Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 467
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 121, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38373932

RESUMO

BACKGROUND: The primary challenge in the cut flower industry, specifically in the postharvest phase, is the short vase life of flowers. This issue, along with early leaf yellowing and perianth abscission, significantly diminishes the economic value of flowers due to their accelerated senescence. To tackle this, we conducted a factorial experiment on Alstroemeria cv. Rebecca, utilizing a completely randomized design with three replications. In this experiment the effects of varying concentrations of Salicylic acid (SA) (0, 1.5, and 3 mM) and sucrose (SU) (0% and 3%) were investigated on the postharvest quality of leaves and florets, with systematic evaluations every three days throughout their vase life. RESULTS: This experiment revealed that the specific treatment combination of 1.5 mM SA + 3% SU (T5) markedly improved various parameters, such as vase life, total chlorophyll content, membrane stability index, relative fresh weight, and water uptake of cut flowers. In our analysis, we observed that this preservative solution not only extended the vase life and enhanced water uptake but also effectively preserved total chlorophyll, mitigated the loss of fresh weight, and reduced membrane deterioration in petals. Additionally, our results showed an increase in the activities of catalase (CAT) and peroxidase (POD) enzymes, as well as total protein content, alongside a decrease in malondialdehyde (MDA) and hydrogen peroxide (H2O2) levels. Moreover, this study noted a decrease in microbial populations in solutions containing different concentrations of salicylic acid. CONCLUSIONS: Our research demonstrated that alstroemeria flowers maintained in a solution with 1.5 mM SA + 3% SU exhibited a significantly prolonged vase life of up to 21 days, in contrast to the 15 days observed in control flowers kept in water. These results are highly beneficial for manufacturers in the cut flower industry, as they provide a viable method to substantially extend the vase life of cut flowers. Such an enhancement in flower longevity can lead to increased market value and customer satisfaction. Furthermore, the reduction in flower senescence and decay rates can contribute to decreased waste and greater efficiency in cut flower distribution and sales, offering a substantial advantage to manufacturers in this competitive market. The extended vase life and reduced senescence observed in alstroemeria flowers treated with 1.5 mM SA and 3% SU are attributed to SA's role in enhancing endogenous defense responses and sucrose's function as an energy source, collectively improving water uptake, and delaying the natural decay process.


Assuntos
Alstroemeria , Alstroemeria/metabolismo , Sacarose/farmacologia , Ácido Salicílico/farmacologia , Peróxido de Hidrogênio/farmacologia , Flores/metabolismo , Água/metabolismo , Clorofila
2.
Appl Environ Microbiol ; 90(7): e0027624, 2024 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-38953654

RESUMO

Tattooing and use of permanent makeup (PMU) have dramatically increased over the last decade, with a concomitant increase in ink-related infections. Studies have shown evidence that commercial tattoo and PMU inks are frequently contaminated with pathogenic microorganisms. Considering that tattoo inks are placed into the dermal layer of the skin where anaerobic bacteria can thrive and cause infections in low-oxygen environments, the prevalence of anaerobic and aerobic bacteria should be assessed in tattoo and PMU inks. In this study, we tested 75 tattoo and PMU inks using the analytical methods described in the FDA Bacteriological Analytical Manual Chapter 23 for the detection of both aerobic and anaerobic bacterial contamination, followed by 16S rRNA gene sequencing for microbial identification. Of 75 ink samples, we found 26 contaminated samples with 34 bacterial isolates taxonomically classified into 14 genera and 22 species. Among the 34 bacterial isolates, 19 were identified as possibly pathogenic bacterial strains. Two species, namely Cutibacterium acnes (four strains) and Staphylococcus epidermidis (two strains) were isolated under anaerobic conditions. Two possibly pathogenic bacterial strains, Staphylococcus saprophyticus and C. acnes, were isolated together from the same ink samples (n = 2), indicating that tattoo and PMU inks can contain both aerobic (S. saprophyticus) and anaerobic bacteria (C. acnes). No significant association was found between sterility claims on the ink label and the absence of bacterial contamination. The results indicate that tattoo and PMU inks can also contain anaerobic bacteria. IMPORTANCE: The rising popularity of tattooing and permanent makeup (PMU) has led to increased reports of ink-related infections. This study is the first to investigate the presence of both aerobic and anaerobic bacteria in commercial tattoo and PMU inks under aerobic and anaerobic conditions. Our findings reveal that unopened and sealed tattoo inks can harbor anaerobic bacteria, known to thrive in low-oxygen environments, such as the dermal layer of the skin, alongside aerobic bacteria. This suggests that contaminated tattoo inks could be a source of infection from both types of bacteria. The results emphasize the importance of monitoring these products for both aerobic and anaerobic bacteria, including possibly pathogenic microorganisms.


Assuntos
Bactérias Aeróbias , Bactérias Anaeróbias , Tinta , RNA Ribossômico 16S , Tatuagem , Bactérias Anaeróbias/isolamento & purificação , Bactérias Anaeróbias/genética , Bactérias Anaeróbias/classificação , Bactérias Aeróbias/isolamento & purificação , Bactérias Aeróbias/classificação , Bactérias Aeróbias/genética , RNA Ribossômico 16S/genética
3.
Crit Rev Biotechnol ; : 1-35, 2024 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-39128871

RESUMO

The human living environment serves as a habitat for microorganisms and the presence of ubiquitous airborne microbes significantly impacts the natural material cycle. Through ongoing experimentation with beneficial microorganisms, humans have greatly benefited from airborne microbes. However, airborne pathogens endanger human health and have the potential to induce fatal diseases. Tracking airborne microbes is a critical prerequisite for a better understanding of bioaerosols, harnessing their potential advantages, and mitigating associated risks. Although technological breakthroughs have enabled significant advancements in accurately monitoring airborne pathogens, many puzzles about these microbes remain unanswered due to their high variability and environmental diffusibility. Consequently, advanced techniques and strategies for special identification, early warning, and efficient eradication of microbial contamination are continuously being sought. This review presents a comprehensive overview of the research status of airborne microbes, concentrating on the recent advances and challenges in sampling, detection, and inactivation. Particularly, the fundamental design principles for the collection and timely detection of airborne pathogens are described in detail, as well as critical factors for eliminating microbial contamination and enhancing indoor air quality. In addition, future research directions and perspectives for controlling airborne microbes are also suggested to promote the translation of basic research into real products.

4.
Environ Sci Technol ; 58(12): 5220-5228, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38478973

RESUMO

Disaster recovery poses unique challenges for residents reliant on private wells. Flooding events are drivers of microbial contamination in well water, but the relationship observed between flooding and contamination varies substantially. Here, we investigate the performance of different flood boundaries─the FEMA 100 year flood hazard boundary, height above nearest drainage-derived inundation extents, and satellite-derived extents from the Dartmouth Flood Observatory─in their ability to identify well water contamination following Hurricane Florence. Using these flood boundaries, we estimated about 2600 wells to 108,400 private wells may have been inundated─over 2 orders of magnitude difference based on boundary used. Using state-generated routine and post-Florence testing data, we observed that microbial contamination rates were 7.1-10.5 times higher within the three flood boundaries compared to routine conditions. However, the ability of the flood boundaries to identify contaminated samples varied spatially depending on the type of flooding (e.g., riverine, overbank, coastal). While participation in testing increased after Florence, rates were overall still low. With <1% of wells tested, there is a critical need for enhanced well water testing efforts. This work provides an understanding of the strengths and limitations of inundation mapping techniques, which are critical for guiding postdisaster well water response and recovery.


Assuntos
Tempestades Ciclônicas , Inundações , Poluição da Água , Água
5.
Environ Sci Technol ; 58(29): 13065-13075, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38989840

RESUMO

A. butzleri is an underappreciated emerging global pathogen, despite growing evidence that it is a major contributor of diarrheal illness. Few studies have investigated the occurrence and public health risks that this organism possesses from waterborne exposure routes including through stormwater use. In this study, we assessed the prevalence, virulence potential, and primary sources of stormwater-isolated A. butzleri in fecally contaminated urban stormwater systems. Based on qPCR, A. butzleri was the most common enteric bacterial pathogen [25%] found in stormwater among a panel of pathogens surveyed, including Shiga-toxin producing Escherichia coli (STEC) [6%], Campylobacter spp. [4%], and Salmonella spp. [<1%]. Concentrations of the bacteria, based on qPCR amplification of the single copy gene hsp60, were as high as 6.2 log10 copies/100 mL, suggesting significant loading of this pathogen in some stormwater systems. Importantly, out of 73 unique stormwater culture isolates, 90% were positive for the putative virulence genes cadF, ciaB, tlyA, cjl349, pldA, and mviN, while 50-75% of isolates also possessed the virulence genes irgA, hecA, and hecB. Occurrence of A. butzleri was most often associated with the human fecal pollution marker HF183 in stormwater samples. These results suggest that A. butzleri may be an important bacterial pathogen in stormwater, warranting further study on the risks it represents to public health during stormwater use.


Assuntos
Arcobacter , Arcobacter/genética , Arcobacter/patogenicidade , Virulência , Microbiologia da Água , Cidades , Humanos
6.
J Appl Microbiol ; 135(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38632044

RESUMO

AIM: To evaluate the microbiological safety, potential multidrug-resistant bacterial presence and genetic relatedness (DNA fingerprints) of Escherichia coli isolated from the water-soil-plant nexus on highly diverse fresh produce smallholder farms. METHODS AND RESULTS: Irrigation water (n = 44), soil (n = 85), and fresh produce (n = 95) samples from six smallholder farms with different production systems were analysed for hygiene indicator bacterial counts and the presence of shigatoxigenic E. coli and Salmonella spp. using standard microbiological methods. Identities of isolates were confirmed using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS), and the genetic relatedness of the E. coli isolates determined using enterobacterial repetitive intergenic consensus polymerase chain reaction (ERIC-PCR) analysis. Irrigation water E. coli levels ranged between 0 and 3.45 log MPN/100 ml-1 with five farms having acceptable levels according to the World Health Organization limit (3 log MPN/100 ml-1). Fresh produce samples on four farms (n = 65) harboured E. coli at low levels (<1 log CFU/g-1) except for one sample from kale, spring onion, green pepper, onion, and two tomato samples, which exceeded international acceptable limits (100 CFU/g-1). Only one baby carrot fresh produce sample tested positive for Salmonella spp. Of the 224 samples, E. coli isolates were identified in 40% (n = 90) of all water, soil, and fresh produce types after enrichment. Additionally, the DNA fingerprints of E. coli isolates from the water-soil-plant nexus of each respective farm clustered together at high similarity values (>90%), with all phenotypically characterized as multidrug-resistant. CONCLUSIONS: The clustering of E. coli isolated throughout the water-soil-plant nexus, implicated irrigation water in fresh produce contamination. Highlighting the importance of complying with irrigation water microbiological quality guidelines to limit the spread of potential foodborne pathogens throughout the fresh produce supply chain.


Assuntos
Irrigação Agrícola , Escherichia coli , Fazendas , Microbiologia do Solo , Microbiologia da Água , Escherichia coli/isolamento & purificação , Escherichia coli/genética , Salmonella/isolamento & purificação , Salmonella/genética , Verduras/microbiologia , Microbiologia de Alimentos
7.
J Water Health ; 22(8): 1429-1443, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39212280

RESUMO

Escherichia coli and total coliforms are important tools for identifying potential faecal contamination in drinking water. However, metagenomics offers a powerful approach for delving deeper into a bacterial community when E. coli or total coliforms are detected. Metagenomics can identify microbes native to water systems, track community changes and potential pathogens introduced by contamination events, and evaluate the effectiveness of treatment processes. Here, we demonstrate how the dual application of traditional monitoring practices and metagenomics can improve monitoring and surveillance for water resource management. The robustness of long-read metagenomics across replicates is demonstrated by the effect and interaction between manganese filters and bacterial communities, as well as the impact of chlorination after coliform detection. These examples reveal how metagenomics can identify the complex bacterial communities in the distribution system and the source waters used to supply drinking water treatment plants (DWTPs). The knowledge gained increases confidence in identified causes and mitigations of potential contamination events. By exploring bacterial communities, we can gain additional insights into the impact of faecal contamination events and treatment processes. This insight enables more precise remediation actions and enhances confidence in communicating health risks to drinking water operators and the public.


Assuntos
Bactérias , Água Potável , Metagenômica , RNA Ribossômico 16S , Microbiologia da Água , Água Potável/microbiologia , RNA Ribossômico 16S/análise , RNA Ribossômico 16S/genética , Metagenômica/métodos , Bactérias/genética , Bactérias/classificação , Bactérias/isolamento & purificação , Purificação da Água , Escherichia coli/isolamento & purificação , Escherichia coli/genética , Fezes/microbiologia , Monitoramento Ambiental/métodos
8.
Food Microbiol ; 120: 104449, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38431336

RESUMO

This research investigated the presence of Burkholderia gladioli pathovar cocovenenans (BGC) in wet rice and starch products, Tremella, and Auricularia auricula in Guangzhou, China. It examined BGC growth and bongkrekic acid (BA) production in wet rice noodles and vermicelli with varying rice flour, edible starch ratios, and oil concentrations. A qualitative analysis of 482 samples revealed a detection rate of 0.62%, with three positive for BGC. Rice flour-based wet rice noodles had BA concentrations of 13.67 ± 0.64 mg/kg, 2.92 times higher than 100% corn starch samples (4.68 ± 0.54 mg/kg). Wet rice noodles with 4% soybean oil had a BA concentration of 31.72 ± 9.41 mg/kg, 5.74 times higher than those without soybean oil (5.53 ± 1.23 mg/kg). The BA concentration correlated positively (r = 0.707, P < 0.05) with BGC contamination levels. Low temperatures (4 °C and -18 °C) inhibited BGC growth and BA production, while higher storage temperatures (26 °C and 32 °C) promoted BGC proliferation and increased BA production. Reducing edible oil use and increasing edible starch can mitigate the risk of BGC-related food poisoning in wet rice noodles and vermicelli production. Further research is needed to find alternative oils that do not enhance BA production. Strengthening prevention and control measures is crucial across the entire production chain to address BGC contamination and BA production.


Assuntos
Burkholderia gladioli , Oryza , Ácido Bongcréquico/análise , Óleo de Soja/análise , Amido , Contaminação de Alimentos/análise , Farinha/análise
9.
J Insect Sci ; 24(4)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39118393

RESUMO

The study aims to assess the impact of oven-drying and decontamination on crude protein concentration and in vitro crude protein digestibility of yellow mealworms. Two kilograms of 12-wk-old mealworm larvae were subjected to freezing prior to the drying process. Approximately 1.5 kg of mealworm larvae were divided into 3 groups and exposed to oven-drying at temperatures of 50 °C for 36 h, 60 °C, and 70 °C for 24 h each. At intervals of 2 h, sets of 3 replicates were withdrawn to record water loss. Consistent weight stabilization was observed at 36 h for 50 °C (T50), 18 h for 60 °C (T60), and 14 h for 70 °C (T70). The remaining 0.5 kg of mealworm larvae was divided and dried under treatments T50, T60, and T70. Each treatment was then split into 2 portions, with one portion subjected to 90 °C for 15 min (denoted as T50-90, T60-90, T70-90) to eliminate microbial contamination. The 6 treatments were then used to determine concentrations of dry matter, crude ash, crude protein, pre-caecal protein digestibility, and dry matter residues after neutral detergent fiber, acid detergent fiber, and acid detergent lignin treatments. No interaction was observed between drying and decontamination treatments (P > 0.17). Pre-caecal crude protein digestibility increased with decreasing temperature (T50: 58% crude protein; T60: 51% crude protein; T70: 50% crude protein). Therefore, lower temperatures for longer times preserve crude protein digestibility. These findings are crucial for understanding how drying temperature and time impact protein bioavailability.


Assuntos
Digestão , Larva , Tenebrio , Animais , Tenebrio/química , Tenebrio/metabolismo , Larva/crescimento & desenvolvimento , Dessecação , Ração Animal/análise , Descontaminação/métodos , Proteínas Alimentares/metabolismo , Proteínas Alimentares/análise , Proteínas de Insetos/metabolismo , Temperatura Alta
10.
Clin Microbiol Rev ; 35(2): e0022120, 2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-35044203

RESUMO

The spread of biofilms on medical implants represents one of the principal triggers of persistent and chronic infections in clinical settings, and it has been the subject of many studies in the past few years, with most of them focused on prosthetic joint infections. We review here recent works on biofilm formation and microbial colonization on a large variety of indwelling devices, ranging from heart valves and pacemakers to urological and breast implants and from biliary stents and endoscopic tubes to contact lenses and neurosurgical implants. We focus on bacterial abundance and distribution across different devices and body sites and on the role of environmental features, such as the presence of fluid flow and properties of the implant surface, as well as on the interplay between bacterial colonization and the response of the human immune system.


Assuntos
Biofilmes , Próteses e Implantes , Bactérias , Humanos , Próteses e Implantes/efeitos adversos
11.
World J Microbiol Biotechnol ; 40(4): 113, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38418624

RESUMO

Yamuna River water in Agra city of India is contaminated with toxic pollutants, including heavy metals that cause damage to the environment and human health. At present, the direct use of river water for drinking purposes and household activities lead to the direct exposure of society to the contaminants. In this study, Yamuna River water samples were collected from three different sites in Agra city during the monsoon, summer, and winter seasons. The physico-chemical parameters were estimated along with heavy metals. In physico-chemical parameter, the values found were mostly above the permissible limits. The results water samples contain high levels of cadmium, chromium, lead, and nickel above the desirable levels in most cases. The metagenomic analysis revealed that Proteobacteria, Bacteroidetes, Verrucomicrobia, Actinobacteria, and Planctobacteria were the most abundant phyla with a relative abundance of 61%, 9.34%, 5.23%, 4.64%, and 4.3%, respectively. The Comamonadaceae, the most abundant family consists of the genera involved in hydrogen oxidation, iron reduction, degraders of polycyclic aromatic hydrocarbons, and fermentation. The presence of Pseudomonas, Nitrosomonas sp., Thauera humireducens and Dechloromonas denitrificans (decomposition of sewage and organic matter) and Pseudomonas aeruginosa indicates the presence of heavy metal degrading bacteria in water sample. Functional prediction showed the presence of genes responsible for different metabolic pathways that could help developing new bioremediation strategies. The study concludes the status of water contamination, the presence of complex microbial community and suggests the futuristic use and their role in bioremediation.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Humanos , Rios/microbiologia , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Metais Pesados/análise , Bactérias/genética , Água , Índia
12.
Int Ophthalmol ; 44(1): 280, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38922477

RESUMO

PURPOSE: The purpose of this study was to analyse the contamination rate of corneal samples stored in OCM at Lions Eye Bank of Western Australia over a 12-year period. METHODS: All OCM samples used to preserve corneas from 2011 to 2022 (inclusive) underwent microbiological testing. Samples were collected into aerobic and anaerobic culture bottles on day 3-5 of corneal preservation and 24 h after transfer to thinning medium. Samples were tested for 7 days using the BACTEC FX system. Corneas remained in quarantine until clearance was obtained. RESULTS: From 2011 to 2022, 3009 corneas were retrieved and 2756 corneas were stored in OCM. Thirty one (1.1%) positive samples were reported, with 20 growths of bacterial origin and 11 fungal. Microbial contamination was mostly identified on day 1 of culture (77.5%). Donors of contaminated samples had a mean age of 55 years, with 17 male and 14 female donors. The highest incidence of contamination came from donors whose cause of death was cancer. Death to enucleation times of contaminated samples ranged from 3.5 to 25.5 h (mean = 13.5 ± 7.3) and death to preservation time ranged from 4.1 to 27.5 h (mean = 14.8 ± 7.2). These did not significantly differ from the average time from death to enucleation (mean = 13.9 ± 3) and death to preservation (mean = 16.3 ± 4.2) of non-contaminated samples. CONCLUSION: Microbiological screening of corneas stored in OCM at LEBWA showed a very low rate of positive cultures with no predictive donor characteristics.


Assuntos
Bactérias , Córnea , Bancos de Olhos , Preservação de Órgãos , Doadores de Tecidos , Bancos de Olhos/estatística & dados numéricos , Humanos , Córnea/microbiologia , Feminino , Masculino , Pessoa de Meia-Idade , Austrália Ocidental/epidemiologia , Preservação de Órgãos/métodos , Doadores de Tecidos/estatística & dados numéricos , Adulto , Idoso , Bactérias/isolamento & purificação , Técnicas de Cultura de Órgãos , Transplante de Córnea , Idoso de 80 Anos ou mais , Estudos Retrospectivos , Fungos/isolamento & purificação , Adulto Jovem
13.
Crit Rev Food Sci Nutr ; 63(10): 1297-1313, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36123794

RESUMO

As there is growing interest in process control for quality and safety in the meat industry, by integrating spectroscopy and imaging technologies into one system, hyperspectral imaging, or chemical or spectroscopic imaging has become an alternative analytical technique that can provide the spatial distribution of spectrum for fast and nondestructive detection of meat safety. This review addresses the configuration of the hyperspectral imaging system and safety indicators of muscle foods involving biological, chemical, and physical attributes and other associated hazards or poisons, which could cause safety problems. The emphasis focuses on applications of hyperspectral imaging techniques in the safety evaluation of muscle foods, including pork, beef, lamb, chicken, fish and other meat products. Although HSI can provide the spatial distribution of spectrum, characterized by overtones and combinations of the C-H, N-H, and O-H groups using different combinations of a light source, imaging spectrograph and camera, there still needs improvement to overcome the disadvantages of HSI technology for further applications at the industrial level.


Assuntos
Inocuidade dos Alimentos , Imageamento Hiperespectral , Bovinos , Animais , Ovinos , Carne/análise , Análise Espectral/métodos , Músculos
14.
Microb Ecol ; 87(1): 12, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38072911

RESUMO

Industrial microbes and bio-derived products have emerged as an integral component of the bioeconomy, with an array of agricultural, bioenergy, and biomedical applications. However, the rapid development of microbial biotechnology raises concerns related to environmental escape of laboratory microbes, detection and tracking thereof, and resultant impact upon native ecosystems. Indeed, though wild-type and genetically modified microbes are actively deployed in industrial bioprocesses, an understanding of microbial interactivity and impact upon the environment is severely lacking. In particular, the persistence and sustained ecosystem impact of industrial microbes following laboratory release or unintentional laboratory escape remains largely unexplored. Herein, we investigate the applicability of soil-sorghum mesocosms for the ecological risk assessment of the industrial microbe, Saccharomyces cerevisiae. We developed and applied a suite of diagnostic and bioinformatic analyses, including digital droplet PCR, microscopy, and phylogenomic analyses to assess the impacts of a terrestrial ecosystem perturbation event over a 30-day time course. The platform enables reproducible, high-sensitivity tracking of S. cerevisiae in a complex soil microbiome and analysis of the impact upon abiotic soil characteristics and soil microbiome population dynamics and diversity. The resultant data indicate that even though S. cerevisiae is relatively short-lived in the soil, a single perturbation event can have sustained impact upon mesocosm soil composition and underlying microbial populations in our system, underscoring the necessity for more comprehensive risk assessment and development of mitigation and biocontainment strategies in industrial bioprocesses.


Assuntos
Ecossistema , Microbiota , Saccharomyces cerevisiae/genética , Microbiologia do Solo , Solo , Medição de Risco
15.
J Appl Microbiol ; 134(8)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37516448

RESUMO

AIM: Assessment of the fate of microbial contamination driven from treated wastewater disposal at a highly productive zone on a South European coastal lagoon (Ria Formosa). METHODS AND RESULTS: Microbial indicators of contamination (Total coliforms, Escherichia coli, and Enterococci) were evaluated monthly during September 2018-September 2020 at three study areas (Faro, Olhão, and Tavira) under different wastewater discharge flows and hydrodynamic conditions. Additional data on E. coli monitoring in bivalves, available from the national institution responsible for their surveillance was also considered. The maximum microbial contamination was found at Faro, the highest-load and less-flushed study area, contrasting the lowest contamination at Olhão, a lower-load and strongly flushed area. The wastewater impact decreased along the spatial dispersal gradients and during high water, particularly at Faro and Tavira study areas, due to a considerable dilution effect. Microbial contamination at Olhão increased during the summer, while at the other study areas seasonal evidence was not clear. Data also indicate that E. coli in bivalves from bivalve production zones next to the three study areas reflected the differentiated impact of the wastewater treatment plants effluents on the water quality of those areas. CONCLUSIONS: Effluent loads together with local hydrodynamics, water temperature, solar radiation, precipitation, and land runoff as well as seabirds populations and environmentally adapted faecal or renaturelized bacterial communities, contributed to microbial contamination of the study areas.


Assuntos
Bivalves , Águas Residuárias , Animais , Monitoramento Ambiental , Escherichia coli , Taiwan , Qualidade da Água , Bivalves/microbiologia
16.
Lett Appl Microbiol ; 76(12)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38115640

RESUMO

Selected Saccharomyces cerevisiae strains, such as the commercial Ethanol-Red (ER) strain, are used as starters in the bioethanol industry. Yet, bioethanol fermentations are prone to microbial contaminations, mainly by Brettanomyces bruxellensis and lactic acid bacteria. Chemicals, such as sulphuric acid and antibiotics, are commonly used to combat those contaminations, but they have negative environmental impacts. Recently, ER strain was found to secrete antimicrobial peptides (AMPs) active against B. bruxellensis. Therefore, the partial TDH1 and TDH2/3 genes sequences that codify those AMPs were inserted into the pSR41k plasmid and cloned in ER strains. The relative expression levels (plasmidic/genomic) of those sequences in the respective modified ER strains were quantified by real-time quantitative polimerase chain reaction (RT-qPCR), confirming their overexpression. The effect of the modified strains on B. bruxellensis (Bb) growth was then evaluated during synthetic must (SM) and carob syrup (CS) fermentations, co-inoculated with 105 cells ml-1 of ER and Bb in SM and with 106 of ER and 5 × 103 cells ml-1 of Bb in CS. Results showed that modified ER strains exerted a much higher inhibitory effect against B. bruxellensis (72-fold in SM and 10-fold in CS) than the non-modified ER strain. In those fermentations, 90-100 g l-1 of ethanol was produced in 3-6 days.


Assuntos
Brettanomyces , Vinho , Fermentação , Etanol/metabolismo , Saccharomyces cerevisiae/metabolismo , Vinho/microbiologia
17.
Lett Appl Microbiol ; 76(2)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36763781

RESUMO

We report here a carrier platform (Teflon; 30.0 × 60.0 × 0.9 cm) and a carrier retrieval device to assess pathogen decontamination of high-touch environmental surfaces (HITES) by wiping. Each one of the nine metallic disks (1 cm diameter and 0.7 mm thick) received 10 µL of the microbial suspension in a soil load, the inocula dried and the platform then wiped with a piece of fabric presoaked in a control or disinfectant fluid; the used wipe was immediately applied on a second platform with sterile disks to assess microbial transfer. Each test and control disk from a given platform was separately and simultaneously retrieved into 10 mL of an eluent/neutralizer for assays at the end of the contact time (total of 5 min, starting from the beginning of the wiping). Staphylococcus aureus and Acinetobacter baumannii were used as representative HITES-borne pathogens. The wipes tested separately contained 0.26% of a quaternary ammonium compound (Product A), and 250 ppm sodium hypochlorite at neutral pH (Product B). The control fabric (Product C) was dampened with a buffer containing a detergent. Product A achieved a >4 log10 (>99.99%) reduction in the viability of the bacteria on wiping with a barely detectable level of transfer of CFUs to clean disks. Product B achieved a >2 log10 (>99.00%) reduction in the viability of the test microbes while transferring a higher level of CFUs as compared to Product A. With Product C, there was a <1 log10 (<86.2%) reduction in the viability of the test microbes while transferring >1% of the contamination.


Assuntos
Acinetobacter baumannii , Desinfetantes , Tato , Descontaminação , Desinfetantes/farmacologia , Desinfetantes/química , Bactérias , Desinfecção
18.
Lett Appl Microbiol ; 76(7)2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37410617

RESUMO

Several microorganisms can be found in tattoo inks injected into the skin, despite the ink matrix being considered inhospitable to microbial growth. Studies on the microbial quality of tattoo inks have reported the presence of microorganisms in most of the samples. This study aimed to assess the survival of environmental and human microbial species, selected on the specific criteria, in tattoo inks. Undiluted sterile black ink and serial dilutions (10-fold/100-fold) were each separately seeded with four bacterial strains (Staphylococcus aureus, Pseudomonas aeruginosa, Bacillus pumilus, Mycobacterium fortuitum), one yeast (Candida albicans), and one mould (Fusarium solani). Their survival was periodically tested using cultural methods. No tested microorganisms were able to survive in undiluted ink, except for B. pumilus that survived up to 3 weeks. All the tested species, except for S. aureus, showed survivability for up to 10 weeks in 100-fold diluted inks, and P. aeruginosa, M. fortuitum, and C. albicans were even able to grow. B. pumilus and F. solani had good rates of survival even at the smallest dilution. The ability of microorganisms to survive and grow in tattoo inks could have health implications if contaminated ink dilutions are used during tattooing practices and stored for a long time.


Assuntos
Tatuagem , Humanos , Tinta , Staphylococcus aureus , Pele , Bactérias , Corantes
19.
Lett Appl Microbiol ; 76(2)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36763794

RESUMO

Some extraintestinal pathogenic Escherichia coli isolates (ExPEC), obtained from humans and chickens avian pathogenic E. coli (APEC), share similar virulence genes. Thus, products of avian origin can be a source of human infection. Moreover, these APEC isolates are resistant to antimicrobials and can spread in the environment through the chicken feces. Although the development of multidrug-resistant (MDR) microorganisms in poultry is on the rise, healthcare entities have raised concerns since MDRs can horizontally transfer resistance genes to other microorganisms and complicate the management of human infections by MDR APEC. The results of our study showed that of 80 investigated spiced chicken meat samples, 55% were contaminated with E. coli, of which 34% (15/44) contaminate with APEC. No diarrheagenic E. coli (DEC) pathotypes were found. Twenty-six isolates were MDR E. coli. Among the APEC isolates, 87% (13/15) produced extended-spectrum beta-lactamase (ESBL). The emergence of MDR/ESBL-producing APEC with zoonotic potential for humans is extremely worrying. Therefore, further studies are required to identify the prevalence of MDR/ESBL-producing APEC in the entire chicken production chain from creation, slaughter, processing, and butchery.


Assuntos
Infecções por Escherichia coli , Doenças das Aves Domésticas , Animais , Humanos , Escherichia coli , Galinhas , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/veterinária , Brasil/epidemiologia , Aves Domésticas , Hidrolases/genética , Doenças das Aves Domésticas/epidemiologia , Antibacterianos/farmacologia , Filogenia , Carne
20.
BMC Oral Health ; 23(1): 158, 2023 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-36934281

RESUMO

BACKGROUNDS: Numerous studies have shown that dental unit water lines (DUWLs) are often contaminated by a wide range of micro-organisms (bacteria, fungi, protozoa) and various prevalence have been reported for it in previous studies. Therefore, this review study aims to describe the prevalence of bacterial biofilm contamination of DUWLs. METHODS: This is a systematic review and meta-analysis in which the related keywords in different international databases, including Medline (via PubMed) and Scopus were searched. The retrieved studies were screened and the required data were extracted from the included studies. Three standard methods including American Dental Association (ADA), The Center for Disease Control and Prevention (CDC) and contaminated > 100 CFU/ml(C-100) standards were used to assess the bacterial biofilm contamination of DUWLs. All studies that calculated the prevalence of bacterial biofilm contamination of DUWLs, and English full-text studies were included in the meta-analysis. Studies that did not have relevant data or used unusual laboratory methods were excluded. Methodological risk of bias was assessed by a related checklist and finally, the data were pooled by fixed or random-effect models. RESULTS: Seven hundred and thirty-six studies were identified and screened and 26 related studies were included in the meta-analysis. The oldest included study was published in 1976 and the most recent study was published in 2020. According to the ADA, CDC and C-100 standards, the prevalence of bacterial contamination was estimated to be 85.0% (95% confidence interval (CI): 66.0-94.0%), 77.0% (95%CI: 66.0-85.0%) and 69.0% (95%CI: 67.0-71.0%), respectively. The prevalence of Legionella Pneumophila and Pseudomonas Aeruginosa in DUWLs was estimated to be 12.0% (95%CI: 10.0-14.0%) and 8.0% (95%CI: 2.0-24.0%), respectively. CONCLUSION: The results of this review study suggested a high prevalence of bacterial biofilm in DUWLs; therefore, the use of appropriate disinfecting protocol is recommended to reduce the prevalence of contamination and reduce the probable cross-infection.


Assuntos
Bactérias , Equipamentos Odontológicos , Humanos , Equipamentos Odontológicos/microbiologia , Prevalência , Biofilmes , Contaminação de Equipamentos/prevenção & controle , Contagem de Colônia Microbiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA