Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Cancer Immunol Immunother ; 65(5): 537-49, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26961085

RESUMO

The dramatic clinical benefit of immune checkpoint blockade for a fraction of cancer patients suggests the potential for further clinical benefit in a broader cancer patient population by combining immune checkpoint inhibitors with active immunotherapies. The anti-tumor efficacy of MVA-BN-HER2 poxvirus-based active immunotherapy alone or in combination with CTLA-4 checkpoint blockade was investigated in a therapeutic CT26-HER-2 lung metastasis mouse model. MVA-BN-HER2 immunotherapy significantly improved the median overall survival compared to untreated controls or CTLA-4 blockade alone (p < 0.001). Robust synergistic efficacy was achieved with the combination therapy (p < 0.01). Improved survival following MVA-BN-HER2 administration was accompanied by increased tumor infiltration by HER-2-specific cytotoxic T lymphocytes (CTL). These tumor-specific CTL had characteristics similar to antiviral CTL, including strong expression of activation markers and co-expression of IFNγ and TNFα. Combination with CTLA-4 blockade significantly increased the magnitude of HER-2-specific T cell responses, with a higher proportion co-expressing TNFα and/or IL-2 with IFNγ. Furthermore, in mice treated with MVA-BN-HER2 (alone or in combination with CTLA-4 blockade), the inducible T cell co-stimulator (ICOS) protein was expressed predominantly on CD4 and CD8 effector T cells but not on regulatory T cells (T(reg)). In contrast, mice left untreated or treated solely with CTLA-4 blockade harbored elevated ICOS(+) Treg, a phenotype associated with highly suppressive activity. In conclusion, poxvirus-based active immunotherapy induced robust tumor infiltration by highly efficient effector T cells. Combination with CTLA-4 immune checkpoint blockade amplified this response resulting in synergistically improved efficacy. These hypothesis-generating data may help elucidate evidence of enhanced clinical benefit from combining CTLA-4 blockade with poxvirus-based active immunotherapy.


Assuntos
Antígeno CTLA-4/imunologia , Vacinas Anticâncer/imunologia , Neoplasias Experimentais/imunologia , Linfócitos T Citotóxicos/imunologia , Vaccinia virus/imunologia , Animais , Anticorpos/imunologia , Anticorpos/farmacologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Antígeno CTLA-4/antagonistas & inibidores , Vacinas Anticâncer/farmacologia , Linhagem Celular Tumoral , Citocinas/imunologia , Citocinas/metabolismo , Sinergismo Farmacológico , Feminino , Citometria de Fluxo , Humanos , Imunoterapia/métodos , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/prevenção & controle , Neoplasias Pulmonares/secundário , Camundongos Endogâmicos BALB C , Neoplasias Experimentais/patologia , Neoplasias Experimentais/terapia , Análise de Sobrevida , Linfócitos T Citotóxicos/efeitos dos fármacos , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Vaccinia virus/genética
2.
Vaccines (Basel) ; 11(9)2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37766168

RESUMO

Hematopoietic cell transplantation (HCT) and chimeric antigen receptor (CAR)-T cell patients are immunocompromised, remain at high risk following SARS-CoV-2 infection, and are less likely than immunocompetent individuals to respond to vaccination. As part of the safety lead-in portion of a phase 2 clinical trial in patients post HCT/CAR-T for hematological malignancies (HM), we tested the immunogenicity of the synthetic modified vaccinia Ankara-based COVID-19 vaccine COH04S1 co-expressing spike (S) and nucleocapsid (N) antigens. Thirteen patients were vaccinated 3-12 months post HCT/CAR-T with two to four doses of COH04S1. SARS-CoV-2 antigen-specific humoral and cellular immune responses, including neutralizing antibodies to ancestral virus and variants of concern (VOC), were measured up to six months post vaccination and compared to immune responses in historical cohorts of naïve healthy volunteers (HV) vaccinated with COH04S1 and naïve healthcare workers (HCW) vaccinated with the FDA-approved mRNA vaccine Comirnaty® (Pfizer, New York, NY, USA). After one or two COH04S1 vaccine doses, HCT/CAR-T recipients showed a significant increase in S- and N-specific binding antibody titers and neutralizing antibodies with potent activity against SARS-CoV-2 ancestral virus and VOC, including the highly immune evasive Omicron XBB.1.5 variant. Furthermore, vaccination with COH04S1 resulted in a significant increase in S- and N-specific T cells, predominantly CD4+ T lymphocytes. Elevated S- and N-specific immune responses continued to persist at six months post vaccination. Furthermore, both humoral and cellular immune responses in COH04S1-vaccinated HCT/CAR-T patients were superior or comparable to those measured in COH04S1-vaccinated HV or Comirnaty®-vaccinated HCW. These results demonstrate robust stimulation of SARS-CoV-2 S- and N-specific immune responses including cross-reactive neutralizing antibodies by COH04S1 in HM patients post HCT/CAR-T, supporting further testing of COH04S1 in immunocompromised populations.

3.
Front Immunol ; 13: 901372, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35651616

RESUMO

T cell-mediated immunity plays a central role in the control and clearance of intracellular Coxiella burnetii infection, which can cause Q fever. Therefore, we aimed to develop a novel T cell-targeted vaccine that induces pathogen-specific cell-mediated immunity to protect against Q fever in humans while avoiding the reactogenicity of the current inactivated whole cell vaccine. Human HLA class II T cell epitopes from C. burnetii were previously identified and selected by immunoinformatic predictions of HLA binding, conservation in multiple C. burnetii isolates, and low potential for cross-reactivity with the human proteome or microbiome. Epitopes were selected for vaccine inclusion based on long-lived human T cell recall responses to corresponding peptides in individuals that had been naturally exposed to the bacterium during a 2007-2010 Q fever outbreak in the Netherlands. Multiple viral vector-based candidate vaccines were generated that express concatemers of selected epitope sequences arranged to minimize potential junctional neo-epitopes. The vaccine candidates caused no antigen-specific reactogenicity in a sensitized guinea pig model. A subset of the vaccine epitope peptides elicited antigenic recall responses in splenocytes from C57BL/6 mice previously infected with C. burnetii. However, immunogenicity of the vaccine candidates in C57BL/6 mice was dominated by a single epitope and this was insufficient to confer protection against an infection challenge, highlighting the limitations of assessing human-targeted vaccine candidates in murine models. The viral vector-based vaccine candidates induced antigen-specific T cell responses to a broader array of epitopes in cynomolgus macaques, establishing a foundation for future vaccine efficacy studies in this large animal model of C. burnetii infection.


Assuntos
Coxiella burnetii , Febre Q , Animais , Anticorpos Antibacterianos , Vacinas Bacterianas , Modelos Animais de Doenças , Epitopos de Linfócito T , Cobaias , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Peptídeos , Febre Q/prevenção & controle , Linfócitos T
4.
Front Immunol ; 12: 645210, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33959127

RESUMO

Vaccination is one of the most efficient public healthcare measures to fight infectious diseases. Nevertheless, the immune mechanisms induced in vivo by vaccination are still unclear. The route of administration, an important vaccination parameter, can substantially modify the quality of the response. How the route of administration affects the generation and profile of immune responses is of major interest. Here, we aimed to extensively characterize the profiles of the innate and adaptive response to vaccination induced after intradermal, subcutaneous, or intramuscular administration with a modified vaccinia virus Ankara model vaccine in non-human primates. The adaptive response following subcutaneous immunization was clearly different from that following intradermal or intramuscular immunization. The subcutaneous route induced a higher level of neutralizing antibodies than the intradermal and intramuscular vaccination routes. In contrast, polyfunctional CD8+ T-cell responses were preferentially induced after intradermal or intramuscular injection. We observed the same dichotomy when analyzing the early molecular and cellular immune events, highlighting the recruitment of cell populations, such as CD8+ T lymphocytes and myeloid-derived suppressive cells, and the activation of key immunomodulatory gene pathways. These results demonstrate that the quality of the vaccine response induced by an attenuated vaccine is shaped by early and subtle modifications of the innate immune response. In this immunization context, the route of administration must be tailored to the desired type of protective immune response. This will be achieved through systems vaccinology and mathematical modeling, which will be critical for predicting the efficacy of the vaccination route for personalized medicine.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Linfócitos T CD8-Positivos/imunologia , Células Supressoras Mieloides/imunologia , Vacinação , Vaccinia virus/imunologia , Vacínia/imunologia , Vacinas Virais/farmacologia , Animais , Injeções Intradérmicas , Injeções Intramusculares , Macaca fascicularis , Masculino , Vacinas Atenuadas/farmacologia
5.
Front Immunol ; 11: 598847, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33542715

RESUMO

Venezuelan, eastern and western equine encephalitis viruses (EEV) can cause severe disease of the central nervous system in humans, potentially leading to permanent damage or death. Yet, no licensed vaccine for human use is available to protect against these mosquito-borne pathogens, which can be aerosolized and therefore pose a bioterror threat in addition to the risk of natural outbreaks. Using the mouse aerosol challenge model, we evaluated the immunogenicity and efficacy of EEV vaccines that are based on the modified vaccinia Ankara-Bavarian Nordic (MVA-BN®) vaccine platform: three monovalent vaccines expressing the envelope polyproteins E3-E2-6K-E1 of the respective EEV virus, a mixture of these three monovalent EEV vaccines (Triple-Mix) as a first approach to generate a multivalent vaccine, and a true multivalent alphavirus vaccine (MVA-WEV, Trivalent) encoding the polyproteins of all three EEVs in a single non-replicating MVA viral vector. BALB/c mice were vaccinated twice in a four-week interval and samples were assessed for humoral and cellular immunogenicity. Two weeks after the second immunization, animals were exposed to aerosolized EEV. The majority of vaccinated animals exhibited VEEV, WEEV, and EEEV neutralizing antibodies two weeks post-second administration, whereby the average VEEV neutralizing antibodies induced by the monovalent and Trivalent vaccine were significantly higher compared to the Triple-Mix vaccine. The same statistical difference was observed for VEEV E1 specific T cell responses. However, all vaccinated mice developed comparable interferon gamma T cell responses to the VEEV E2 peptide pools. Complete protective efficacy as evaluated by the prevention of mortality and morbidity, lack of clinical signs and viremia, was demonstrated for the respective monovalent MVA-EEV vaccines, the Triple-Mix and the Trivalent single vector vaccine not only in the homologous VEEV Trinidad Donkey challenge model, but also against heterologous VEEV INH-9813, WEEV Fleming, and EEEV V105-00210 inhalational exposures. These EEV vaccines, based on the safe MVA vector platform, therefore represent promising human vaccine candidates. The trivalent MVA-WEV construct, which encodes antigens of all three EEVs in a single vector and can potentially protect against all three encephalitic viruses, is currently being evaluated in a human Phase 1 trial.


Assuntos
Vírus da Encefalite Equina do Leste/imunologia , Vírus da Encefalite Equina Venezuelana/imunologia , Vírus da Encefalite Equina do Oeste/imunologia , Encefalomielite Equina/prevenção & controle , Vacinas Virais/imunologia , Aerossóis , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Proteção Cruzada/imunologia , Modelos Animais de Doenças , Encefalomielite Equina/imunologia , Encefalomielite Equina/mortalidade , Feminino , Imunização , Camundongos , Mortalidade , Testes de Neutralização , Vacinas de DNA , Vacinas Virais/administração & dosagem
6.
Vaccines (Basel) ; 8(2)2020 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-32443536

RESUMO

Classical approaches to African swine fever virus (ASFV) vaccine development have not been successful; inactivated virus does not provide protection and use of live attenuated viruses generated by passage in tissue culture had a poor safety profile. Current African swine fever (ASF) vaccine research focuses on the development of modified live viruses by targeted gene deletion or subunit vaccines. The latter approach would be differentiation of vaccinated from infected animals (DIVA)-compliant, but information on which viral proteins to include in a subunit vaccine is lacking. Our previous work used DNA-prime/vaccinia-virus boost to screen 40 ASFV genes for immunogenicity, however this immunization regime did not protect animals after challenge. Here we describe the induction of both antigen and ASFV-specific antibody and cellular immune responses by different viral-vectored pools of antigens selected based on their immunogenicity in pigs. Immunization with one of these pools, comprising eight viral-vectored ASFV genes, protected 100% of pigs from fatal disease after challenge with a normally lethal dose of virulent ASFV. This data provide the basis for the further development of a subunit vaccine against this devastating disease.

7.
Virol Sin ; 35(2): 212-226, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31833037

RESUMO

Vectored vaccines based on highly attenuated modified vaccinia Ankara (MVA) are reported to be immunogenic, tolerant to pre-existing immunity, and able to accommodate and stably maintain very large transgenes. MVA is usually produced on primary chicken embryo fibroblasts, but production processes based on continuous cell lines emerge as increasingly robust and cost-effective alternatives. An isolate of a hitherto undescribed genotype was recovered by passage of a non-plaque-purified preparation of MVA in a continuous anatine suspension cell line (CR.pIX) in chemically defined medium. The novel isolate (MVA-CR19) replicated to higher infectious titers in the extracellular volume of suspension cultures and induced fewer syncytia in adherent cultures. We now extend previous studies with the investigation of the point mutations in structural genes of MVA-CR19 and describe an additional point mutation in a regulatory gene. We furthermore map and discuss an extensive rearrangement of the left telomer of MVA-CR19 that appears to have occurred by duplication of the right telomer. This event caused deletions and duplications of genes that may modulate immunologic properties of MVA-CR19 as a vaccine vector. Our characterizations also highlight the exceptional genetic stability of plaque-purified MVA: although the phenotype of MVA-CR19 appears to be advantageous for replication, we found that all genetic markers that differentiate wildtype and MVA-CR19 are stably maintained in passages of recombinant viruses based on either wildtype or MVA-CR.


Assuntos
Vetores Genéticos , Instabilidade Genômica , Deleção de Sequência , Vaccinia virus/genética , Vaccinia virus/isolamento & purificação , Replicação Viral , Animais , Linhagem Celular , Patos , Genótipo , Mutação Puntual , Recombinação Genética , Ensaio de Placa Viral
8.
Vaccines (Basel) ; 8(3)2020 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-32610561

RESUMO

The sequence of non-structural protein NS1 of bluetongue virus (BTV), which contains immunodominant CD8+ T cell epitopes, is highly conserved among BTV serotypes, and has therefore become a major tool in the development of a universal BTV vaccine. In this work, we have engineered multiserotype BTV vaccine candidates based on recombinant chimpanzee adenovirus (ChAdOx1) and modified vaccinia virus Ankara (MVA) vectors expressing the NS1 protein of BTV-4 or its truncated form NS1-Nt. A single dose of ChAdOx1-NS1 or ChAdOx1-NS1-Nt induced a moderate CD8+ T cell response and protected IFNAR(-/-) mice against a lethal dose of BTV-4/MOR09, a reassortant strain between BTV-1 and BTV-4, although the animals showed low viremia after infection. Furthermore, IFNAR(-/-) mice immunized with a single dose of ChAdOx1-NS1 were protected after challenge with a lethal dose of BTV-8 in absence of viremia nor clinical signs. Additionally, the heterologous prime-boost ChAdOx1/MVA expressing NS1 or NS1-Nt elicited a robust NS1 specific CD8+ T cell response and protected the animals against BTV-4/MOR09 even 16 weeks after immunization, with undetectable levels of viremia at any time after challenge. Subsequently, the best immunization strategy based on ChAdOx1/MVA-NS1 was assayed in sheep. Non-immunized animals presented fever and viremia levels up to 104 PFU/mL after infection. In contrast, although viremia was detected in immunized sheep, the level of virus in blood was 100 times lower than in non-immunized animals in absence of clinical signs.

9.
Vaccines (Basel) ; 8(1)2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-32059491

RESUMO

In vitro neutralizing antibodies have been often correlated with protection against Rift Valley fever virus (RVFV) infection. We have reported previously that a single inoculation of sucrose-purified modified vaccinia Ankara (MVA) encoding RVFV glycoproteins (rMVAGnGc) was sufficient to induce a protective immune response in mice after a lethal RVFV challenge. Protection was related to the presence of glycoprotein specific CD8+ cells, with a low-level detection of in vitro neutralizing antibodies. In this work we extended those observations aimed to explore the role of humoral responses after MVA vaccination and to study the contribution of each glycoprotein antigen to the protective efficacy. Thus, we tested the efficacy and immune responses in BALB/c mice of recombinant MVA viruses expressing either glycoprotein Gn (rMVAGn) or Gc (rMVAGc). In the absence of serum neutralizing antibodies, our data strongly suggest that protection of vaccinated mice upon the RVFV challenge can be achieved by the activation of cellular responses mainly directed against Gc epitopes. The involvement of cellular immunity was stressed by the fact that protection of mice was strain dependent. Furthermore, our data suggest that the rMVA based single dose vaccination elicits suboptimal humoral immune responses against Gn antigen since disease in mice was exacerbated upon virus challenge in the presence of rMVAGnGc or rMVAGn immune serum. Thus, Gc-specific cellular immunity could be an important component in the protection after the challenge observed in BALB/c mice, contributing to the elimination of infected cells reducing morbidity and mortality and counteracting the deleterious effect of a subneutralizing antibody immune response.

10.
Vaccine ; 37(36): 5404-5413, 2019 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-31331770

RESUMO

Lassa fever remains the most imported viral haemorrhagic fever in Europe and is responsible for 5000 deaths per year throughout Western Africa. There is no vaccine and treatment is often ineffective. We have developed a vaccine based on modified Vaccinia Ankara expressing the nucleoprotein from Lassa virus (MVALassaNP). This study investigated the immunogenicity (in mice) and efficacy (in guinea pigs) of the MVALassaNP vaccine as a prime/boost or single vaccination regime. ELISA and ELISpot assays confirmed humoral and T-cell immunity following both a prime and prime/boost vaccination, with the prime/boost regime producing a statistically increased response compared to a prime only vaccine (P < 0.0001). The vaccine offered protection in guinea pigs against disease manifestations after challenge with virulent Lassa virus. Clinical signs, weight loss and temperature increases were observed in all animals receiving a control MVA vaccine, after challenge with Lassa virus. In contrast, no clinical signs, fever or weight loss were observed in any of the MVALassaNP vaccinated animals demonstrating that both a single immunisation, and prime/boost regime confer protection against disease progression. In conclusion, the MVALassaNP vaccine candidate elicits an immune response, demonstrates efficacy against Lassa virus disease and is suitable for further preclinical and clinical development.


Assuntos
Vírus Lassa/imunologia , Nucleoproteínas/imunologia , Vacínia/imunologia , Vacínia/prevenção & controle , Animais , Linhagem Celular , Cricetinae , Ensaio de Imunoadsorção Enzimática , Feminino , Cobaias , Vacinação , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/uso terapêutico , Vaccinia virus/imunologia , Vaccinia virus/patogenicidade
11.
Methods Mol Biol ; 2023: 63-71, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31240670

RESUMO

This chapter describes the simple, rapid, and inexpensive preparation of template DNA from poxvirus-infected cells, plaques, or crude virus stocks for PCR amplification. This technique is reliable and robust and only requires centrifugation, detergent, and protease treatment. The resulting DNA template preparation is suitable for PCR amplification for screening viruses, cloning, transfection, and DNA sequencing.


Assuntos
Clonagem Molecular/métodos , DNA Viral/genética , Reação em Cadeia da Polimerase/métodos , Poxviridae/genética , Reprodutibilidade dos Testes
12.
Vaccine ; 35(33): 4245-4254, 2017 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-28625523

RESUMO

Eczema vaccinatum is a severe and occasionally lethal complication of smallpox vaccine, characterized by systemic viral dissemination, distant from the initial inoculation site of the vaccine. A major risk factor for eczema vaccinatum is a background of atopic dermatitis, a chronic, common allergic, relapsing disorder, manifested by dry and inflamed skin, itchy rash, Th2 biased immune response and hypersensitivity to various antigens. Unlike the severe manifestations of eczema vaccinatum in humans, current models present only mild symptoms that limits examination of potential therapeutics for eczema vaccinatum. The atopic dermatitis and eczema vaccinatum models we present here, are the first to simulate the severity of the diseases in humans. Indeed, dermatitic mice display persistent severe dermatitis, characterized by dry and inflamed skin with barrier dysfunction, epidermal hyperplasia and significant elevation of serum IgE. By exposing atopic dermatitis mice to ectromelia virus, we generated eczema vaccinatum that mimic the human disease better than known eczema vaccinatum models. Similarly to humans, eczematous mice displayed enlarged and disseminated skin lesions, which correlated with elevated viral load. Cidofovir and antiviral antibodies conferred protection even when treatment started at a late eczematous stage. Moreover, we are the first to demonstrate that despite a severe background of atopic dermatitis, modified vaccinia Ankara virus (MVA) vaccination protects against lethal ectromelia virus exposure. We finally show that protection by MVA vaccination is dependent on CD4+ T cells and is associated with significant activation of CD8+ cytotoxic T cells and induction of humoral immunity.


Assuntos
Dermatite Atópica/complicações , Modelos Animais de Doenças , Vírus da Ectromelia/imunologia , Erupção Variceliforme de Kaposi/tratamento farmacológico , Erupção Variceliforme de Kaposi/prevenção & controle , Vacina Antivariólica/administração & dosagem , Vacina Antivariólica/efeitos adversos , Animais , Anticorpos Antivirais/administração & dosagem , Antivirais/administração & dosagem , Linfócitos T CD4-Positivos , Cidofovir , Citosina/administração & dosagem , Citosina/análogos & derivados , Vírus da Ectromelia/patogenicidade , Feminino , Humanos , Erupção Variceliforme de Kaposi/patologia , Camundongos , Organofosfonatos/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA