Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(12)2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38931510

RESUMO

The estimation of spatiotemporal data from limited sensor measurements is a required task across many scientific disciplines. In this paper, we consider the use of mobile sensors for estimating spatiotemporal data via Kalman filtering. The sensor selection problem, which aims to optimize the placement of sensors, leverages innovations in greedy algorithms and low-rank subspace projection to provide model-free, data-driven estimates. Alternatively, Kalman filter estimation balances model-based information and sparsely observed measurements to collectively make better estimation with limited sensors. It is especially important with mobile sensors to utilize historical measurements. We show that mobile sensing along dynamic trajectories can achieve the equivalent performance of a larger number of stationary sensors, with performance gains related to three distinct timescales: (i) the timescale of the spatiotemporal dynamics, (ii) the velocity of the sensors, and (iii) the rate of sampling. Taken together, these timescales strongly influence how well-conditioned the estimation task is. We draw connections between the Kalman filter performance and the observability of the state space model and propose a greedy path planning algorithm based on minimizing the condition number of the observability matrix. This approach has better scalability and computational efficiency compared to previous works. Through a series of examples of increasing complexity, we show that mobile sensing along our paths improves Kalman filter performance in terms of better limiting estimation and faster convergence. Moreover, it is particularly effective for spatiotemporal data that contain spatially localized structures, whose features are captured along dynamic trajectories.

2.
Prev Med ; 173: 107613, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37437851

RESUMO

This article proposes a low-power, low-cost, programmable neural network processor for IoT applications. Aiming at the human inertial motion capture system, a human motion sensor detection method based on long- and short-term memory network is proposed. It provides a practical method for studying human motion detection based on mobile sensors and portable devices. Based on the research of human movement sensor detection method based on long and short-term memory network, this paper analyzes the current research status of sports psychological fatigue detection through the production mechanism, external performance, evidence and entertainment measures of sports psychological fatigue, in order to obtain a better solution. Quickly eliminate the mental fatigue of athletes. At the same time, improve and improve the physical and psychological functions of athletes of different qualities, and further improve sports performance. So far, the theoretical definition of sports mental fatigue and the operational definition of sports mental fatigue are still the center of discussion and research by sports psychologists. This article will also elaborate on the development of the most important concepts describing sports fatigue at home and abroad, using depth Neural network and mobile sensor technology have carried out research and exploration on the mental recognition of athletes in sports.


Assuntos
Esportes , Humanos , Redes Neurais de Computação , Movimento , Captura de Movimento , Exame Físico
3.
Sensors (Basel) ; 23(18)2023 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-37765844

RESUMO

Barrier coverage is a fundamental application in wireless sensor networks, which are widely used for smart cities. In applications, the sensors form a barrier for the intruders and protect an area through intrusion detection. In this paper, we study a new branch of barrier coverage, namely warning barrier coverage (WBC). Different from the classic barrier coverage, WBC has the inverse protect direction, which moves the sensors surrounding a dangerous region and protects any unexpected visitors by warning them away from the dangers. WBC holds a promising prospect in many danger keep out applications for smart cities. For example, a WBC can enclose the debris area in the sea and alarm any approaching ships in order to avoid their damaging propellers. One special feature of WBC is that the target region is usually dangerous and its boundary is previously unknown. Hence, the scattered mobile nodes need to detect the boundary and form the barrier coverage themselves. It is challenging to form these distributed sensor nodes into a barrier because a node can sense only the local information and there is no global information of the unknown region or other nodes. To this end, in response to the newly proposed issue of the formation of barrier cover, we propose a novel solution AutoBar for mobile sensor nodes to automatically form a WBC for smart cities. Notably, this is the first work to trigger the coverage problem of the alarm barrier, wherein the regional information is not pre-known. To pursue the high coverage quality, we theoretically derive the optimal distribution pattern of sensor nodes using convex theory. Based on the analysis, we design a fully distributed algorithm that enables nodes to collaboratively move toward the optimal distribution pattern. In addition, AutoBar is able to reorganize the barrier even if any node is broken. To validate the feasibility of AutoBar, we develop the prototype of the specialized mobile node, which consists of two kinds of sensors: one for boundary detection and another for visitor detection. Based on the prototype, we conduct extensive real trace-driven simulations in various smart city scenarios. Performance results demonstrate that AutoBar outperforms the existing barrier coverage strategies in terms of coverage quality, formation duration, and communication overhead.

4.
Sensors (Basel) ; 23(18)2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37765853

RESUMO

Many animal aggregations display remarkable collective coordinated movements on a large scale, which emerge as a result of distributed local decision-making by individuals. The recent advances in modelling the collective motion of animals through the utilisation of Nearest Neighbour rules, without the need for centralised coordination, resulted in the development of self-deployment algorithms in Mobile Sensor Networks (MSNs) to achieve various types of coverage essential for different applications. However, the energy consumption associated with sensor movement to achieve the desired coverage remains a significant concern for the majority of algorithms reported in the literature. In this paper, the Nearest Neighbour Node Deployment (NNND) algorithm is proposed to efficiently provide blanket coverage across a given area while minimising energy consumption and enhancing fault tolerance. In contrast to other algorithms that sequentially move sensors, NNND leverages the power of parallelism by employing multiple streams of sensor motions, each directed towards a distinct section of the area. The cohesion of each stream is maintained by adaptively choosing a leader for each stream while collision avoidance is also ensured. These properties contribute to minimising the travel distance within each stream, resulting in decreased energy consumption. Additionally, the utilisation of multiple leaders in NNND eliminates the presence of a single point of failure, hence enhancing the fault tolerance of the area coverage. The results of our extensive simulation study demonstrate that NNND not only achieves lower energy consumption but also a higher percentage of k-coverage.

5.
Sensors (Basel) ; 23(12)2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-37420648

RESUMO

This paper is focused on the use of radio frequency identification (RFID) technology operating at 125 kHz in a communication layer for a network of mobile and static nodes in marine environments, with a specific focus on the Underwater Internet of Things (UIoT). The analysis is divided into two main sections: characterizing the penetration depth at different frequencies and evaluating the probabilities of data reception between antennas of static nodes and a terrestrial antenna considering the line of sight (LoS) between antennas. The results indicate that the use of RFID technology at 125 kHz allows for data reception with a penetration depth of 0.6116 dB/m, demonstrating its suitability for data communication in marine environments. In the second part of the analysis, we examine the probabilities of data reception between static-node antennas at different heights and a terrestrial antenna at a specific height. Wave samples recorded in Playa Sisal, Yucatan, Mexico, are used for this analysis. The findings show a maximum reception probability of 94.5% between static nodes with an antenna at a height of 0 m and a 100% data reception probability between a static node and the terrestrial antenna when the static-node antennas are optimally positioned at a height of 1 m above sea level. Overall, this paper provides valuable insights into the application of RFID technology in marine environments for the UIoT, considering the minimization of impacts on marine fauna. The results suggest that by adjusting the characteristics of the RFID system, the proposed architecture can be effectively implemented to expand the monitoring area, considering variables both underwater and on the surface of the marine environment.


Assuntos
Dispositivo de Identificação por Radiofrequência , Dispositivo de Identificação por Radiofrequência/métodos , Redes de Comunicação de Computadores , Comunicação , Probabilidade , Tecnologia
6.
Sensors (Basel) ; 23(2)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36679602

RESUMO

Air pollution is still a major public health issue, which makes monitoring air quality a necessity. Mobile, low-cost air quality measurement devices can potentially deliver more coherent data for a region or municipality than stationary measurement stations are capable of due to their improved spatial coverage. In this study, air quality measurements obtained during field tests of our low-cost air quality sensor node (sensor-box) are presented and compared to measurements from the regional air quality monitoring network. The sensor-box can acquire geo-tagged measurements of several important pollutants, as well as other environmental quantities such as light and sound. The field test consists of sensor-boxes mounted on utility vehicles operated by municipalities located in Central Switzerland. Validation is performed against a measurement station that is part of the air quality monitoring network of Central Switzerland. Often not discussed in similar studies, this study tests and discusses several data filtering methods for the removal of outliers and unfeasible values prior to further analysis. The results show a coherent measurement pattern during the field tests and good agreement to the reference station during the side-by-side validation test.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Material Particulado/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Poluição do Ar/análise , Cidades
7.
Sensors (Basel) ; 23(7)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37050497

RESUMO

Wireless sensor networks (WSNs) have wide applicability in services used in daily life. However, for such networks, limited energy is a critical issue. The efficiency of a deployed sensor network may be subject to energy supply. Wireless rechargeable sensor networks have recently been proposed and discussed. Most related studies have involved applying static rechargeable sensors to an entire rechargeable environment or having mobile chargers patrol the environment to charge sensors within it. For partially rechargeable environments, improving the recharge efficiency and extending the lifetime of WSNs are considerable challenges. Scientists have devoted attention to energy transmission technologies and mobile sensor network (MSN) applications. In this paper, we propose a flexible charging protocol in which energy can be transmitted from certain energy supply regions to other regions in an MSN. Mobile rechargeable sensors are deployed to monitor the environment. To share energy in a certain region, the sensors move to replenish their energy and transmit energy to sensors outside the energy supply region. The efficiency of the proposed protocol is also discussed in the context of various situations. The evaluation results suggest that the flexible protocol is more efficient than other charging protocols in several situations.

8.
Sensors (Basel) ; 23(1)2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36616964

RESUMO

Training blind and visually impaired individuals is an important but often neglected aspect of Assistive Technology solutions (ATs) that can benefit from systems utilizing multiple sensors and hardware devices. Training serves a dual purpose as it not only enables the target group to effectively utilize the ATs but, also, helps in improving their low acceptance rate. In this paper, we present the design, implementation, and validation of a smartphone-based training application. It is a form of immersive system that enables users to learn the features of an outdoor blind pedestrian navigation application and, simultaneously, to help them develop long-term Orientation and Mobility (O&M) skills. The system consists of an Android application leveraging, as data sources, an external high-accuracy GPS sensor for real-time pedestrian mobility tracking, a second custom-made device attached to traffic lights for identifying their status, and an ultra-sonic sensor for detecting near-field obstacles on the navigation path of the users. The training version running as an Android application employs route simulation with audio and haptic feedback, is functionally equivalent to the main application, and was used in the context of specially designed user-centered training sessions. A Usability and User Experience (UX) evaluation revealed the positive attitude of the users towards the training version as well as their satisfaction with the skills acquired during their training sessions (SUS = 69.1, UEQ+ = 1.53). Further confirming the positive attitude was the conduct of a Recursive Neural Network (RNN)-based sentiment analysis on user responses with a score of 3 on a scale from 0 to 4. Finally, we conclude with the lessons learned and the proposal of general design guidelines concerning the observed lack of accessibility and non-universal interfaces.


Assuntos
Aplicativos Móveis , Pedestres , Pessoas com Deficiência Visual , Humanos , Smartphone , Análise de Sentimentos
9.
Entropy (Basel) ; 24(8)2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36010773

RESUMO

Location information is the primary feature of wireless sensor networks, and it is more critical for Mobile Wireless Sensor Networks (MWSN) to monitor specific targets. How to improve the localization accuracy is a challenging problem for researchers. In this paper, the Gaussian probability distribution model is applied to randomize the individual during the migration of the Adaptive Fish Migration Optimization (AFMO) algorithm. The performance of the novel algorithm is verified by the CEC 2013 test suit, and the result is compared with other famous heuristic algorithms. Compared to other well-known heuristics, the new algorithm achieves the best results in almost 21 of all 28 test functions. In addition, the novel algorithm significantly reduces the localization error of MWSN, the simulation results show that the accuracy of the new algorithm is more than 5% higher than that of other heuristic algorithms in terms of mobile sensor node positioning, and more than 100% higher than that without the heuristic algorithm.

10.
Nervenarzt ; 92(9): 925-932, 2021 Sep.
Artigo em Alemão | MEDLINE | ID: mdl-34251504

RESUMO

Social processes and their dysfunction, e.g. in autism spectrum disorders and psychotic disorders, have always been at the core of psychiatry. The last decades have led to impressive advances in our understanding of the underlying neurobiological mechanisms and also in the way we study and analyze social processes. Since their establishment, the research domain criteria have provided a powerful framework of how to operationalize and subdivide complex social processes in a way that it closely aligns to underlying neurobiological substrates while still enabling clinical approaches. In this article we summarize and discuss the most important findings for each of the four fundamental constructs of the social processes domain (a) binding and attachment, (b) social communication, (c) perception and understanding of self and (d) perception and understanding of others. We highlight the clinical relevance of the insights generated by the field of social neurosciences and discuss the resulting increasing importance of transdiagnostic concepts in applied research. Finally, we showcase three innovative research methods that build on the accelerating technological advances of the last decade and which will increasingly enable the study of complex social interactions in more realistic and ecologically valid settings.


Assuntos
Transtorno do Espectro Autista , Psiquiatria , Transtornos Psicóticos , Transtorno do Espectro Autista/diagnóstico , Humanos
11.
Sensors (Basel) ; 20(5)2020 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-32120879

RESUMO

We implemented a mobile phone application of the pentagon drawing test (PDT), called mPDT, with a novel, automatic, and qualitative scoring method for the application based on U-Net (a convolutional network for biomedical image segmentation) coupled with mobile sensor data obtained with the mPDT. For the scoring protocol, the U-Net was trained with 199 PDT hand-drawn images of 512ⅹ512 resolution obtained via the mPDT in order to generate a trained model, Deep5, for segmenting a drawn right or left pentagon. The U-Net was also trained with 199 images of 512ⅹ512 resolution to attain the trained model, DeepLock, for segmenting an interlocking figure. Here, the epochs were iterated until the accuracy was greater than 98% and saturated. The mobile senor data primarily consisted of x and y coordinates, timestamps, and touch-events of all the samples with a 20 ms sampling period. The velocities were then calculated using the primary sensor data. With Deep5, DeepLock, and the sensor data, four parameters were extracted. These included the number of angles (0-4 points), distance/intersection between the two drawn figures (0-4 points), closure/opening of the drawn figure contours (0-2 points), and tremors detected (0-1 points). The parameters gave a scaling of 11 points in total. The performance evaluation for the mPDT included 230 images from subjects and their associated sensor data. The results of the performance test indicated, respectively, a sensitivity, specificity, accuracy, and precision of 97.53%, 92.62%, 94.35%, and 87.78% for the number of angles parameter; 93.10%, 97.90%, 96.09%, and 96.43% for the distance/intersection parameter; 94.03%, 90.63%, 92.61%, and 93.33% for the closure/opening parameter; and 100.00%, 100.00%, 100.00%, and 100.00% for the detected tremor parameter. These results suggest that the mPDT is very robust in differentiating dementia disease subtypes and is able to contribute to clinical practice and field studies.

12.
Sensors (Basel) ; 20(21)2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33105574

RESUMO

Wearable technologies are transforming research in traditional paradigms of software and knowledge engineering. Among them, expert systems have the opportunity to deal with knowledge bases dynamically varying according to real-time data collected by position sensors, movement sensors, etc. However, it is necessary to design and implement opportune architectural solutions to avoid expert systems are responsible for data acquisition and representation. These solutions should be able to collect and store data according to expert systems desiderata, building a homogeneous framework where data reliability and interoperability among data acquisition, data representation and data use levels are guaranteed. To this aim, the wearable environment notion has been introduced to treat all those information sources as components of a larger platform; a middleware has been designed and implemented, namely WEAR-IT, which allows considering each sensor as a source of information that can be dynamically tied to an expert system application running on a smartphone. As an application example, the mHealth domain is considered.


Assuntos
Telemedicina , Dispositivos Eletrônicos Vestíveis , Humanos , Reprodutibilidade dos Testes , Smartphone
13.
Sensors (Basel) ; 21(1)2020 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-33374270

RESUMO

Internet of things (IoT) cloud-based applications deliver advanced solutions for smart cities to decrease traffic accidents caused by driver fatigue while driving on the road. Environmental conditions or driver behavior can ultimately lead to serious roadside accidents. In recent years, the authors have developed many low-cost, computerized, driver fatigue detection systems (DFDs) to help drivers, by using multi-sensors, and mobile and cloud-based computing architecture. To promote safe driving, these are the most current emerging platforms that were introduced in the past. In this paper, we reviewed state-of-the-art approaches for predicting unsafe driving styles using three common IoT-based architectures. The novelty of this article is to show major differences among multi-sensors, smartphone-based, and cloud-based architectures in multimodal feature processing. We discussed all of the problems that machine learning techniques faced in recent years, particularly the deep learning (DL) model, to predict driver hypovigilance, especially in terms of these three IoT-based architectures. Moreover, we performed state-of-the-art comparisons by using driving simulators to incorporate multimodal features of the driver. We also mention online data sources in this article to test and train network architecture in the field of DFDs on public available multimodal datasets. These comparisons assist other authors to continue future research in this domain. To evaluate the performance, we mention the major problems in these three architectures to help researchers use the best IoT-based architecture for detecting DFDs in a real-time environment. Moreover, the important factors of Multi-Access Edge Computing (MEC) and 5th generation (5G) networks are analyzed in the context of deep learning architecture to improve the response time of DFD systems. Lastly, it is concluded that there is a research gap when it comes to implementing the DFD systems on MEC and 5G technologies by using multimodal features and DL architecture.


Assuntos
Condução de Veículo , Internet das Coisas , Monitorização Fisiológica , Smartphone , Computação em Nuvem , Aprendizado de Máquina
14.
Sensors (Basel) ; 19(11)2019 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-31146473

RESUMO

The infotaxis scheme is a search strategy for a diffusive source, where the sensor platform is driven to reduce the uncertainty about the source through climbing the information gradient. The infotaxis scheme has been successfully applied in many source searching tasks and has demonstrated fast and stable searching capabilities. However, the infotaxis scheme focuses on gathering information to reduce the uncertainty down to zero, rather than chasing the most probable estimated source when a reliable estimation is obtained. This leads the sensor to spend more time exploring the space and yields a longer search path. In this paper, from the context of exploration-exploitation balance, a novel search scheme based on minimizing free energy that combines the entropy and the potential energy is proposed. The term entropy is implemented as the exploration to gather more information. The term potential energy, leveraging the distance to the estimated sources, is implemented as the exploitation to reinforce the chasing behavior with the receding of the uncertainty. It results in a faster effective search strategy by which the sensor determines its actions by minimizing the free energy rather than only the entropy in traditional infotaxis. Simulations of the source search task based on the computational plume verify the efficiency of the proposed strategy, achieving a shorter mean search time.

15.
Sensors (Basel) ; 19(2)2019 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-30641940

RESUMO

Given a set of sensors distributed on the plane and a set of Point of Interests (POIs) on a line segment, a primary task of the mobile wireless sensor network is to schedule covering the POIs by the sensors, such that each POI is monitored by at least one sensor. For balancing the energy consumption, we study the min-max line barrier target coverage (LBTC) problem which aims to minimize the maximum movement of the sensors from their original positions to their final positions at which the coverage is composed. We first proved that when the radius of the sensors are non-uniform integers, even 1-dimensional LBTC (1D-LBTC), a special case of LBTC in which the sensors are distributed on the line segment instead of the plane, is NP -hard. The hardness result is interesting, since the continuous version of LBTC to cover a given line segment instead of the POIs is known polynomial solvable. Then we present an exact algorithm for LBTC with uniform radius and sensors distributed on the plane, via solving the decision version of LBTC. We argue that our algorithm runs in time O ( n 2 log n ) and produces an optimal solution to LBTC. The time complexity compares favorably to the state-of-art runtime O ( n 3 log n ) of the continuous version which aims to cover a line barrier instead of the targets. Last but not the least, we carry out numerical experiments to evaluate the practical performance of the algorithms, which demonstrates a practical runtime gain comparing with an optimal algorithm based on integer linear programming.

16.
Sensors (Basel) ; 19(14)2019 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-31340452

RESUMO

In wireless sensor networks, energy efficiency is important because sensor nodes have limited energy. 3-dimensional group management medium access control (3-D GM-MAC) is an attractive MAC protocol for application to the Internet of Things (IoT) environment with various sensors. 3-D GM-MAC outperforms the existing MAC schemes in terms of energy efficiency, but has some stability issues. In this paper, methods that improve the stability and transmission performance of 3-D GM-MAC are proposed. A buffer management scheme for sensor nodes is newly proposed. Fixed sensor nodes that have a higher priority than the mobile sensor nodes in determining the group numbers that were added, and an advanced group number management scheme was introduced. The proposed methods were simulated and analyzed. The newly derived buffer threshold had a similar energy efficiency to the original 3-D GM-MAC, but improved performance in the aspects of data loss rate and data collection rate. Data delay was not included in the comparison factors as 3-D GM-MAC targets non-real-time applications. When using fixed sensor nodes, the number of group number resets is reduced by about 43.4% and energy efficiency increased by about 10%. Advanced group number management improved energy efficiency by about 23.4%. In addition, the advanced group number management with periodical group number resets of the entire sensor nodes showed about a 48.9% improvement in energy efficiency.

17.
Sensors (Basel) ; 19(7)2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30939739

RESUMO

Recent advances in big data technology collecting and analyzing large amounts of valuable data have attracted a lot of attention. When the information in non-reachable areas is required, IoT wireless sensor network technologies have to be applied. Sensors fundamentally have energy limitations, and it is almost impossible to replace energy-depleted sensors that have been deployed in an inaccessible region. Therefore, moving healthy sensors into the sensing hole will recover the faulty sensor area. In rough surfaces, hopping sensors would be more appropriate than wheel-driven mobile sensors. Sensor relocation algorithms to recover sensing holes have been researched variously in the past. However, the majority of studies to date have been inadequate in reality, since they are nothing but theoretical studies which assume that all the topology in the network is known and then computes the shortest path based on the nonrealistic backing up knowledge-The topology information. In this paper, we first propose a distributed hopping sensor relocation protocol. The possibility of movement of the hopping sensor is also considered to recover sensing holes and is not limited to applying the shortest path strategy. Finally, a performance analysis using OMNeT++ has demonstrated the solidification of the excellence of the proposed protocol.

18.
Entropy (Basel) ; 21(3)2019 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33267041

RESUMO

Mobile sensors are widely used in indoor positioning in recent years, but most methods require cumbersome calibration for precise positioning results, thus the paper proposes a new unsupervised indoor positioning (UIP) without cumbersome calibration. UIP takes advantage of environment features in indoor environments, as some indoor locations have their signatures. UIP considers these signatures as the landmarks, and combines dead reckoning with them in a simultaneous localization and mapping (SLAM) frame to reduce positioning errors and convergence time. The test results prove that the system can achieve accurate indoor positioning, which highlights its prospect as an unconventional method of indoor positioning.

19.
Sensors (Basel) ; 18(8)2018 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-30081518

RESUMO

This paper deals with the problem of environmental monitoring by designing a cooperative control scheme for mobile sensor networks. The proposed cooperative control scheme includes three main modules: a wireless communication module, a direction decision module, and a motion control module. In the wireless communication module, an event-based communication rule is proposed, which means that mobile sensor nodes do not send their positions, velocities, and the data of environmental attributes to the other sensor nodes in real-time for the coordination and control of mobile sensor networks. Due to using the event-based communication rule, the communication bandwidth can be saved. In the direction decision module, a radial basis function network is used to model the monitored environment and is updated in terms of the sampled environmental data and the environmental data from the other sensor nodes by the wireless communication module. The updated environment model is used to guide the mobile sensor network to move towards the region of interest in order to efficiently model the distribution map of environmental attributes, such as temperature, salinity, and pH values for the monitored environment. In the motion control module, a finite-time consensus control approach is proposed to enable the sensor nodes to quickly change their movement directions in light of the gradient information from the environment model. As a result of using the event-based communication rule in the wireless communication module, the proposed control approach can also lower the updating times of the control signal. In particular, the proposed cooperative control scheme is still efficient under the directed wireless communication situation. Finally, the effectiveness of the proposed cooperative control scheme is illustrated for the problem of environmental monitoring.

20.
Sensors (Basel) ; 18(9)2018 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-30200257

RESUMO

In this paper, we present algorithms for predicting a spatio-temporal random field measured by mobile robotic sensors under uncertainties in localization and measurements. The spatio-temporal field of interest is modeled by a sum of a time-varying mean function and a Gaussian Markov random field (GMRF) with unknown hyperparameters. We first derive the exact Bayesian solution to the problem of computing the predictive inference of the random field, taking into account observations, uncertain hyperparameters, measurement noise, and uncertain localization in a fully Bayesian point of view. We show that the exact solution for uncertain localization is not scalable as the number of observations increases. To cope with this exponentially increasing complexity and to be usable for mobile sensor networks with limited resources, we propose a scalable approximation with a controllable trade-off between approximation error and complexity to the exact solution. The effectiveness of the proposed algorithms is demonstrated by simulation and experimental results.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA