Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 299(1): 102725, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36410437

RESUMO

MYB, a proto-oncogene, is overexpressed in prostate cancer (PCa) and promotes its growth, aggressiveness, and resistance to androgen-deprivation therapy. Here, we examined the effect of androgen signaling on MYB expression and delineated the underlying molecular mechanisms. Paralleling a dichotomous effect on growth, low-dose androgen induced MYB expression at both transcript and protein levels, whereas it was suppressed in high-dose androgen-treated PCa cells. Interestingly, treatment with both low- and high-dose androgen transcriptionally upregulated MYB by increasing the binding of androgen receptor to the MYB promoter. In a time-course assay, androgen induced MYB expression at early time points followed by a sharp decline in high-dose androgen-treated cells due to decreased stability of MYB mRNA. Additionally, profiling of MYB-targeted miRNAs demonstrated significant induction of miR-150 in high-dose androgen-treated PCa cells. We observed a differential binding of androgen receptor on miR-150 promoter with significantly greater occupancy recorded in high-dose androgen-treated cells than those treated with low-dose androgen. Functional inhibition of miR-150 relieved MYB suppression by high-dose androgen, while miR-150 mimic abolished MYB induction by low-dose androgen. Furthermore, MYB-silencing or miR-150 mimic transfection suppressed PCa cell growth induced by low-dose androgen, whereas miR-150 inhibition rescued PCa cells from growth repression by high-dose androgen. Similarly, we observed that MYB silencing suppressed the expression of androgen-responsive, cell cycle-related genes in low-dose androgen-treated cells, while miR-150 inhibition increased their expression in cells treated with high-dose androgen. Overall, these findings reveal novel androgen-mediated mechanisms of MYB regulation that support its biphasic growth control in PCa cells.


Assuntos
Androgênios , MicroRNAs , Neoplasias da Próstata , Proteínas Proto-Oncogênicas c-myb , Humanos , Masculino , Antagonistas de Androgênios , Androgênios/farmacologia , Androgênios/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Proteínas Proto-Oncogênicas c-myb/genética , Proteínas Proto-Oncogênicas c-myb/metabolismo , Processamento de Proteína Pós-Traducional , Células Tumorais Cultivadas
2.
Cell Biol Toxicol ; 39(4): 1257-1274, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36112264

RESUMO

Extracellular vesicles derived from bone marrow mesenchymal stem cells (BMSC-EVs) are emerged as carriers of therapeutic targets against bone disorders, yet its isolation and purification are limited with recent techniques. Magnetic nanoparticles (MNPs) can load EVs with a unique targeted drug delivery system. We constructed gold-coated magnetic nanoparticles (GMNPs) by decorating the surface of the Fe3O4@SiO2 core and a silica shell with poly(ethylene glycol) (PEG)-aldehyde (CHO) and examined the role of BMSC-EVs loaded on GMNPs in diabetic osteoporosis (DO). The osteoporosis-related differentially expressed miR-150-5p was singled out by microarray analysis. DO models were then established in Sprague-Dawley rats by streptozotocin injection, where poor expression of miR-150-5p was validated in the bone tissues. Next, GMNPE was prepared by combining GMNPs with anti-CD63, after which osteoblasts were co-cultured with the GMNPE-BMSC-EVs. The re-expression of miR-150-5p facilitated osteogenesis in osteoblasts. GMNPE could promote the enrichment of EVs in the bone tissues of DO rats. BMSC-EVs delivered miR-150-5p to osteoblasts, where miR-150-5p targeted MMP14 and consequently activated Wnt/ß-catenin pathway. This effect contributed to the enhancement of osteoblast proliferation and maturation. Furthermore, GMNPE enhanced the EV-based delivery of miR-150-5p to regulate the MMP14/Wnt/ß-catenin axis, resulting in promotion of osteogenesis. Overall, our findings suggest the potential of GMNP-BMSC-EVs to strengthen osteoblast proliferation and maturation in DO, showing promise as an appealing drug delivery strategy against DO. 1. GMNPs-BMSCs-EVs-miR-150-5p promotes the osteogenesis of DO rats. 2. miR-150-5p induces osteoblast proliferation and maturation by targeting MMP14. 3. Inhibition of MMP14 activates Wnt/ß-catenin and increases osteogenesis. 4. miR-150-5p activates the Wnt/ß-catenin pathway by downregulating MMP14.


Assuntos
Diabetes Mellitus , Vesículas Extracelulares , Nanopartículas de Magnetita , Células-Tronco Mesenquimais , MicroRNAs , Osteoporose , Ratos , Animais , MicroRNAs/metabolismo , beta Catenina/metabolismo , Metaloproteinase 14 da Matriz/metabolismo , Diferenciação Celular/fisiologia , Dióxido de Silício , Ratos Sprague-Dawley , Osteoporose/terapia , Osteoporose/metabolismo , Células-Tronco Mesenquimais/metabolismo , Diabetes Mellitus/metabolismo
3.
Mol Cell Biochem ; 477(4): 1065-1074, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35034256

RESUMO

Therapeutic inhibition of hypoxia-inducible factor-1alpha (HIF-1α) action has emerged as a potential approach for managing several diseases, including myopia. Herein, we analyzed the role of HIF-1α in the progression of pathologic myopia by regulating the miR-150-5p/LAMA4/p38 MAPK axis. Microarray-based gene expression profiling of pathologic myopia was employed to identify differentially expressed genes. Human scleral fibroblasts (HSFs) were cultured under the hypoxic conditions. Interaction among HIF-1α, miR-150-5p, and LAMA4 was identified. Gain- and loss-of-function experiments were performed in hypoxia-exposed HSFs to evaluate the effect of the HIF-1α/miR-150-5p/LAMA4/p38 MAPK axis on the extracellular matrix (ECM) degradation of HSFs and the subsequent pathologic myopia progression. Increased LAMA4 but decreased miR-150-5p was found in serum sample of pathologic myopia patients. HIF-1α and LAMA4 were abundantly expressed, and p38 MAPK was activated while miR-150-5p was weakly expressed in hypoxia-exposed HSFs. HIF-1α was enriched in the promoter region of miR-150-5p and downregulated its expression, thus repressing the ECM degradation of HSFs as shown by increased COL1A1 and TIMP-2 and reduced MMP2. In addition, LAMA4 was a downstream target of miR-150-5p and under the negative regulation by miR-150-5p. Overexpression of miR-150-5p promoted the ECM degradation of HSFs by inhibiting LAMA4 expression and p38 MAPK signaling pathway. However, upregulation of LAMA4 reversed the promoting effect of miR-150-5p on ECM degradation of HSFs. Overall, our findings suggest that HIF-1α can decline miR-150-5p expression and facilitate LAMA4-mediated p38 MAPK signaling pathway activation, thus arresting ECM degradation of HSFs and eventually inducing pathologic myopia.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Laminina/metabolismo , Sistema de Sinalização das MAP Quinases , MicroRNAs/metabolismo , Miopia/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Adulto , Linhagem Celular , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Miopia/patologia
4.
Exp Cell Res ; : 112942, 2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34822811

RESUMO

OBJECTIVE: Cerebral ischemia/reperfusion injury (CI/RI) is a pathological process involving complicated molecular mechanisms. We investigated forkhead box P3 (Foxp3)-related mechanism in CI/RI with particular focus on microRNA (miR)-150-5p/nucleobase cation symporter-1 (NCS1) axis. METHODS: A mouse model was constructed by middle cerebral artery occlusion (MCAO) method. Levels of Foxp3, miR-150-5p and NCS1 were assessed in brain tissues of MCAO mice. By determining the neurological behavior function, neurological deficits, brain tissue pathological characteristics, neuronal apoptosis, inflammatory factors, and oxidative stress-related factors, the functional role of Foxp3, miR-150-5p and NCS1 were evaluated in MCAO mice. The feedback loop was analyzed among Foxp3, miR-150-5p and NCS1. RESULTS: The level of Foxp3 and NCS1 were reduced and that of miR-150-5p was augmented in MCAO mice. Foxp3 bound to miR-150-5p to target NCS1. Up-regulating Foxp3 or NCS1 or suppressing miR-150-5p improved neurological behavior function and neurological deficits, and reduced brain tissue pathological damage, neuronal apoptosis, inflammatory and oxidative stress reactions in MCAO mice. Silencing miR-150-5p or elevating NCS1 decreased Foxp3 silencing-mediated ischemic injury in MCAO mice. CONCLUSION: Foxp3 is neuroprotective in CI/RI through binding to miR-150-5p to promote NCS1 expression.

5.
J Cell Mol Med ; 25(2): 701-715, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33342075

RESUMO

Hepatic fibrosis (HF) is involved in aggravated wound-healing response as chronic liver injury. Extracellular vesicles (EVs) carrying microRNA (miR) have been reported as therapeutic targets for liver diseases. In this study, we set out to explore whether adipose-derived mesenchymal stem cells (ADMSCs)-derived EVs containing miR-150-5p affect the progression of HF. Carbon tetrachloride (CCl4 ) was firstly used to induce HF mouse models in C57BL/6J mice, and activation of hepatic stellate cells (HSCs) was achieved using transforming growth factor ß (TGF-ß). EVs were then isolated from ADMSCs and co-cultured with HSCs. The relationship between miR-150-5p and CXCL1 was identified using dual luciferase gene reporter assay. Following loss- and gain-function experimentation, HSC proliferation was examined by MTT assay, and levels of fibrosis-, HSC activation- and apoptosis-related genes were determined in vitro. Additionally, pathological scores, collagen volume fraction (CVF) as well as levels of inflammation- and hepatic injury-associated genes were determined in in vivo. Down-regulated miR-150-5p and elevated CXCL1 expression levels were detected in HF tissues. ADMSCs-derived EVs transferred miR-150-5p to HSCs. CXCL1 was further verified as the downstream target gene of miR-150-5p. Moreover, ADMSCs-EVs containing miR-150-5p markedly inhibited HSC proliferation and activation in vitro. Meanwhile, in vivo experiments also concurred with the aforementioned results as demonstrated by inhibited CVF, reduced inflammatory factor levels and hepatic injury-associated indicators. Both experiments results were could be reversed by CXCL1 over-expression. Collectively, our findings indicate that ADMSCs-derived EVs containing miR-150-5p attenuate HF by inhibiting the CXCL1 expression.


Assuntos
Vesículas Extracelulares/metabolismo , Células Estreladas do Fígado/metabolismo , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/metabolismo , Animais , Apoptose/fisiologia , Western Blotting , Proliferação de Células/genética , Proliferação de Células/fisiologia , Ensaio de Imunoadsorção Enzimática , Imunofluorescência , Lentivirus/metabolismo , Fígado/metabolismo , Cirrose Hepática/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética
6.
Am J Physiol Heart Circ Physiol ; 320(3): H969-H979, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33164579

RESUMO

Myocardial infarction (MI) is recognized as a major cause of death and disability around the world. Macrophage-derived extracellular vesicles (EVs) have been reportedly involved in the regulation of cellular responses to MI. Thus, we sought to clarify the mechanism by which macrophage-derived EVs regulate this process. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) was performed to determine microRNA-150 (miR-150) expression in an MI mouse model with ligation of the left anterior descending coronary artery (LAD) and in hypoxia/reoxygenation (H/R)-exposed cardiomyocytes. Bioinformatics analysis and dual luciferase reporter gene assay were adopted to identify the correlation of miR-150 with tumor protein 53 (TP53) expression in cardiomyocytes. Gain- and loss-of-function experiments were conducted in H/R-induced cardiomyocytes, cardiomyocytes incubated with EVs from miR-150 mimic-transfected macrophages, or MI-model mice treated with EVs from miR-150 mimic-transfected macrophages. hematoxylin-eosin (HE) and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) staining assays were used for detecting inflammatory infiltration and cell apoptosis. The release of lactate dehydrogenase (LDH) by dead cardiomyocytes was measured with an LDH kit, and the apoptosis-related proteins, Bax, and cleaved-caspase 3 were determined by Western blot analysis. miR-150 expression was downregulated in the infarcted cardiac tissues of MI mice. Macrophage-derived EVs could transfer miR-150 into cardiomyocytes, where it directly targeted and suppressed TP53. Furthermore, miR-150 suppressed phosphatase and tensin homology (PTEN) and activated p-Akt to upregulate IGF-1 expression. Furthermore, increased expression of EV-derived miR-150 prevented cardiomyocyte apoptosis in vitro, as evidenced by downregulated Bax and cleaved-caspase 3 and upregulated Bcl2 and alleviated MI in vivo. In conclusion, our study demonstrates the cardioprotective effect of macrophage-derived EV-miR-150 on MI-induced heart injury through negatively regulating the TP53-IGF-1 signaling pathway.NEW & NOTEWORTHY miR-150 is expressed at a low level in cardiac tissues after myocardial infarction. Macrophages-derived EVs transfer miR-150 to cardiomyocytes. miR-150 directly targets TP53. miR-150 elevation regulates TP53-IGF-1 axis to reduce cardiomyocyte apoptosis. EV-derived miR-150 could be a potential therapeutic target for myocardial infarction.


Assuntos
Vesículas Extracelulares/transplante , Fator de Crescimento Insulin-Like I/metabolismo , Macrófagos/transplante , MicroRNAs/metabolismo , Infarto do Miocárdio/terapia , Miocárdio/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Apoptose , Linhagem Celular , Modelos Animais de Doenças , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Regulação da Expressão Gênica , Fator de Crescimento Insulin-Like I/genética , Preparação de Coração Isolado , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Miocárdio/patologia , Células RAW 264.7 , Ratos , Transdução de Sinais , Proteína Supressora de Tumor p53/genética
7.
FASEB J ; 34(5): 6070-6085, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32246794

RESUMO

Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) has been identified previously in the pathogenesis of hypertension and some gestational diseases. However, the biological functions of MALAT1 in pregnancy-induced hypertension (PIH) are still poorly understood. Herein, we aim to explore the functional relevance of MALAT1 in PIH and to explain the potential underlying mechanisms. We found that the levels of ET-1 and MALAT1 were upregulated and that of miR-150-5p were downregulated in the serum of pregnant women with PIH and the aortic endothelial cells (ECs) of reduced uterine perfusion pressure (RUPP)-induced rat models. In aortic ECs, MALAT1 could competitively bind to miR-150-5p to upregulate the expression of ET-1. The MALAT1/miR-150-5p/ET-1 axis regulated the expression of endothelin B receptor (ETBR) in aortic ECs leading to oxidative stress imbalance and increased the release of proinflammatory cytokines (IL-18 and IL-1ß), which concurrently activated the NF-κB pathway to regulate the ETBR expression and to stimulate smooth muscle cell (SMC) contraction. Furthermore, silencing MALAT1 could alleviate the hypertensive symptoms of RUPP-induced rat models. Taken conjointly, the upregulation of MALAT1 can reduce the expression of ET-1 by competitively binding to miR-150-5p, which enhances the expression of ETBR via the activation of the NF-κB pathway in SMCs, thus exacerbating the hypertensive symptoms in the RUPP-induced rat models.


Assuntos
Endotelina-1/metabolismo , Regulação da Expressão Gênica , Hipertensão Induzida pela Gravidez/patologia , Inflamação/complicações , MicroRNAs/genética , Estresse Oxidativo , RNA Longo não Codificante/genética , Adulto , Animais , Apoptose , Proliferação de Células , Endotelina-1/genética , Feminino , Humanos , Hipertensão Induzida pela Gravidez/etiologia , Hipertensão Induzida pela Gravidez/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Masculino , NF-kappa B/genética , NF-kappa B/metabolismo , Gravidez , Ratos , Ratos Wistar , Transdução de Sinais , Adulto Jovem
8.
Exp Cell Res ; 394(2): 112136, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32540401

RESUMO

PURPOSE: Rheumatoid arthritis (RA) is a commonly diagnosed systemic autoimmune disease. Aberrant expression of long non-coding RNAs (lncRNAs) is closely linked to the development of RA. This study was conducted to explore the functions of the lncRNA LINC01197 in RA progression. METHODS: Differentially expressed lncRNAs/microRNAs/mRNAs in patients with RA were analyzed using RNA microarrays. A mouse model with RA was established and RA-fibroblast-like synoviocytes (RA-FLS) were acquired for in vitro experiments. The function of LINC01197 in inflammation and RA progression in mice and its role in the viability of RA-FLS were determined by experiments involving its overexpression or suppression. The sub-cellular localization of LINC01197 was determined and the downstream molecules involved in LINC01197-mediated events were identified. RESULTS: LINC01197 was poorly expressed in the synovial tissues in the RA model mice. Overexpression of LINC01197 reduced RA severity in mice and inhibited proliferation and inflammatory responses as well as promoted apoptosis in RA-FLS. Online predictions and dual luciferase reporter gene assays suggested that LINC01197 could bind to miR-150 and further regulate THBS2 expression. LINC01197 promoted THBS2 expression through miR-150 sponging and inactivated the TLR4/NF-κB signaling pathway, thus alleviating RA inflammation. CONCLUSION: The current study suggested that LINC01197 sponged miR-150 to promote THBS2 expression, leading to TLR4/NF-κB inactivation, and ameliorated RA inflammation. These findings may offer new insights into RA treatment.


Assuntos
Artrite Reumatoide/genética , Inflamação/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/metabolismo , Transdução de Sinais , Trombospondinas/metabolismo , Animais , Bovinos , Sobrevivência Celular/genética , Fibroblastos/metabolismo , Fibroblastos/patologia , Regulação da Expressão Gênica , Masculino , Camundongos Endogâmicos DBA , MicroRNAs/genética , RNA Longo não Codificante/genética , Sinoviócitos/metabolismo , Sinoviócitos/patologia
9.
J Cell Physiol ; 235(11): 7769-7779, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-31710102

RESUMO

Hyperglycemia-induced cardiac fibrosis is a prominent characteristic of diabetic cardiomyopathy. Changes in proinflammatory cytokines have been shown to lead to cardiac fibrosis in patients with diabetes mellitus. This study aimed to investigate the role of miR-150-5p in mediating cardiac inflammation and fibrosis in cardiac fibroblasts (CFs). Herein, we found that high-glucose (HG) treatment significantly induced cardiac inflammation, as manifested by increased proinflammatory cytokine production (IL-1ß) and NF-κB activity in CFs. Moreover, HG markedly aggravated cardiac fibrosis and increased levels of fibrotic markers (CTGF, FN, α-SMA) and extracellular matrix proteins (Col-I, Col-III) in CFs. At the same time, HG disturbed the TGF-ß1/Smad signaling pathway, as evidenced by increases in TGF-ß1 and p-Smad2/3 levels and decreases in Smad7 levels in CFs. Furthermore, we found that miR-150-5p was upregulated by HG, which negatively regulated Smad7 expression at the posttranscription level. Further study demonstrated that cardiac inflammation and fibrosis in CFs were corrected following miR-150-5p knockdown, but exacerbated by miR-150-5p overexpression. These data indicated that miR-150-5p inhibition could ameliorate NF-κB-related inflammation and TGF-ß1/Smad-induced cardiac fibrosis through targeting Smad7. Thus, miR-150-5p may be a novel promising target for treating diabetic cardiomyopathy.


Assuntos
Cardiomiopatias Diabéticas/metabolismo , Fibroblastos/patologia , Glucose/toxicidade , MicroRNAs/metabolismo , Proteína Smad7/metabolismo , Animais , Células Cultivadas , Cardiomiopatias Diabéticas/patologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibrose , Regulação da Expressão Gênica , Hiperglicemia/metabolismo , Hiperglicemia/patologia , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/patologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
10.
IUBMB Life ; 72(3): 476-491, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31846199

RESUMO

OBJECTIVE: Many studies have reported the correlation of microRNAs (miRNAs) with cancers, yet few have proposed the function of miR-150 in gastric cancer. This study intends to discuss the role of miR-150 in gastric cancer development by regulating IRX1. METHODS: Gastric cancer tissues and adjacent tissues were collected. MiR-150-3p, IRX1, CXCL14, and NF-κB (p65) expressions were detected. Gastric cancer cell lines SNU-1 and MKN-45 were used for subsequent cellular experiments. Cell proliferation, colony formation, migration and invasion, apoptosis, and cell cycle distribution in SNU-1 and MKN-45 cells were determined via gain-of and loss-of-function assays. The tumor growth in nude mice was also detected. RESULTS: MiR-150, CXCL14, and NF-κB (p65) were upregulated and IRX1 was downregulated in gastric cancer tissues and cells. CXCL14 and NF-κB (p65) expression was positively related to miR-150 expression and negatively to IRX1 expression. MiR-150 inhibition and IRX1 overexpression in SNU-1 cells restricted viability, colony formation, migration, and invasion abilities, but boosted apoptosis of gastric cancer cells in vitro, and also repressed tumor growth in vivo. These results could be reversed by miR-150 elevation and IRX1 silencing, and the results from in vivo and in vitro experiments were consistent. CONCLUSION: Our study reveals that miR-150 downregulation restrains proliferation, migration, and invasion, while facilitating apoptosis of gastric cancer cells by upregulating IRX1.


Assuntos
Proteínas de Homeodomínio/genética , MicroRNAs/genética , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Fatores de Transcrição/genética , Adulto , Idoso , Animais , Apoptose/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Quimiocinas CXC/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos Endogâmicos BALB C , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Fator de Transcrição RelA/genética , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Am J Physiol Cell Physiol ; 316(4): C463-C480, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30566393

RESUMO

Prostate cancer (PCa) remains one of the leading causes of cancer-related deaths among males. The aim of the current study was to investigate the ability of microRNA-150 (miR-150) targeting transient receptor potential melastatin 4 (TRPM4) to mediate epithelial-mesenchymal transition (EMT), invasion, and metastasis through the ß-catenin signaling pathway in PCa. Microarray analysis was performed to identify PCa-related differentially expressed genes, after which both the mirDIP and TargetScan databases were employed in the prediction of the miRNAs regulating TRPM4. Immunohistochemistry and RT-qPCR were conducted to determine the expression pattern of miR-150 and TRPM4 in PCa. The relationship between miR-150 and TRPM4 expression was identified. By perturbing miR-150 and TRPM4 expression in PCa cells, cell proliferation, migration, invasion, cycle, and apoptosis as well as EMT markers were determined accordingly. Finally, tumor growth and metastasis were evaluated among nude mice. Higher TRPM4 expression and lower miR-150 expression and activation of the ß-catenin signaling pathway as well as EMT stimulation were detected in the PCa tissues. Our results confirmed TRPM4 as a target of miR-150. Upregulation of miR-150 resulted in inactivation of the ß-catenin signaling pathway. Furthermore, the upregulation of miR-150 or knockdown of TRPM4 was observed to suppress EMT, proliferation, migration, and invasion in vitro in addition to restrained tumor growth and metastasis in vivo. The evidence provided by our study highlights the involvement of miR-150 in the translational suppression of TRPM4 and the blockade of the ß-catenin signaling pathway, resulting in the inhibition of PCa progression.


Assuntos
Transição Epitelial-Mesenquimal/fisiologia , MicroRNAs/biossíntese , Neoplasias da Próstata/metabolismo , Transdução de Sinais/fisiologia , Canais de Cátion TRPM/biossíntese , beta Catenina/biossíntese , Idoso , Animais , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/genética , Pessoa de Meia-Idade , Invasividade Neoplásica/patologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Canais de Cátion TRPM/antagonistas & inibidores , Canais de Cátion TRPM/genética , beta Catenina/antagonistas & inibidores , beta Catenina/genética
12.
J Cell Physiol ; 234(2): 1477-1490, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30144062

RESUMO

Ischemic stroke, caused by the blockage of blood supply, is a major cause of death worldwide. For identifying potential candidates, we explored the effects microRNA-150 (miR-150) has on ischemic stroke and its underlying mechanism by developing a stable middle cerebral artery occlusion (MCAO) rat model. Gene expression microarray analysis was performed to screen differentially expressed genes associated with MCAO. We evaluated the expression of miR-150 and Mal and the status of ERK1/2 axis in the brain tissues of MCAO rats. Then the cerebral cortical neurons (CCNs) were obtained and introduced with elevated or suppressed miR-150 or silenced Mal to validate regulatory mechanisms for miR-150 governing Mal in vitro. The relationship between miR-150 and Mal was verified by dual luciferase reporter gene assay. Besides, cell growth and apoptosis of CCNs were detected by means of MTT assay and flow cytometry analyses. We identified Mal as a downregulated gene in MCAO, based on the microarray data of GSE16561. MiR-150 was over-expressed and negatively targeted Mal in the brain tissues obtained from MCAO rats and their CCNs. Increasing miR-150 blocked the ERK1/2 axis, resulting in an inhibited cell growth of CNNs but an enhanced apoptosis. Furthermore, MiR-150 inhibition was observed to have effects on CNNs as opposed to those inhibited by miR-150 promotion. The key findings of this study support the notion that miR-150 under-expression-mediated direct promotion of Mal protects CNN functions through the activation of the ERK1/2 axis, and underscore the concept that miR-150 may represent a novel pharmacological target for ischemic stroke intervention.


Assuntos
Apoptose , Córtex Cerebral/enzimologia , Infarto da Artéria Cerebral Média/enzimologia , MicroRNAs/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteínas Proteolipídicas Associadas a Linfócitos e Mielina/metabolismo , Neurônios/enzimologia , Animais , Estudos de Casos e Controles , Proliferação de Células , Células Cultivadas , Córtex Cerebral/patologia , Modelos Animais de Doenças , Humanos , Infarto da Artéria Cerebral Média/genética , Infarto da Artéria Cerebral Média/patologia , Sistema de Sinalização das MAP Quinases , Masculino , MicroRNAs/genética , Proteínas Proteolipídicas Associadas a Linfócitos e Mielina/genética , Neurônios/patologia , Ratos Sprague-Dawley
13.
Biochem Biophys Res Commun ; 517(3): 532-537, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31376943

RESUMO

MicroRNAs (miRNA) are reported to be a vital regulator of neuropathic pain. Even so, the molecular mechanisms of miRNA function on neuropathic pain development are known little. Our research was designed to investigate the role of miRNA in neuropathic pain development in rat modle set up by chronic sciatic nerve injury (CCI). Increasing miR-150 expression could significantly alleviate neuropathic pain in CCI rats. For farther researching the regulation mechanism of miR-150 on neuropathic pain, we screened AKT3 as a possible target of miR-150 by bioinformatic mechods and predicted a possible target of miR-150 in 3'-untranslated region (UTR) of AKT3 who serves as an oncogene. In rat model, the expression both of AKT3 mRNA and protein were significantly upregulated. The overexpressed miR-150 importantly repressed the level of AKT3 and simultaneously alleviate mechanical and thermal hyperalgesia in rat model. These suppressant impacts of miR-150 on neuropathic pain process can be reversed by the overexpression of AKT3. Considering all above results, our research declared that miR-150 can restrain neuropathic pain process though targeting AKT3 in vivo, suggesting that miR-150 could be the therapeutic target for neuropathic pain therapy by regulating AKT3.


Assuntos
Hiperalgesia/genética , MicroRNAs/genética , Neuralgia/genética , Traumatismos dos Nervos Periféricos/genética , Proteínas Proto-Oncogênicas c-akt/genética , Neuropatia Ciática/genética , Regiões 3' não Traduzidas , Animais , Pareamento de Bases , Sequência de Bases , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Células HEK293 , Humanos , Hiperalgesia/metabolismo , Hiperalgesia/fisiopatologia , MicroRNAs/metabolismo , Neuralgia/metabolismo , Neuralgia/fisiopatologia , Traumatismos dos Nervos Periféricos/metabolismo , Traumatismos dos Nervos Periféricos/fisiopatologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Nervo Isquiático/lesões , Nervo Isquiático/metabolismo , Neuropatia Ciática/metabolismo , Neuropatia Ciática/fisiopatologia , Transdução de Sinais
14.
Development ; 143(22): 4236-4248, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27729410

RESUMO

Profiling of RNA from mouse mammary epithelial cells (MECs) isolated on pregnancy day (P)14 and lactation day (L)2 revealed that the majority of differentially expressed microRNA declined precipitously between late pregnancy and lactation. The decline in miR-150, which exhibited the greatest fold-decrease, was verified quantitatively and qualitatively. To test the hypothesis that the decline in miR-150 is crucial for lactation, MEC-specific constitutive miR-150 was achieved by crossing ROSA26-lox-STOP-lox-miR-150 mice with WAP-driven Cre recombinase mice. Both biological and foster pups nursed by bitransgenic dams exhibited a dramatic decrease in survival compared with offspring nursed by littermate control dams. Protein products of predicted miR-150 targets Fasn, Olah, Acaca, and Stat5B were significantly suppressed in MECs of bitransgenic mice with constitutive miR-150 expression as compared with control mice at L2. Lipid profiling revealed a significant reduction in fatty acids synthesized by the de novo pathway in L2 MECs of bitransgenic versus control mice. Collectively, these data support the hypothesis that a synchronized decrease in miRNAs, such as miR-150, at late pregnancy serves to allow translation of targets crucial for lactation.


Assuntos
Lactação/genética , Lipogênese/genética , Glândulas Mamárias Animais/metabolismo , MicroRNAs/genética , Animais , Células Cultivadas , Regulação para Baixo/genética , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Lactação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , MicroRNAs/metabolismo , Análise em Microsséries , Gravidez/genética , Gravidez/metabolismo
15.
Int J Mol Sci ; 20(11)2019 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-31159158

RESUMO

Uterine leiomyoma is found in ~50-80% of women of a reproductive age and is the most common reason for hysterectomy. Recently, posttranscriptional gene silencing by microRNAs (miRs) has been reported as a mechanism for regulating gene expression stability in the pathogenesis of uterine leiomyomas. In this study, miR microarray analysis of leiomyomas and paired myometrial tissue revealed numerous aberrantly expressed miRs, including miR-150. In functional assays, transfection with miR-150 mimic resulted in decreased migration and fibrosis, implying an inhibition of leiomyoma growth. To identify the target genes of miR-150 in leiomyoma, gene set analysis and network analysis were performed. To overcome the limitations of in silico analysis, changes in expression levels of hallmark genes in leiomyoma after transfection with a miR-150 mimic were also evaluated using qRT-PCR. As a result, the Akt/p27Kip1 pathway was presumed to be one of the target pathways of miR-150. After transfecting cultured leiomyoma cells with the miR-150 mimic, expression levels of its target gene Akt decreased, whereas those of p27Kip1 increased significantly. Our results suggest that miR-150 affects the cell cycle regulation in uterine leiomyoma through the Akt/p27Kip1 pathway.


Assuntos
Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Regulação Neoplásica da Expressão Gênica , Leiomioma/genética , Leiomioma/metabolismo , MicroRNAs/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Adulto , Apoptose/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Biologia Computacional/métodos , Inibidor de Quinase Dependente de Ciclina p27/genética , Feminino , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Leiomioma/patologia , Pessoa de Meia-Idade , Proteínas Proto-Oncogênicas c-akt/genética , Interferência de RNA
16.
Medicina (Kaunas) ; 55(9)2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-31484346

RESUMO

Background and Objectives: Over decades, prostate cancer (PCa) has become one of the leading causes of cancer mortality in men. Extensive evidence exists that microRNAs (miRNAs or miRs) are key players in PCa and a new class of non-invasive cancer biomarkers. Materials and Methods: We performed miRNA profiling in plasma and tissues of PCa patients and attempted the validation of candidate individual miRs as biomarkers. Results: The comparison of tissue and plasma profiling results revealed five commonly dysregulated miRs, namely, miR-130a-3p, miR-145-5p, miR-148a-3p, miR-150-5p, and miR-365a-3p, of which only three show concordant changes-miR-130a-3p and miR-150-5p were downregulated and miR-148a-3p was upregulated in both tissue and plasma samples, respectively. MiR-150-5p was validated as significantly downregulated in both plasma and tissue cancer samples, with a fold change of -2.697 (p < 0.001), and -1.693 (p = 0.035), respectively. ROC analysis showed an area under the curve (AUC) of 0.817 (95% CI: 0.680-0.995) for plasma samples and 0.809 (95% CI: 0.616-1.001) for tissue samples. Conclusions: We provide data indicating that miR-150-5p plasma variations in PCa patients are associated with concordant changes in prostate cancer tissues; however, given the heterogeneous nature of previous findings of miR-150-5p expression in PCa cells, additional future studies of a larger sample size are warranted in order to confirm the biomarker potential and role of miRNA-150-5p in PCa biology.


Assuntos
Biomarcadores Tumorais/análise , MicroRNAs/análise , Neoplasias da Próstata/sangue , Idoso , Biomarcadores Tumorais/sangue , Perfilação da Expressão Gênica , Humanos , Masculino , MicroRNAs/sangue , Pessoa de Meia-Idade , Neoplasias da Próstata/genética
17.
J Lipid Res ; 59(4): 658-669, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29463607

RESUMO

Atherosclerosis is considered to be a chronic inflammatory disease that can lead to severe clinically important cardiovascular events. miR-150 is a small noncoding RNA that significantly enhances inflammatory responses by upregulating endothelial cell proliferation and migration, as well as intravascular environmental homeostasis. However, the exact role of miR-150 in atherosclerosis remains unknown. Here, we investigated the effect of miR-150 deficiency on atherosclerosis development. Using double-knockout (miR-150-/- and ApoE-/-) mice, we measured atherosclerotic lesion size and stability. Meanwhile, we conducted in vivo bone marrow transplantation to identify cellular-level components of the inflammatory response. Compared with mice deficient only in ApoE, the double-knockout mice had significantly smaller atherosclerotic lesions and displayed an attenuated inflammatory response. Moreover, miR-150 ablation promoted plaque stabilization via increases in smooth muscle cell and collagen content and decreased macrophage infiltration and lipid accumulation. The in vitro experiments indicated that an inflammatory response with miR-150 deficiency in atherosclerosis results directly from upregulated expression of the cytoskeletal protein, PDZ and LIM domain 1 (PDLIM1), in macrophages. More importantly, the decreases in phosphorylated p65 expression and inflammatory cytokine secretion induced by miR-150 ablation were reversed by PDLIM1 knockdown. These findings suggest that miR-150 is a promising target for the management of atherosclerosis.


Assuntos
Aterosclerose/metabolismo , Aterosclerose/patologia , Inflamação/metabolismo , Inflamação/patologia , Macrófagos/metabolismo , MicroRNAs/metabolismo , Animais , Proteínas com Domínio LIM/metabolismo , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxirredução , Fatores de Transcrição/metabolismo , Regulação para Cima
18.
J Cell Biochem ; 119(11): 8763-8772, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30126001

RESUMO

Papillary thyroid cancer (PTC) is the most common endocrine malignancy. Studies have confirmed an association between microRNA (miRNA) and the BRAFV600E mutation in various cellular biological processes of PTC. This study aimed to clarify the potential relationship between miR-150-5p and the BRAFV600E mutation in PTC. Human PTC cell lines B-CPAP and TPC-1 were transfected with the miR-150-5p mimic, an inhibitor, and the corresponding controls. Then, cell proliferation, viability, and apoptosis were detected by bromodeoxyuridine, trypan blue exclusion, and flow cytometry assays. The expressions of the main factors of cell cycle, epithelial mesenchymal transition (EMT), and DNA mismatch repair were examined by Western blot analysis and a real-time quantitative polymerase chain reaction. Additionally, pc-BRAFV600E was transfected into B-CPAP and TPC-1 cells to determine the relationship between miR-150-5p and BRAFV600E . In addition, the methyl ethyl ketone (MEK)/extracellular signal-regulated kinase (ERK) signal pathway was examined using Western blot analysis. Overexpression of miR-150-5p promoted cell proliferation and viability, inhibited apoptosis, and upregulated cell cycle factor expressions at 50 passages of B-CPAP and TPC-1 cells after transfection. Overexpression of miR-150-5p led to an obvious decrease in E-cadherin expression, but enhanced N-cadherin, Slug and Vimentin, ZEB1, and Snail expression. Moreover, overexpression of miR-150-5p markedly suppressed POLD3, MSH2, and MSH3 expression. Furthermore, BRAFV600E overexpression increased the expression level of miR-150-5p in TPC cells, and overexpression of telomerase reverse transcriptase further enhanced the promoting effect of BRAFV600E on miR-150-5p expression in B-CPAP and TPC-1 cells. Finally, BRAFV600E overexpression activated the MEK/ERK signal pathway in B-CPAP and TPC-1 cells. These data indicated that miR-150-5p promoted cell proliferation, suppressed apoptosis, and accelerated the EMT process by regulation of the BRAFV600E mutation. Our findings will help elucidate the pathogenesis of PTC and identify biomarkers.


Assuntos
Apoptose , Proliferação de Células , Transição Epitelial-Mesenquimal , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas B-raf/genética , Câncer Papilífero da Tireoide/patologia , Neoplasias da Glândula Tireoide/patologia , Análise de Variância , Biomarcadores Tumorais/química , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Ciclo Celular , Linhagem Celular Tumoral , Reparo do DNA , Regulação Neoplásica da Expressão Gênica , Humanos , Sistema de Sinalização das MAP Quinases , MicroRNAs/química , Mimetismo Molecular , Mutação , Proteínas Proto-Oncogênicas B-raf/metabolismo , Transfecção
19.
Cell Biol Int ; 42(9): 1170-1181, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29741292

RESUMO

MicroRNAs (miRNAs) have been known to function as important regulators in the vascular system, with various physiopathological effects such as vascular remodeling and hypertension modulation. We aimed to explore whether microRNA-150 (miR-150) regulates endothelial cell function and vascular remodeling in acute coronary syndrome (ACS), and the involvement of PTX3 and NF-κB signaling pathway. Ten normal mice and sixty ApoE-/- mice were chosen, and their coronary artery tissues and endothelial cells were extracted. ApoE-/- mice were injected with a series of inhibitor or mimic for miR-150, or siRNA against PTX3. The miR-150 expression, NF-κB1, RELA, and PTX3 mRNA expression were assessed by reverse transcription quantitative polymerase chain reaction, and pentraxin-3, p-P50, and p-P65 protein expression by Western blot analysis. Cell viability and migration were assessed by MTT assay and scratch test. Matrigel tube formation assay was employed to determine vascular remodeling of endothelial cells. The dual-luciferase reporter assay verified that PTX3 was a target of miR-150. Mice with ACS presented with decreased miR-150 but increased PTX3. It was observed that the miR-150 mimic and siRNA against PTX3 reduced levels of PTX3, NF-κB1, and RELA in mice, and the miR-150 inhibitor reversed the tendency. The in vitro cell experimentation proved that miR-150 might facilitate endothelial cell proliferation, migration, and restrain vascular remodeling via inhibiting PTX3 expression. On the basis of the results of this study, it was hypothesized that miR-150 could possibly maintain endothelial cell function and suppress vascular remodeling by inhibiting PTX3 through the NF-κB signaling pathway in mice with ACS.


Assuntos
Síndrome Coronariana Aguda/genética , Proteína C-Reativa/metabolismo , MicroRNAs/metabolismo , NF-kappa B/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Animais , Proteína C-Reativa/genética , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Sobrevivência Celular/fisiologia , Células Endoteliais/metabolismo , Masculino , Camundongos , Camundongos Knockout para ApoE , MicroRNAs/genética , NF-kappa B/genética , Proteínas do Tecido Nervoso/genética , Transdução de Sinais , Fator de Transcrição RelA/genética , Remodelação Vascular
20.
Mol Cell Biochem ; 429(1-2): 45-58, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28110404

RESUMO

Atherosclerosis, a chronic inflammatory disease, is the major cause of life-threatening complications such as myocardial infarction and stroke. Endothelial cells (ECs) apoptosis plays a vital role in the initiation and progression of atherosclerosis. Although a subset of microRNAs (miRNAs) have been identified as critical regulators of atherosclerosis, studies on their participation in endothelial apoptosis in atherosclerosis have been limited. In the current study, we show that miRNA-150 (miR-150) expression was substantially up-regulated during the oxidized low-density lipoprotein (ox-LDL)-induced apoptosis in human umbilical cord vein endothelial cells (HUVECs). Forced expression of miR-150 enhanced apoptosis in ECs, whereas inhibition of miR-150 could partly alleviate apoptotic cell death mediated by ox-LDL. Further analysis identified ELK1 as a direct target of miR-150, and ELK1 knockdown abolished the anti-apoptotic effect of miR-150 inhibitor. These findings reveal a novel role of miR-150 in endothelial apoptosis and indicate a therapeutic potential of miR-150 for endothelial dysfunction and atherosclerosis.


Assuntos
Células Endoteliais/citologia , Lipoproteínas LDL/farmacologia , MicroRNAs/genética , Proteínas Elk-1 do Domínio ets/genética , Regiões 3' não Traduzidas , Apoptose , Células Endoteliais/efeitos dos fármacos , Regulação da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA