fibrosis in a rodent model of diastolic dysfunction, and evaluated additional effects on kidney as relevant comorbid organ. Methods and results: Diastolic dysfunction was induced in male C57/BL6J mice (n = 20) by combining high-fat diet, L-NG-nitroarginine methyl ester, and angiotensin II administration, and was compared to sham controls (n = 18). Mice were randomized to subcutaneous miR-181c-5p antagomiR (INH) or scrambled antagomiR injections (40 mg/kg/week). HF mice demonstrated diastolic dysfunction and increased fibrosis, which was attenuated by INH treatment. Remarkably, HF + INH animals had a threefold higher mortality rate (60%) compared to HF controls (20%). Histological examination revealed increased glomerular damage in all INH treated mice, and signs of thrombotic microangiopathy (TMA) in mice who died prematurely. Quantitative polymerase chain reaction demonstrated a miR-181c-5p-related downregulation of cardiac but not renal Tgfbr1 in HF + INH mice, while INH treatment reduced renal but not cardiac Vegfa expression in all mice. Conclusion: This study demonstrates cardiac anti-fibrotic effects of miR-181c-5p inhibition in a rodent HF model through targeting of Tgfbr1 in the heart. Despite improved diastolic function, HF + INH mice had higher mortality due to increased predisposition for TMA, increased renal fibrosis and glomerular damage, associated with Vegfa downregulation in kidneys.

12.
Pathol Res Pract ; 253: 155017, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38101160

RESUMO

Triple negative breast cancer (TNBC) is a very invasive subtype of breast cancer (BCa), this is accounted for 15-20% of all BCa cases. TNBC patients have very limited therapy option due to lack of effective targets and patients shows the worse survival. Therefore, present study has tried to introduce the target based therapy by studying the tumor suppressive role of miR-181c-5p on oncogenic Notch1 signaling. Transient transfection, bioinformatics, qRT-PCR, Notch1 luciferase assay and western blotting techniques were utilized to study the effect of induced expression of miR-181c-5p on oncogenic Notch1 signaling in MDA-MB-231 cells. Results shows that miR-181c-5p mimic increase the expression of miR-181c-5p by 45.26% and 75.96% in 24 and 48 h incubation, respectively (p < 0.0003) in transfected cells. The miR-181c-5p binds at NOTCH1 3' UTR target binding site with a minimum free energy of - 26.0 kcal/mol. The AGO protein showed significant interaction with the miR-181c-5p and miR-181c-5p-NOTCH1 complex. Decreased expression of NOTCH1 by 32.88% and 45.87% (p < 0.0001); and HES1 expression by 14.06% and 53.24% (p < 0.0001) was observed in 24 and 48 h transfected cells respectively. Notch1 promoter luciferase activity was reduced by 25.72% and 46.98% in 24 and 48 h miRNA-mimic transfected cells. Western blot analysis also showed significant reduction in NOTCH1 and HES1 proteins expression. In conclusion, present study suggests that the forced expression of tumor suppressive miR-181c-5p negatively regulates oncogenic Notch1 signaling in TNBC. Negative regulation of Notch1 signaling via miR-181c-5p mimic could be a hopeful therapeutic strategy in TNBC patient treatment.


Assuntos
MicroRNAs , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/patologia , Células MDA-MB-231 , Expressão Ectópica do Gene , MicroRNAs/metabolismo , Luciferases/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica/genética
13.
Behav Brain Res ; 447: 114387, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37003492

RESUMO

Alzheimer's disease (AD) is neurodegenerative disease common in the elderly, whose pathological mechanism is the deposition of amyloid-ß (Aß) plaques and neurofibrillary tangles in the brain. Pyroptosis is a programmed cell death mediated by Gasdermin protein. After the activation of inflammasomes, the cleaved caspase⁃ 1/4/5/11 activates GSDMD, which promotes the release of inflammatory substances and eventually causes cell swelling and death. Pyroptosis caused by inflammasomes plays a role in AD. However, the specific regulatory mechanism of pyroptosis in AD still needs more experimental studies. To further study the effects of NLRP1-induced pyroptosis on AD, miR-181c-5p, which could targeted bind to NLRP1, was knocked down or overexpression in HT22 cells to detect cell apoptosis with Tunel assay, the expression of inflammasome-related proteins with Western blot and the content of inflammatory factors with ELISA. miR-181c-5p was overexpressed in AD model mice to detect the learning and cognitive ability with morris water maze testing and the expression of inflammasoma-related proteins with Western blot. The results showed that miR-181c-5p mimic attenuated Aß1-42-induced neuronal pyroptosis in HT22 cells, while up-regulation of NLRP1 aggravated neuronal pyroptosis in HT22 cells. In mice, miR-181c-5p agomir attenuated neuronal pyroptosis in both hippocampal and cortical tissues, and miR-181c-5p antagomir improved neuronal pyroptosis and cognitive impairment through NLRP1. Therefore, the study suggests that miR-181c-5p can alleviated AD process by targeted downregulation of NLRP1, which is expected to be a target site for AD treatment.


Assuntos
Doença de Alzheimer , MicroRNAs , Doenças Neurodegenerativas , Animais , Camundongos , Doença de Alzheimer/metabolismo , Inflamassomos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Piroptose/fisiologia , Humanos
14.
Curr Protoc ; 3(9): e880, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37728252

RESUMO

The last decades have illustrated the importance of microRNAs (miRNAs) in various biological and pathological processes. The combined visualization of miRNAs using fluorescent in situ hybridization (FISH) and proteins using immunofluorescence (IF) can reveal their spatiotemporal distribution in relation to the cell and tissue morphology and can provide interesting insights into miRNA-protein interactions. However, standardized protocols for co-localization of miRNAs and proteins are currently lacking, and substantial technical obstacles still need to be addressed. In particular, the incompatibility of protein IF protocols with steps required for miRNA FISH, such as proteolytic pretreatments and ethylcarbodiimide post-fixation, as well as hurdles related to low signal intensity of low-copy miRNAs, remains challenging. Our technique may considerably enhance miRNA-based research, as current detection techniques lack the ability to elucidate cellular and subcellular localization. Here, we describe an optimized 2-day protocol for combined detection of low-abundant miRNAs and proteins in cryosections of cardiac tissue, without the need for protease-dependent pretreatment or post-fixation treatment. We successfully demonstrate endothelial-specific localization of low-abundant miR-181c-5p in cardiac tissue. © 2023 Wiley Periodicals LLC. Basic Protocol: Fluorescent in situ hybridization for miRNA combined with staining of proteins.


Assuntos
Crioultramicrotomia , MicroRNAs , Hibridização in Situ Fluorescente , Endopeptidases , Técnicas Histológicas , MicroRNAs/genética , Peptídeo Hidrolases
15.
Bioengineered ; 13(5): 12998-13010, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35611706

RESUMO

Recently, abnormal expression of long non-coding RNAs (lncRNAs) has been observed in esophageal squamous cell carcinoma (ESCC). In various human cancers, breast cancer anti­estrogen resistance 4 (BCAR4) was reported to be highly expressed, while the biological roles of BCAR4 in ESCC remain unclear. In ESCC cells and tissues, BCAR4 and microRNA -181c-5p (miR-181c-5p) expression, and phosphorylated signal transducer and activator of transcription (p-STAT3) and COX2 expression were evaluated by real-time reverse transcription PCR (qRT-PCR) and Western blot analysis. Cell function was evaluated by colony formation, CCK-8 assay, transwell and flow cytometer assays. Interactions between BCAR4 and miR-181c-5p, as well as miR-181c-5p and LIM and SH3 protein 1 (LASP1) were evaluated by RIP and luciferase reporter assay. ESCC cell malignancy with inhibition of BCAR4 was confirmed by a tumor xenograft model in vivo. In both ESCC tissues and cell lines, BCAR4 was upregulated. Downregulation of BCAR4 effectively induced cell apoptosis and inhibited invasion and migration in vitro, and reduced tumorigenesis in nude mice. BCAR4 was a sponge of miR-181c-5p to upregulate LASP1. Moreover, knockdown of BCAR4 and overexpression of miR-181c-5p inhibited the activation of the STAT3/COX2 signaling, which was reversed by overexpression of LASP1. In conclusion, BCAR4 promotes ESCC tumorigenesis by targeting the miR-181c-5p/LASP1 axis, which may act as a treatment and diagnosis biomarker for ESCC.


Assuntos
Neoplasias da Mama , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , MicroRNAs , RNA Longo não Codificante , Proteínas Adaptadoras de Transdução de Sinal , Animais , Neoplasias da Mama/genética , Carcinogênese/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Ciclo-Oxigenase 2/genética , Proteínas do Citoesqueleto/metabolismo , Regulação para Baixo/genética , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas do Esôfago/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Proteínas com Domínio LIM , Camundongos , Camundongos Nus , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
16.
Genes (Basel) ; 13(12)2022 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-36553610

RESUMO

Hepatocellular carcinoma (HCC) is a fatal disease, accounting for 75-85% of primary liver cancers. The conclusive research on miR-181c-5p's role in hepatocarcinogenesis, whether it has oncogenic effects or acts as a tumor repressor, is limited and fluctuating. Therefore, the current study aimed to elucidate the role of miR-181c-5p in HCC in silico and in vivo. The bioinformatics analysis of miR-181c-5p expression data in HCC using several databases strongly shed light on its involvement in HCC development, but also confirmed the fluctuating data around its role. miR-181c-5p was proven here to have an oncogenic role by increasing HepG2 cells' viability as confirmed by MTT analysis. In addition, miR-181c-5p was upregulated in the HCC positive control group and progressed the HCC development and malignant features by its forced expression in an HCC mouse model by targeted delivery using a LA-PAMAM polyplex. This is indicated by the cancerous gross and histological features, and the significant increase in liver function biomarkers. The functional enrichment bioinformatics analyses of miR-181c-5p-downregulated targets in HCC indicated that miR-181c-5p targets were significantly enriched in multiple pathways and biological processes involved in HCC development. Fbxl3, an example for miR-181c-5p potential targets, downregulation and its correlation with miR-181c-5p were validated by qPCR. In conclusion, miR-181c-5p is upregulated in HCC and has an oncogenic role enhancing HCC progression.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Animais , Humanos , Camundongos , Carcinoma Hepatocelular/patologia , Regulação Neoplásica da Expressão Gênica , Células Hep G2 , Neoplasias Hepáticas/patologia , MicroRNAs/genética , MicroRNAs/metabolismo
17.
PeerJ ; 10: e13454, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35602889

RESUMO

Background: Myasthenia gravis (MG) is an antibody-mediated autoimmune disease. In recent years, accumulating evidence has indicated that long non-coding RNAs (lncRNAs) can function as competing endogenous RNAs (ceRNAs), contributing to the progression of various autoimmune diseases. Nevertheless, the regulatory roles of ceRNAs in MG pathogenesis remain unclear. In this study, we aimed to elucidate the role of lncRNA OIP5-AS1 as a ceRNA associated with MG progression. Methods: Real-time PCR was used to detect OIP5-AS1 levels in peripheral blood mononuclear cells (PBMCs) from patients with MG. Luciferase reporter assays were performed to validate the relationship between OIP5-AS1 and miR-181c-5p. CCK-8 and flow cytometry were performed to test the proliferation and apoptotic abilities of OIP5-AS1 in Jurkat cells. Furthermore, real-time PCR and Western blot assays were performed to explore the interactions between OIP5-AS1, miR-181c-5p, and IL-7. Results: The expression of OIP5-AS1 was up-regulated in patients with MG. Luciferase reporter assay indicated that OIP5-AS1 targeted the miR-181c-5p. Functional assays showed that OIP5-AS1 suppressed Jurkat cell apoptosis and promoted cell proliferation by sponging miR-181c-5p. Mechanistically, knockdown of OIP5-AS1 inhibited IL-7 expression at both the mRNA and protein levels in Jurkat cells, whereas the miR-181c-5p inhibitor blocked the reduction of IL-7 expression induced by OIP5-AS1 suppression. Conclusions: We confirmed that OIP5-AS1 serves as an endogenous sponge for miR-181c-5p to regulate the expression of IL-7. Our findings provide novel insights into MG processes and suggests potential therapeutic targets for patients with MG.


Assuntos
MicroRNAs , Miastenia Gravis , RNA Longo não Codificante , Humanos , MicroRNAs/genética , RNA Longo não Codificante/genética , Células Jurkat , Interleucina-7/genética , Leucócitos Mononucleares/metabolismo , Miastenia Gravis/genética , Apoptose/genética , Proliferação de Células/genética
18.
Neural Regen Res ; 17(4): 824-831, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34472482

RESUMO

Severe cerebral ischemia/reperfusion injury has been shown to induce high-level autophagy and neuronal death. Therefore, it is extremely important to search for a target that inhibits autophagy activation. Long non-coding RNA MEG3 participates in autophagy. However, it remains unclear whether it can be targeted to regulate cerebral ischemia/reperfusion injury. Our results revealed that in oxygen and glucose deprivation/reoxygenation-treated HT22 cells, MEG3 expression was obviously upregulated, and autophagy was increased, while knockdown of MEG3 expression greatly reduced autophagy. Furthermore, MEG3 bound miR-181c-5p and inhibited its expression, while miR-181c-5p bound to autophagy-related gene ATG7 and inhibited its expression. Further experiments revealed that mir-181c-5p overexpression reversed the effect of MEG3 on autophagy and ATG7 expression in HT22 cells subjected to oxygen and glucose deprivation/reoxygenation. In vivo experiments revealed that MEG3 knockdown suppressed autophagy, infarct volume and behavioral deficits in cerebral ischemia/reperfusion mice. These findings suggest that MEG3 knockdown inhibited autophagy and alleviated cerebral ischemia/reperfusion injury through the miR-181c-5p/ATG7 signaling pathway. Therefore, MEG3 can be considered as an intervention target for the treatment of cerebral ischemia/reperfusion injury. This study was approved by the Animal Ethics Committee of the First Affiliated Hospital of Zhengzhou University, China (approval No. XF20190538) on January 4, 2019.

19.
Brain Res Bull ; 174: 379-388, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34224818

RESUMO

PURPOSE: Our study aims to explore the role and mechanism of lncRNA small nucleolar RNA host gene 14 (SNHG14) in brain injury caused by ischemic stroke (IS). METHODS: Middle cerebral artery occlusion (MCAO) model and oxygen-glucose deprivation (OGD)-induced primary cortical neurons were used to construct in vitro and in vivo models of IS, respectively. Relative SNHG14, miR-181c-5p and Bcl-2-modifying factor (BMF) expression levels were detected by quantitative real-time PCR. MTT assay, EdU staining and flow cytometry were used to measure cell proliferation and apoptosis. The protein levels of apoptosis marker and BMF were determined using western blot analysis. ELISA assay was performed to assess cell inflammatory response and injury. RESULTS: SNHG14 was upregulated and miR-181c-5p was downregulated in MCAO model and OGD-induced primary cortical neurons. Silencing of SNHG14 markedly promoted proliferation, restrained apoptosis and inflammatory response in OGD-induced primary cortical neurons to alleviate neurons injury. In terms of mechanism, miR-181c-5p could be sponged by SNHG14, and its inhibitor reversed the inhibition effect of SNHG14 silencing on OGD-induced neurons injury. Also, BMF was a target of miR-181c-5p, and its overexpression could reverse the suppressive effect of miR-181c-5p on OGD-induced neurons injury. Our data uncovered that BMF expression was positively regulated by SNHG14 and negatively regulated by miR-181c-5p. CONCLUSION: Our results indicated that SNHG14 promoted neurons injury through regulating miR-181c-5p/BMF axis, suggesting that SNHG14 might be a potential target to alleviate IS-induced brain injury.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , AVC Isquêmico/genética , AVC Isquêmico/patologia , MicroRNAs/genética , Neurônios/patologia , RNA Longo não Codificante/genética , Animais , Apoptose , Proliferação de Células , Córtex Cerebral/patologia , Inativação Gênica , Glucose/deficiência , Hipóxia/patologia , Infarto da Artéria Cerebral Média/patologia , Masculino , Cultura Primária de Células , Ratos , Ratos Sprague-Dawley
20.
Aging (Albany NY) ; 13(13): 17499-17515, 2021 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-34232917

RESUMO

Long non-coding RNA (lncRNA) LINC00665 was demonstrated to be upregulated in lung adenocarcinoma (LUAD) and target miR-181c-5p. ZIC2, which is upregulated in LUAD, serves as a putative target of miR-181c-5p. In this study, we aimed to reveal whether LINC00665 regulates miR-181c-5p/ZIC2 axis to promote LUAD progression. The results showed that LINC00665, HOXA1, ZIC2, and HOXA11 levels were increased in LUAD tissues, while miR-181c-5p level was decreased when compared to the adjacent normal tissues. High expression levels of LINC00665, ZIC2, HOXA1 and HOXA11, and low expression of miR-181c-5p were closely linked to poor prognosis of LUAD patients. Knockdown of LINC00665 induced obvious inhibitions in cell viability, clone formation, invasion and tumorigenesis in LUAD cells, whereas miR-181c-5p downregulation significantly neutralized these effects. In addition, downregulation of ZIC2 obviously reversed the enhancements of cell viability, clone formation, invasion and tumorigenesis induced by miR-181c-5p knockdown. In summary, the present study reveals that silencing of LINC00665 suppresses LUAD progression through targeting miR-181c-5p/ZIC2 axis.


Assuntos
Adenocarcinoma/genética , Neoplasias Pulmonares/genética , MicroRNAs/genética , Proteínas Nucleares/genética , RNA Longo não Codificante/genética , Fatores de Transcrição/genética , Adenocarcinoma/patologia , Animais , Linhagem Celular Tumoral , Sobrevivência Celular , Biologia Computacional , Progressão da Doença , Regulação para Baixo , Técnicas de Silenciamento de Genes , Proteínas de Homeodomínio/genética , Humanos , Neoplasias Pulmonares/patologia , Camundongos Endogâmicos BALB C , Invasividade Neoplásica , Prognóstico , Ensaio Tumoral de Célula-Tronco , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA