RESUMO
Life science researchers use computational models to articulate and test hypotheses about the behavior of biological systems. Semantic annotation is a critical component for enhancing the interoperability and reusability of such models as well as for the integration of the data needed for model parameterization and validation. Encoded as machine-readable links to knowledge resource terms, semantic annotations describe the computational or biological meaning of what models and data represent. These annotations help researchers find and repurpose models, accelerate model composition and enable knowledge integration across model repositories and experimental data stores. However, realizing the potential benefits of semantic annotation requires the development of model annotation standards that adhere to a community-based annotation protocol. Without such standards, tool developers must account for a variety of annotation formats and approaches, a situation that can become prohibitively cumbersome and which can defeat the purpose of linking model elements to controlled knowledge resource terms. Currently, no consensus protocol for semantic annotation exists among the larger biological modeling community. Here, we report on the landscape of current annotation practices among the COmputational Modeling in BIology NEtwork community and provide a set of recommendations for building a consensus approach to semantic annotation.
Assuntos
Disciplinas das Ciências Biológicas , Biologia Computacional/métodos , Simulação por Computador , Bases de Dados Factuais , Semântica , Humanos , SoftwareRESUMO
Computational modeling has well-established utility in the study of cardiovascular hemodynamics, with applications in medical research and, increasingly, in clinical settings to improve the diagnosis and treatment of cardiovascular diseases. Most cardiovascular models developed to date have been of the adult circulatory system; however, the perinatal period is unique as cardiovascular physiology undergoes drastic changes from the fetal circulation, during the birth transition, and into neonatal life. There may also be further complications in this period: for example, preterm birth (defined as birth before 37 completed weeks of gestation) carries risks of short-term cardiovascular instability and is associated with increased lifetime cardiovascular risk. Here, we review computational models of the cardiovascular system in early life, their applications to date and potential improvements and enhancements of these models. We propose a roadmap for developing an open-source cardiovascular model that spans the fetal, perinatal, and postnatal periods. This article is categorized under: Cardiovascular Diseases > Computational Models Cardiovascular Diseases > Biomedical Engineering Congenital Diseases > Computational Models.