Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Monit Assess ; 196(3): 312, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413499

RESUMO

Landfill sites are subjected to long-term risks of accidental spill of leachate through the soil and consequential contamination of the groundwater. Wide areas surrounding the landfill can seriously be threatened with possible consequences to human health and the environment. Given the potential impact of different coexisting anthropic pollution sources (i.e., agriculture and cattle farming) on the same site, the perturbation of the groundwater quality may be due to multiple factors. Therefore, it is a challenging issue to correctly establish the pollution source of an aquifer where the landfill is not isolated from other anthropic land uses, especially in the case of a karstic coastal aquifer. The present study is aimed at setting in place an integrated environmental monitoring system that included microbiological, chemical, and isotope methods to evaluate potential groundwater pollution in a landfill district in the south of Italy located in Murgia karstic aquifer. Conventional (microbial plate count and physical-chemical analyses) and advanced methods (PCR-ARISA, isotope analysis of δ18O, δ2H, 3H, δ 13C, δ 15N-NO3-, and δ 18O-NO3-) were included in the study. Through data integration, it was possible to reconstruct a scenario in which agriculture and other human activities along with seawater intrusion in the karst aquifer were the main drivers of groundwater pollution at the monitored site. The microbiological, chemical, and isotope results confirmed the absence of leachate effects on groundwater quality, showing the decisive role of fertilizers as potential nitrate sources. The next goal will be to extend long-term integrated monitoring to other landfill districts, with different geological and hydrogeological characteristics and including different sources of pollution, to support the ecological restoration of landfills.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Monitoramento Ambiental/métodos , Isótopos/análise , Itália , Nitratos/análise , Poluentes Químicos da Água/análise
2.
J Appl Microbiol ; 125(5): 1541-1551, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30091191

RESUMO

AIMS: We constantly interact with our surrounding microbiome, including the micro-organisms present in highly populated public places. However, data on everyday exposure to background levels of micro-organisms are limited. To address this, bacteria and fungi were collected and enumerated in settled dust from railway stations. METHODS AND RESULTS: Samples were collected weekly for 52 weeks, from up to three pre-determined surfaces in each of 17 railway stations in England and Scotland. Trained staff at each station took surface wipes, sending them to the laboratory for culture-based analysis for total bacteria and fungi. Maximum yields of bacteria at the stations were 107 -108 colony forming units (CFU) per cm2 , and 104 -105 CFU per cm2 for fungi. CONCLUSIONS: There was evidence of seasonal trends, with bacterial numbers rising from spring through to winter, while fungal numbers peaked in autumn. Microbial numbers were similar in samples taken at the same time at a given station. Influences on contamination levels were likely to be a combination of passenger numbers and station layout, with dust generated from construction work also contributing. SIGNIFICANCE AND IMPACT OF THE STUDY: A baseline of typical human exposure to micro-organisms in public transport hubs was established through the generation of a comprehensive database.


Assuntos
Microbiologia do Ar , Bactérias/isolamento & purificação , Exposição Ambiental/análise , Fungos/isolamento & purificação , Instalações de Transporte , Contagem de Colônia Microbiana , Poeira , Inglaterra , Monitoramento Ambiental/métodos , Humanos , Escócia , Estações do Ano
3.
Crit Rev Microbiol ; 41(3): 366-73, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-24274064

RESUMO

Accounts of drinking water-borne disease outbreaks have always captured the interest of the public, elected and health officials, and the media. During the twentieth century, the drinking water community and public health organizations have endeavored to craft regulations and guidelines on treatment and management practices that reduce risks from drinking water, specifically human pathogens. During this period there also evolved misunderstandings as to potential health risk associated with microorganisms that may be present in drinking waters. These misunderstanding or "myths" have led to confusion among the many stakeholders. The purpose of this article is to provide a scientific- and clinically-based discussion of these "myths" and recommendations for better ensuring the microbial safety of drinking water and valid public health decisions.


Assuntos
Água Potável/microbiologia , Saúde Pública , Doenças Transmitidas pela Água/microbiologia , Surtos de Doenças , Enterobacteriaceae/isolamento & purificação , Humanos , Purificação da Água
4.
Water Res ; 257: 121702, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38749337

RESUMO

While online monitoring of physicochemical parameters has widely been incorporated into drinking water treatment systems, online microbial monitoring has lagged behind, resulting in the use of surrogate parameters (disinfectant residual, applied dose, concentration × time, CT) to assess disinfection system performance. Online flow cytometry (online FCM) allows for automated quantification of total and intact microbial cells. This study sought to investigate the feasibility of online FCM for full-scale drinking water ozone disinfection system performance monitoring. A water treatment plant with high lime solids turbidity in the ozone contactor influent was selected to evaluate the online FCM in challenging conditions. Total and intact cell counts were monitored for 40 days and compared to surrogate parameters (ozone residual, ozone dose, and CT) and grab sample assay results for cellular adenosine triphosphate (cATP), heterotrophic plate counts (HPC), impedance flow cytometry, and 16S rRNA gene sequencing. Online FCM provided insight into the dynamics of the full-scale ozone system, including offering early warning of increased contactor effluent cell concentrations, which was not observed using surrogate measures. Positive correlations were observed between online FCM intact cell counts and cATP levels (Kendall's tau=0.40), HPC (Kendall's tau=0.20), and impedance flow cytometry results (Kendall's tau=0.30). Though a strong correlation between log intact cell removal and CT was not observed, 16S rRNA gene sequencing results showed that passage through the ozone contactor significantly changed the microbial community (p < 0.05). Potential causes of the low overall cell inactivation in the contactor and the significant changes in the microbial community after ozonation include regrowth in the later chambers of the contactor and varied ozone resistance of drinking water microorganisms. This study demonstrates the suitability of direct, online microbial analysis for monitoring full-scale disinfection systems.


Assuntos
Desinfecção , Água Potável , Citometria de Fluxo , Ozônio , Purificação da Água , Citometria de Fluxo/métodos , Desinfecção/métodos , Água Potável/microbiologia , Purificação da Água/métodos
5.
Environ Microbiome ; 19(1): 5, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38225668

RESUMO

Marine bacterioplankton underpin the health and function of coral reefs and respond in a rapid and sensitive manner to environmental changes that affect reef ecosystem stability. Numerous meta-omics surveys over recent years have documented persistent associations of opportunistic seawater microbial taxa, and their associated functions, with metrics of environmental stress and poor reef health (e.g. elevated temperature, nutrient loads and macroalgae cover). Through positive feedback mechanisms, disturbance-triggered heterotrophic activity of seawater microbes is hypothesised to drive keystone benthic organisms towards the limit of their resilience and translate into shifts in biogeochemical cycles which influence marine food webs, ultimately affecting entire reef ecosystems. However, despite nearly two decades of work in this space, a major limitation to using seawater microbes in reef monitoring is a lack of a unified and focused approach that would move beyond the indicator discovery phase and towards the development of rapid microbial indicator assays for (near) real-time reef management and decision-making. By reviewing the current state of knowledge, we provide a comprehensive framework (defined as five phases of research and innovation) to catalyse a shift from fundamental to applied research, allowing us to move from descriptive to predictive reef monitoring, and from reactive to proactive reef management.

6.
J Hazard Mater ; 470: 134222, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38583199

RESUMO

Organic-contaminated shallow aquifers have become a global concern of groundwater contamination, yet little is known about the coupled effects of hydrodynamic-thermal-chemical-microbial (HTCM) multi-field on organic contaminant transport and transformation over a short time in aquifers. Therefore, this study proposed a quick and efficient field experimental method for the transport-transformation of contaminants under multi-field coupling to explore the relationship between organic contaminants (total petroleum hydrocarbon (TPH), polycyclic aromatic hydrocarbons (PAHs), benzene-toluene-ethylbenzene-xylene (BTEX) and phthalates acid esters (PAEs)) and multi-field factors. The results showed that hydrodynamics (affecting pH, p < 0.001) and temperature (affecting dissolved oxygen, pH and HCO3-, p < 0.05) mainly affected the organic contaminants indirectly by influencing the hydrochemistry to regulate redox conditions in the aquifer. The main degradation reactions of the petroleum hydrocarbons (TPH, PAHs and BTEX) and PAEs in the aquifer were sulfate reduction and nitrate reduction, respectively. Furthermore, the organic contamination was directly influenced by microbial communities, whose spatial patterns were shaped by the combined effects of the spatial pattern of hydrochemistry (induced by the organic contamination pressure) and other multi-field factors. Overall, our findings imply that the spatiotemporal patterns of organic contaminants are synergistically regulated by HTCM, with distinct mechanisms for petroleum hydrocarbons and PAEs.

7.
Microorganisms ; 11(9)2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37764154

RESUMO

The pressing need to safeguard the health of astronauts aboard the International Space Station (ISS) necessitates constant and rigorous microbial monitoring. Recognizing the shortcomings of traditional culture-based methods, NASA is deliberating the incorporation of molecular-based techniques. The challenge, however, lies in developing and validating effective methods for concentrating samples to facilitate this transition. This study is dedicated to investigating the potential of an ISS Smart Sample Concentrator (iSSC) as an innovative concentration method. First, the iSSC system and its components were tested and optimized for microgravity, including various testing environments: a drop tower, parabolic flight, and the ISS itself. Upon confirming the system's compatibility with microgravity, we further evaluated its proficiency and reliability in concentrating large volumes (i.e., 1 L) of water samples inoculated with different microbes. The samples carried 102 to 105 colony-forming units (CFUs) of Sphingomonas paucimobilis, Ralstonia pickettii, or Cupriavidus basilensis per liter, aligning with NASA's acceptable limit of 5 × 104 CFU/L. The average retrieved volume post-concentration was ≈450 µL, yielding samples that were ≈2200 times more concentrated for subsequent quantitative PCR (qPCR) and CFU analysis. The average microbial percent recovery, as assessed with CFU counts, demonstrated consistency for C. basilensis and R. pickettii at around 50% and 45%, respectively. For S. paucimobilis, the efficiency oscillated between 40% and 80%. Interestingly, when we examined microbial recovery using qPCR, the results showed more variability across all tested species. The significance of these findings lies not merely in the successful validation of the iSSC but also in the system's proven consistency, as evidenced by its alignment with previous validation-phase results. In conclusion, conducted research underscored the potential of the iSSC in monitoring microbial contamination in potable water aboard the ISS, heralding a paradigm shift from culture-based to molecular-based monitoring methods.

8.
Microorganisms ; 11(2)2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36838251

RESUMO

In order to intensify and guarantee the agricultural productivity and thereby to be able to feed the world's rapidly growing population, irrigation has become very important. In parallel, the limited water resources lead to an increase in usage of poorly characterized sources of water, which is directly linked to a higher prevalence of foodborne diseases. Therefore, analyzing the microorganisms or even the complete microbiome of irrigation water used for food production can prevent the growing numbers of such cases. In this study, we compared the efficacy of MALDI-TOF Mass spectrometry (MALDI TOF MS) identification to 16S rRNA gene Sanger sequencing of waterborne microorganisms. Furthermore, we analyzed the whole microbial community of irrigation water using high-throughput 16S rRNA gene amplicon sequencing. The identification results of MALDI-TOF MS and 16S rRNA gene Sanger sequencing were almost identical at species level (66.7%; 64.3%). Based on the applied cultivation techniques, Acinetobacter spp., Enterobacter spp., Pseudomonas spp., and Brevundimonas spp. were the most abundant cultivable genera. In addition, the uncultivable part of the microbiome was dominated by Proteobacteria followed by Actinobacteria, Bacteroidota, Patescibacteria, and Verrucomicrobiota. Our findings indicate that MALDI-TOF MS offers a fast, reliable identification method and can act as an alternative to 16S rRNA gene Sanger sequencing of isolates. Moreover, the results suggest that MALDI-TOF MS paired with 16S rRNA gene amplicon sequencing have the potential to support the routine monitoring of the microbiological quality of irrigation water.

9.
Microbiome ; 10(1): 100, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35765106

RESUMO

BACKGROUND: The International Space Station (ISS) is a unique and complex built environment with the ISS surface microbiome originating from crew and cargo or from life support recirculation in an almost entirely closed system. The Microbial Tracking 1 (MT-1) project was the first ISS environmental surface study to report on the metagenome profiles without using whole-genome amplification. The study surveyed the microbial communities from eight surfaces over a 14-month period. The Microbial Tracking 2 (MT-2) project aimed to continue the work of MT-1, sampling an additional four flights from the same locations, over another 14 months. METHODS: Eight surfaces across the ISS were sampled with sterile wipes and processed upon return to Earth. DNA extracted from the processed samples (and controls) were treated with propidium monoazide (PMA) to detect intact/viable cells or left untreated and to detect the total DNA population (free DNA/compromised cells/intact cells/viable cells). DNA extracted from PMA-treated and untreated samples were analyzed using shotgun metagenomics. Samples were cultured for bacteria and fungi to supplement the above results. RESULTS: Staphylococcus sp. and Malassezia sp. were the most represented bacterial and fungal species, respectively, on the ISS. Overall, the ISS surface microbiome was dominated by organisms associated with the human skin. Multi-dimensional scaling and differential abundance analysis showed significant temporal changes in the microbial population but no spatial differences. The ISS antimicrobial resistance gene profiles were however more stable over time, with no differences over the 5-year span of the MT-1 and MT-2 studies. Twenty-nine antimicrobial resistance genes were detected across all samples, with macrolide/lincosamide/streptogramin resistance being the most widespread. Metagenomic assembled genomes were reconstructed from the dataset, resulting in 82 MAGs. Functional assessment of the collective MAGs showed a propensity for amino acid utilization over carbohydrate metabolism. Co-occurrence analyses showed strong associations between bacterial and fungal genera. Culture analysis showed the microbial load to be on average 3.0 × 105 cfu/m2 CONCLUSIONS: Utilizing various metagenomics analyses and culture methods, we provided a comprehensive analysis of the ISS surface microbiome, showing microbial burden, bacterial and fungal species prevalence, changes in the microbiome, and resistome over time and space, as well as the functional capabilities and microbial interactions of this unique built microbiome. Data from this study may help to inform policies for future space missions to ensure an ISS surface microbiome that promotes astronaut health and spacecraft integrity. Video Abstract.


Assuntos
Malassezia , Microbiota , Bactérias/genética , Humanos , Metagenoma , Metagenômica , Microbiota/genética
10.
Water Res ; 202: 117387, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34243050

RESUMO

Safeguarding the microbial water quality remains a challenge for drinking water utilities, and because of population growth and climate change, new issues arise regularly. To overcome these problems, biostable drinking water production and water reuse will become increasingly important. In this respect, high-resolution online microbial monitoring during treatment and distribution could prove essential. Here, we present the first scientific and practical comparison of multiple online microbial monitoring techniques in which six commercially available devices were set up in a full-scale drinking water production plant. Both the devices' response towards operational changes and contaminations, as well as their detection limit for different contaminations were evaluated and compared. During normal operation, all devices were able to detect abrupt operational changes such as backwashing of activated carbon filters and interruption of the production process in a fast and sensitive way. To benchmark their response to contaminations, the calculation of a dynamic baseline for sensitive separation between noise and events is proposed. In order of sensitivity, enzymatic analysis, ATP measurement, and flow cytometric fingerprinting were the most performant for detection of rain- and groundwater contaminations (0.01 - 0.1 v%). On the other hand, optical classification and flow cytometric cell counts showed to be more robust techniques, requiring less maintenance and providing direct information about the cell concentration, even though they were still more sensitive than plate counting. The choice for a certain technology will thus depend on the type of application and is a balance between sensitivity, price and maintenance. All things considered, a combination of several devices and use of advanced data analysis such as fingerprinting may be of added value. In general, the strategic implementation of online microbial monitoring as early-warning system will allow for intensive quality control by high-frequency sampling as well as a short event response timeframe.


Assuntos
Água Potável , Água Subterrânea , Bactérias , Microbiologia da Água , Qualidade da Água
11.
Life (Basel) ; 11(6)2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34072140

RESUMO

Closed environments such as the International Space Station (ISS) and spacecraft for other planned interplanetary destinations require sustainable environmental control systems for manned spaceflight and habitation. These systems require monitoring for microbial contaminants and potential pathogens that could foul equipment or affect the health of the crew. Technological advances may help to facilitate this environmental monitoring, but many of the current advances do not function as expected in reduced gravity conditions. The microbial monitoring system (RAZOR® EX) is a compact, semi-quantitative rugged PCR instrument that was successfully tested on the ISS using station potable water. After a series of technical demonstrations between ISS and ground laboratories, it was determined that the instruments functioned comparably and provided a sample to answer flow in approximately 1 hour without enrichment or sample manipulation. Post-flight, additional advancements were accomplished at Kennedy Space Center, Merritt Island, FL, USA, to expand the instrument's detections of targeted microorganisms of concern such as water, food-borne, and surface microbes including Salmonella enterica serovar Typhimurium, Pseudomonas aeruginosa, Escherichia coli, and Aeromonas hydrophilia. Early detection of contaminants and bio-fouling microbes will increase crew safety and the ability to make appropriate operational decisions to minimize exposure to these contaminants.

12.
Water Res ; 170: 115353, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31881501

RESUMO

Microbial regrowth during drinking water distribution can result in a variety of problems such as a deviating taste and odor, and may even pose a risk to public health. Frequent monitoring is essential to anticipate events of biological instability, and relevant microbial parameters for operational control of biostability of drinking water should be developed. Here, online flow cytometry and derived biological metrics were used to assess the biological stability of a full-scale drinking water tower during normal and disturbed flow regime. Pronounced operational events, such as switching from drinking water source, and seasonal changes, were detected in the total cell counts, and regrowth was observed despite the short hydraulic residence time of 6-8 h. Based on the flow cytometric fingerprints, the Bray-Curtis dissimilarity was calculated and was developed as unambiguous parameter to indicate or warn for changing microbial drinking water quality during operational events. In the studied water tower, drastic microbial water quality changes were reflected in the Bray-Curtis dissimilarity, which demonstrates its use as an indicator to follow-up and detect microbial quality changes in practice. Hence, the Bray-Curtis dissimilarity can be used in an online setup as a straightforward parameter during full-scale operation of drinking water distribution, and combined with the cell concentration, it serves as an early-warning system for biological instability.


Assuntos
Água Potável , Bactérias , Microbiologia da Água , Qualidade da Água , Abastecimento de Água
13.
Front Microbiol ; 11: 1909, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32973700

RESUMO

NASA has made great strides in the past five years to develop a suite of instruments for the International Space Station in order to perform molecular biology in space. However, a key piece of equipment that has been lacking is an instrument that can extract nucleic acids from an array of complex human and environmental samples. The Omics in Space team has developed the µTitan (simulated micro(µ) gravity tested instrument for automated nucleic acid) system capable of automated, streamlined, nucleic acid extraction that is adapted for use under microgravity. The µTitan system was validated using a whole cell microbial reference (WCMR) standard comprised of a suspension of nine bacterial strains, titrated to concentrations that would challenge the performance of the instrument, as well as to determine the detection limits for isolating DNA. Quantitative assessment of system performance was measured by comparing instrument input challenge dose vs recovery by Qubit spectrofluorometry, qPCR, Bioanalyzer, and Next Generation Sequencing. Overall, results indicate that the µTitan system performs equal to or greater than a similar commercially available, earth-based, automated nucleic acid extraction device. The µTitan system was also tested in Yellowstone National Park (YNP) with the WCMR, to mimic a remote setting, with limited resources. The performance of the device at YNP was comparable to that in a laboratory setting. Such a portable, field-deployable, nucleic extraction system will be valuable for environmental microbiology, as well as in health care diagnostics.

14.
Microbiome ; 7(1): 94, 2019 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-31227022

RESUMO

BACKGROUND: Coral reefs are facing unprecedented pressure on local and global scales. Sensitive and rapid markers for ecosystem stress are urgently needed to underpin effective management and restoration strategies. Although the fundamental contribution of microbes to the stability and functioning of coral reefs is widely recognised, it remains unclear how different reef microbiomes respond to environmental perturbations and whether microbiomes are sensitive enough to predict environmental anomalies that can lead to ecosystem stress. However, the lack of coral reef microbial baselines hinders our ability to study the link between shifts in microbiomes and ecosystem stress. In this study, we established a comprehensive microbial reference database for selected Great Barrier Reef sites to assess the diagnostic value of multiple free-living and host-associated reef microbiomes to infer the environmental state of coral reef ecosystems. RESULTS: A comprehensive microbial reference database, originating from multiple coral reef microbiomes (i.e. seawater, sediment, corals, sponges and macroalgae), was generated by 16S rRNA gene sequencing for 381 samples collected over the course of 16 months. By coupling this database to environmental parameters, we showed that the seawater microbiome has the greatest diagnostic value to infer shifts in the surrounding reef environment. In fact, 56% of the observed compositional variation in the microbiome was explained by environmental parameters, and temporal successions in the seawater microbiome were characterised by uniform community assembly patterns. Host-associated microbiomes, in contrast, were five-times less responsive to the environment and their community assembly patterns were generally less uniform. By applying a suite of indicator value and machine learning approaches, we further showed that seawater microbial community data provide an accurate prediction of temperature and eutrophication state (i.e. chlorophyll concentration and turbidity). CONCLUSION: Our results reveal that free-living microbial communities have a high potential to infer environmental parameters due to their environmental sensitivity and predictability. This highlights the diagnostic value of microorganisms and illustrates how long-term coral reef monitoring initiatives could be enhanced by incorporating assessments of microbial communities in seawater. We therefore recommend timely integration of microbial sampling into current coral reef monitoring initiatives.


Assuntos
Antozoários/microbiologia , Recifes de Corais , Monitoramento Ambiental , Microbiota , Água do Mar/microbiologia , Animais , Austrália , Bactérias/classificação , Biodiversidade , RNA Ribossômico 16S
15.
16.
PDA J Pharm Sci Technol ; 72(6): 574-583, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29954921

RESUMO

This study compared an adenosine triphosphate (ATP)-based bioluminescence rapid microbial method (RMM) with a conventional sterility method for biologics sample testing. The RMM is based on a comparison of ATP levels in inoculated and uninoculated microbiological growth medium samples following growth enrichment incubation. The biologics samples qualified in this study were recombinant monoclonal antibodies and hybridoma cell culture supernatants. Initially, the lot-to-lot variation in background ATP of these samples posed significant challenges. Two strategies to increase the signal-to-noise ratio (positive result/background ATP) were evaluated: enzyme-based signal amplification and reduction of the broth-based noise through broth selection. Following qualification of the RMM for antibody and cell culture samples, the RMM was also utilized for rapid screening of several sources of purified water. This ATP-based RMM has proved invaluable in routine testing of diverse biologics samples at our discovery research site and plays a key role in the investigation of contaminated samples.LAY ABSTRACT: Biologics research laboratories routinely conduct sterility testing of products in development. However, the lengthy turnaround time for detection of microbial contaminants when using a conventional sterility test is a bottleneck in this fast-paced environment. This study investigated an adenosine triphosphate-based bioluminescence rapid microbial method (RMM) for biologics samples, including monoclonal antibodies and hybridoma cell cultures. The results showed that the RMM allowed detection of antibody sample contaminants after only three days of incubation. In addition to being faster than the standard method, the RMM proved more reliable in detecting contaminants in cell culture samples with antibiotics. Since its initial evaluation, this RMM has accelerated biologics sterility testing across multiple projects at our site.


Assuntos
Trifosfato de Adenosina/análise , Produtos Biológicos/análise , Medições Luminescentes/métodos , Esterilização/métodos , Anticorpos Monoclonais/análise , Produtos Biológicos/normas , Meios de Cultura/análise , Hibridomas/citologia , Proteínas Recombinantes/análise
17.
Water Res ; 107: 11-18, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27783929

RESUMO

Short-term fluctuations in bacterial concentrations in drinking water systems, occurring on time scales of hours-to-weeks, are essentially unexplored due to a lack of microbial monitoring tools that allow high frequency measurements. Here, we applied fully automated online flow cytometry to measure the total cell concentrations (TCC) in both raw water (karstic groundwater) and treated water (flocculation - ultrafiltration (UF) - ozonation - granular active carbon (GAC) filtration) during a period of 70 days at high temporal resolution (n > 4000 for both water types). We detected and characterized in considerable detail aperiodic fluctuations in the raw water following regional precipitation, with TCC increasing up to 50-fold from a dry weather baseline of approximately 120 cells µl-1 to an event peak of > 5000 cells µl-1. Moreover, we observed the buffering of the treatment plant against these fluctuations, but in addition we recorded a completely unexpected periodic fluctuation of TCC in the treated water after GAC filtration. We concluded that the latter was the result of fluctuating water abstraction from the treatment plant reservoir by two connected water utilities, which resulted in variations in water throughput in the plant. This in turn influenced bacterial detachment and dilution in the GAC filter. This study provides strong evidence of multiple different microbial dynamics occurring in a drinking water treatment system. Given numerous possible sources of natural and operational fluctuations in raw water and drinking water treatment plants, such microbial fluctuations should be expected in many systems. The high-frequency monitoring approach presented herein can improve the understanding and eventual mitigation of such fluctuations.


Assuntos
Água Potável/microbiologia , Purificação da Água , Carvão Vegetal , Filtração , Água Subterrânea
18.
Ecancermedicalscience ; 8: 421, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24834116

RESUMO

UNLABELLED: The collection of microbiological samples represents an important aspect of care both for doctors as well as nurses. It is important to recognise and identify some key points, to avoid performing 'unnecessary' or 'incorrect' sampling, which may give useless or even misleading results, these are: the moment at which the sample is collected, the collection method and timing (if indicated). The comparison between the various nursing members of the Italian National bone marrow transplant group (GITMO), showed diversity of practice across all fields. A formal survey was therefore conducted within GITMO centres looking at the methods of microbiological sample collection. These results were compared with the literature, and in addition to the lack of homogeneity of practice within the centres, a lack of compliance with the recommendations was also observed. To evaluate the effectiveness of this survey in highlighting awareness of this issue and the presence of relevant guidelines, the questionnaire was repeated (with the same centres responding), which demonstrated no major changes in care practices. CONCLUSION: The survey has allowed us to highlight many critical issues regarding common procedures which are not commonly discussed. Considerable differences were noted between different transplant centres, which may be attributable to the lack of Italian guidelines that can be used as a starting point for clinical practice. The plenary discussion allowed for an exchange of findings with the medical staff, who are usually responsible for requesting microbiological samples. The ideal solution would be a unique field-based training programme, associated with the dissemination of a common procedural document for ensuring evidence-based practice.

19.
Int J Environ Res Public Health ; 9(8): 2669-93, 2012 08.
Artigo em Inglês | MEDLINE | ID: mdl-23066390

RESUMO

Infrastructural problems force South African households to supplement their drinking water consumption from water resources of inadequate microbial quality. Microbial water quality monitoring is currently based on the Colilert®18 system which leads to rapidly available results. Using Escherichia coli as the indicator microorganism limits the influence of environmental sources on the reported results. The current system allows for understanding of long-term trends of microbial surface water quality and the related public health risks. However, rates of false positive for the Colilert®18-derived concentrations have been reported to range from 7.4% to 36.4%. At the same time, rates of false negative results vary from 3.5% to 12.5%; and the Colilert medium has been reported to provide for cultivation of only 56.8% of relevant strains. Identification of unknown sources of faecal contamination is not currently feasible. Based on literature review, calibration of the antibiotic-resistance spectra of Escherichia coli or the bifidobacterial tracking ratio should be investigated locally for potential implementation into the existing monitoring system. The current system could be too costly to implement in certain areas of South Africa where the modified H(2)S strip test might be used as a surrogate for the Colilert®18.


Assuntos
Água Doce/microbiologia , Microbiologia da Água , Monitoramento Ambiental , África do Sul , Qualidade da Água , Abastecimento de Água/legislação & jurisprudência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA