Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Mol Biol Evol ; 40(7)2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37414545

RESUMO

Plants have evolved sex chromosomes independently in many lineages, and loss of separate sexes can also occur. In this study, we assembled a monoecious recently hexaploidized persimmon (Diospyros kaki), in which the Y chromosome has lost the maleness-determining function. Comparative genomic analysis of D. kaki and its dioecious relatives uncovered the evolutionary process by which the nonfunctional Y chromosome (or Ymonoecy) was derived, which involved silencing of the sex-determining gene, OGI, approximately 2 million years ago. Analyses of the entire X and Ymonoecy chromosomes suggested that D. kaki's nonfunctional male-specific region of the Y chromosome (MSY), which we call a post-MSY, has conserved some characteristics of the original functional MSY. Specifically, comparing the functional MSY in Diospyros lotus and the nonfunctional "post-MSY" in D. kaki indicated that both have been rapidly rearranged, mainly via ongoing transposable element bursts, resembling structural changes often detected in Y-linked regions, some of which can enlarge the nonrecombining regions. The recent evolution of the post-MSY (and possibly also MSYs in dioecious Diospyros species) therefore probably reflects these regions' ancestral location in a pericentromeric region, rather than the presence of male-determining genes and/or genes controlling sexually dimorphic traits.


Assuntos
Diospyros , Diospyros/genética , Cromossomo Y , Cromossomos Sexuais/genética
2.
Proc Biol Sci ; 290(2011): 20232137, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38018108

RESUMO

In dioecious populations, males and females may evolve different trait values to increase fitness through their respective sexual functions. Because hermaphrodites express both sexual functions, resolving sexual conflict is potentially more difficult for them. Here, we show that hermaphrodite plants can partially resolve sexual conflict by expressing different trait values in different male and female modules (e.g. different flowers, inflorescences, branches etc.). We analysed the flowering phenology, sex allocation and selection gradients on floral traits of flowers of the andromonoecious plant Pulsatilla alpina, which produces both bisexual and male flowers. Our results indicate that strong protogyny prevents early bisexual flowers from profiting from high siring opportunities early in the reproductive season at a time when male flowers could achieve high siring success. The production of unisexual male flowers thus resolves this sexual conflict because it allows the flowers to express their male function without waiting until after the female function has been performed. Our study illustrates the resolution of sexual conflict arising from phenological constraints via modular divergence in sex allocation. We discuss the extent to which modular variation in sex allocation in the context of other sexual systems may be similarly explained.


Assuntos
Flores , Reprodução , Inflorescência , Plantas , Fenótipo
3.
New Phytol ; 238(6): 2512-2523, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36866707

RESUMO

The Salicaceae, including Populus and Salix, are dioecious perennials that utilize different sex determination systems. This family provides a useful system to better understand the evolution of dioecy and sex chromosomes. Here, a rare monoecious genotype of Salix purpurea, 94003, was self- and cross-pollinated and progeny sex ratios were used to test hypotheses on possible mechanisms of sex determination. To delimit genomic regions associated with monoecious expression, the 94003 genome sequence was assembled and DNA- and RNA-Seq of progeny inflorescences was performed. Based on alignments of progeny shotgun DNA sequences to the haplotype-resolved monoecious 94003 genome assembly and reference male and female genomes, a 1.15 Mb sex-linked region on Chr15W was confirmed to be absent in monecious plants. Inheritance of this structural variation is responsible for the loss of a male-suppressing function in what would otherwise be genetic females (ZW), resulting in monoecy (ZWH or WWH ), or lethality, if homozygous (WH WH ). We present a refined, two-gene sex determination model for Salix purpurea, mediated by ARR17 and GATA15 that is different from the single-gene ARR17-mediated system in the related genus Populus.


Assuntos
Populus , Salix , Salix/genética , Populus/genética , Genótipo , Haplótipos/genética , Cromossomos Sexuais
4.
Proc Biol Sci ; 289(1986): 20220919, 2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36350202

RESUMO

Direct measures of sexual selection in plants are rare and complicated by immobility and modular growth. For plants, instantaneous measures of fitness typically scale with size, but covariances between size and mating success could obscure the detection of sexual selection. We measured the magnitude of sexual selection in a monoecious and a dioecious population of the clonal plant Sagittaria latifolia using Bateman gradients (ßss). These gradients were calculated using parentage analysis and residual regression to account for the effects of shoot and clone size on mating and reproductive success. In both populations, (i) there was greater promiscuity via male function than via female function and (ii) ßss were positive, with significant associations between mating and reproductive success for male but not female function. Moreover, estimated ßss were similar for the monoecious and dioecious populations, possibly because non-overlapping female and male sex phases in hermaphroditic S. latifolia reduced the scope for interference between sex functions during mating. This study builds on previous studies of selection on plant mating traits, and of sexual selection under experimental conditions, by showing that sexual selection can operate in natural populations of plants, including populations of hermaphrodites.


Assuntos
Sagittaria , Seleção Sexual , Reprodução
5.
Ann Bot ; 129(1): 79-86, 2022 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-34668537

RESUMO

BACKGROUND AND AIMS: Plant reproductive traits are widely understood to be responsive to the selective pressures exerted by pollinators, but there is also increasing evidence for an important role for antagonists such as herbivores in shaping these traits. Many dioecious species show leaky sex expression, with males and females occasionally producing flowers of the opposite sex. Here, we asked to what extent leakiness in sex expression in Mercurialis annua (Euphorbiaceae) might also be plastically responsive to simulated herbivory. This is important because enhanced leakiness in dioecious populations could lead to a shift in both the mating system and in the conditions for transitions between combined and separate sexes. METHODS: We examined the effect of simulated herbivory on the sexual expression of males and females of M. annua in two experiments in which different levels of simulated herbivory led to enhanced leakiness in both sexes. KEY RESULTS: We showed that leaky sex expression in both males and females of the wind-pollinated dioecious herb M. annua is enhanced in response to simulated herbivory, increasing the probability for and the degree of leakiness in both sexes. We also found that leakiness was greater in larger females but not in larger males. CONCLUSIONS: We discuss hypotheses for a possible functional link between herbivory and leaky sex expression, and consider what simulated herbivory-induced leakiness might imply for the evolutionary ecology of plant reproductive systems, especially the breakdown of dioecy and the evolution of hermaphroditism.


Assuntos
Euphorbiaceae , Polinização , Euphorbiaceae/fisiologia , Flores , Herbivoria , Polinização/fisiologia , Reprodução
6.
Plant J ; 103(4): 1548-1560, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32436252

RESUMO

Ethylene is the key regulator of sex determination in monoecious species of the family Cucurbitaceae. This hormone determines which individual floral meristems develop as female or male flowers and the female flowering transition. The sex determination genes discovered so far code for ethylene biosynthesis enzymes, but little is known about the importance of ethylene signaling components. In this paper we characterize two novel ethylene-insensitive mutations (etr1a-1 and etr1b) which block the female flowering transition of Cucurbita pepo; this makes plants produce male flowers indefinitely (androecy). Two missense mutations in the ethylene-binding domain of the ethylene receptors CpETR1A or CpETR1B were identified as the causal mutations of these phenotypes by using whole-genome resequencing. The distinctive phenotypes of single and double mutants for four etr mutations have demonstrated that the final level of ethylene insensitivity depends upon the strength and dosage of mutant alleles for at least three cooperating ETR genes, and that the level of ethylene insensitivity determines the final sex phenotype of the plant. The sex phenotype ranges from monoecy in ethylene-sensitive wild-type plants to androecy in the strongest ethylene-insensitive ones, via andromonoecy in partially ethylene-insensitive plants. The induction of female flowering transition was found to be associated with upregulation of CpACS11, CpACO2 and CpACS27, three ethylene biosynthesis genes required for female flower development. A model is proposed herein, integrating both ethylene biosynthesis and receptor genes into the genetic network which regulates sex determination in C. pepo.


Assuntos
Cucurbita/crescimento & desenvolvimento , Flores/crescimento & desenvolvimento , Proteínas de Plantas/genética , Receptores de Superfície Celular/genética , Cucurbita/genética , Etilenos/metabolismo , Flores/genética , Frutas/crescimento & desenvolvimento , Genes de Plantas/genética , Genes de Plantas/fisiologia , Mutação/genética , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/fisiologia , Receptores de Superfície Celular/fisiologia
7.
Ecol Lett ; 24(9): 1835-1847, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34121305

RESUMO

Angiosperm sexual systems are fundamental to the evolution and distribution of plant diversity, yet spatiotemporal patterns in angiosperm sexual systems and their drivers remain poorly known. Using data on sexual systems and distributions of 68453 angiosperm species, we present the first global maps of sexual system frequencies and evaluate sexual system evolution during the Cenozoic. Frequencies of dioecy and monoecy increase with latitude, while hermaphrodites are more frequent in warm and arid regions. Transitions to dioecy from other states were higher than to hermaphroditism, but transitions away from dioecy increased since the Cenozoic, suggesting that dioecy is not an evolutionary end point. Transitions between hermaphroditism and dioecy increased, while transitions to monoecy decreased with paleo-temperature when paleo-temperature >0℃. Our study demonstrates the biogeography of angiosperm sexual systems from a macroecological perspective, and enhances our understanding of plant diversity patterns and their response to climate change.


Assuntos
Magnoliopsida , Evolução Biológica , Plantas , Reprodução
8.
Ann Bot ; 128(2): 205-215, 2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-33949659

RESUMO

BACKGROUND AND AIMS: Dioecy has evolved up to 5000 times in angiosperms, despite the potentially high intrinsic costs to unisexuality. Dioecy prevents inbreeding, which is especially relevant on isolated islands when gene pools are small. Dioecy is also associated with certain dispersal traits, such as fruit size and type. However, the influence of dioecy on other life history traits and island distribution remains poorly understood. Here, we test the effect of dioecy on palm (Arecaceae) speciation rates, fruit size and frequency on islands. METHODS: We used phylogenetic comparative methods to estimate the ancestral state of the sexual system and its impact on speciation rates and fruit size. Frequency of sexual systems, effect of insularity on the probability of being dioecious, and phylogenetic clustering of island dioecious vs. mainland species were inferred. Lastly, we determined the interplay of insularity and sexual system on speciation rates. KEY RESULTS: Palms repeatedly evolved different sexual systems (dioecy, monoecy and polygamy) from a hermaphrodite origin. Differences in speciation rates and fruit size among the different sexual systems were not identified. An effect of islands on the probability of the palms being dioecious was also not found. However, we found a high frequency and phylogenetic clustering of dioecious palms on islands, which were not correlated with higher speciation rates. CONCLUSIONS: The high frequency and phylogenetic clustering may be the result of in situ radiation and suggest an 'island effect' for dioecious palms, which was not explained by differential speciation rates. This island effect also cannot be attributed to long-distance dispersal due to the lack of fruit size difference among sexual systems, and particularly because palm dispersal to islands is highly constrained by the interaction between the sizes of fruit and frugivores. Taken together, we suggest that trait flexibility in sexual system evolution and the in situ radiation of dioecious lineages are the underlying causes of the outstanding distribution of palms on islands.


Assuntos
Arecaceae , Magnoliopsida , Arecaceae/genética , Evolução Biológica , Ilhas , Fenótipo , Filogenia , Reprodução
9.
Am J Bot ; 108(9): 1595-1611, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34478152

RESUMO

PREMISE: Celtis is the most species-rich genus of Cannabaceae, an economically important family. Celtis species have been described as wind-pollinated and andromonoecious. However, the andromonoecy of Celtis has been debated because there are reports of monoclinous flowers with non-opening anthers on short filaments. Our objective was to study the floral morphogenesis of Celtis to establish the breeding system and to better understand the developmental patterns that lead to the formation of reduced flowers in the genus. METHODS: Flowers and floral buds of Celtis species were studied using scanning electron microscopy, high-resolution x-ray computed tomography, and light microscopy. RESULTS: All flowers initiate stamens and carpels during early floral development, but either stamens or carpels abort during later stages. Thus, at anthesis, flowers are either functionally pistillate or functionally staminate. In pistillate flowers, stamens abort late and become staminodes with normal-looking anthers. These anthers have no functional endothecium and, in most of the species studied, produce no viable pollen grains. The gynoecium is pseudomonomerous, and its vascularization is similar in the sampled species. In staminate flowers, the gynoecium aborts early resulting in small pistillodes. No vestiges of petals were found. CONCLUSIONS: The species studied are monoecious and not andromonoecious as described earlier. The absence of petals, the carpel and stamen abortion, and the pseudomonomerous gynoecium result in the reduced flowers of Celtis species. The use of high-resolution x-ray computed tomography was essential for a more accurate interpretation of ovary vascularization, confirming the pseudomonomerous structure of the gynoecium.


Assuntos
Cannabaceae , Ulmaceae , Flores , Morfogênese , Melhoramento Vegetal
10.
Ecol Lett ; 22(3): 486-497, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30618173

RESUMO

Dioecy has often broken down in flowering plants, yielding functional hermaphroditism. We reasoned that evolutionary transitions from dioecy to functional hermaphroditism must overcome an inertia of sexual dimorphism, because modified males or females will express the opposite sexual function for which their phenotypes have been optimised. We tested this prediction by assessing the siring success of monoecious individuals of the plant Mercurialis annua with an acquired male function but that are phenotypically still female-like. We found that pollen dispersed by female-like monoecious individuals was ~ 1/3 poorer at siring outcrossed offspring than pollen from monoecious individuals with an alternative male-like inflorescence. We conclude that whereas dioecy might evolve from functional hermaphroditism by conferring upon individuals certain benefits of sexual specialisation, reversion from a strategy of separate sexes to one of combined sexes must overcome constraints imposed by the advantages of sexual dimorphism. The breakdown of dioecy must therefore often be limited to situations in which outcrossing cannot be maintained and where selection favours a capacity for inbreeding by functional hermaphrodites.


Assuntos
Evolução Biológica , Magnoliopsida , Caracteres Sexuais , Feminino , Humanos , Masculino , Melhoramento Vegetal , Pólen , Reprodução
12.
Am J Bot ; 106(5): 722-732, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31081926

RESUMO

PREMISE: Plants with separate sexes often show "inconstant" or "leaky" sex expression, with females or males producing a few flowers of the opposite sex. The frequency and degree of such inconstancy may reflect residual hermaphroditic sex allocation after an evolutionary transition from combined to separate sexes. Sex inconstancy also represents a possible first step in the breakdown of dioecy back to hermaphroditism. In the Mercurialis annua (Euphorbiaceae) species complex, monoecy and androdioecy have evolved from dioecy in polyploid populations. Here, we characterize patterns of sex inconstancy in dioecious M. annua and discuss how sex inconstancy may have contributed to the breakdown of separate sexes in the genus. METHODS: We measured sex inconstancy in three common gardens of M. annua over 2 years using a modification of Lloyd's phenotypic gender in terms of frequency and degree, with the degree calibrating inconstancy against the sex allocation of constant males and constant females, yielding a measure of gender that does not depend on the distribution of gender in the population. RESULTS: Unusually for dioecious plants, the frequency of sex inconstancy in M. annua was greater in females, but its degree was greater for males in the 2 years of study. We suggest that this pattern is consistent with the maintenance of inconstancy in dioecious M. annua by selection for reproductive assurance under mate limitation. CONCLUSIONS: Our study illustrates the utility of decomposing measures of sex inconstancy into its frequency and its degree and throws new light on the origin of variation in sexual systems in Mercurialis.


Assuntos
Evolução Biológica , Euphorbiaceae/fisiologia , Polinização , Flores/fisiologia
13.
Am J Bot ; 105(6): 977-985, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29917233

RESUMO

PREMISE OF THE STUDY: The strength of plant-herbivore interactions varies in space and time, but the factors that explain this variation are poorly understood. Several lines of research suggest that variation in plant reproductive systems and latitude may explain resistance against herbivores, but how these factors jointly affect plant-herbivore interactions has not been investigated in detail. We examined the effects of latitude, sexual system, and plant gender on herbivory in Sagittaria latifolia, an aquatic plant in which populations are typically monoecious (separate female and male flowers) or dioecious (separate female and male plants). METHODS: We surveyed 43 populations of S. latifolia between 42 and 48° N in Ontario, Canada. In each population, we recorded the sexual system and obtained estimates of herbivore damage to ramets of known gender (i.e. female, male, or hermaphrodite) by the weevil Listronotus appendiculatus, the principal herbivore of S. latifolia. Herbivore damage was quantified as the percent leaf area removed by adult L. appendiculatus weevils, and the abundance of larvae feeding within flowering stalks, which was correlated with the amount of damage by herbivores to the inflorescence. KEY RESULTS: Leaf herbivory significantly decreased with increasing latitude but did not vary with sexual system or plant gender. By contrast, larvae were more abundant in dioecious populations and on female plants, corresponding to increased stem damage, providing evidence for sex-biased larval abundance in S. latifolia. These effects of sexual system and gender on larval abundance were strongest at lower latitudes. CONCLUSIONS: Our study found latitudinal variation in leaf herbivory and sex-biased resistance to weevil larvae that feed on the reproductive tissues of S. latifolia, which is predicted to be a necessary condition for herbivory to influence the evolution of dioecy.


Assuntos
Evolução Biológica , Gametogênese Vegetal , Herbivoria , Organismos Hermafroditas , Sagittaria/fisiologia , Animais , Clima , Larva , Folhas de Planta , Densidade Demográfica , Gorgulhos
14.
Mol Ecol ; 23(12): 2914-28, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24815077

RESUMO

Clonality is often implicated in models of the evolution of dioecy, but few studies have explicitly compared clonal structure between plant sexual systems, or between the sexes in dioecious populations. Here, we exploit the occurrence of monoecy and dioecy in clonal Sagittaria latifola (Alismataceae) to evaluate two main hypotheses: (i) clone sizes are smaller in monoecious than dioecious populations, because of constraints imposed on clone size by costs associated with geitonogamy; (ii) in dioecious populations, male clones are larger and flower more often than female clones because of sex-differential reproductive costs. Differences in clone size and flowering could result in discordance between ramet- and genet-based sex ratios. We used spatially explicit sampling to address these hypotheses in 10 monoecious and 11 dioecious populations of S. latifolia at the northern range limit in Eastern North America. In contrast to our predictions, monoecious clones were significantly larger than dioecious clones, probably due to their higher rates of vegetative growth and corm production, and in dioecious populations, there was no difference in clone size between females and males; ramet- and genet-based sex ratios were therefore highly correlated. Genotypic diversity declined with latitude for both sexual systems, but monoecious populations exhibited lower genotypic richness. Differences in life history between the sexual systems of S. latifolia appear to be the most important determinants of clonal structure and diversity.


Assuntos
Variação Genética , Genética Populacional , Sagittaria/genética , Flores/fisiologia , Ontário , Quebeque , Reprodução , Sagittaria/fisiologia
15.
Ann Bot ; 114(7): 1483-95, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25006179

RESUMO

BACKGROUND AND AIMS: Sexual dimorphism, at both the flower and plant level, is widespread in the palm family (Arecaceae), in contrast to the situation in angiosperms as a whole. The tribe Chamaedoreeae is of special interest for studies of the evolution of sexual expression since dioecy appears to have evolved independently twice in this group from a monoecious ancestor. In order to understand the underlying evolutionary pathways, it is important to obtain detailed information on flower structure and development in each of the main clades. METHODS: Dissection and light and scanning electron microscopy were performed on developing flowers of Gaussia attenuata, a neotropical species belonging to one of the three monoecious genera of the tribe. KEY RESULTS: Like species of the other monoecious genera of the Chamaedoreeae (namely Hyophorbe and Synechanthus), G. attenuata produces a bisexual flower cluster known as an acervulus, consisting of a row of male flowers with a basal female flower. Whereas the sterile androecium of female flowers terminated its development at an early stage of floral ontogeny, the pistillode of male flowers was large in size but with no recognizable ovule, developing for a longer period of time. Conspicuous nectary differentiation in the pistillode suggested a possible role in pollinator attraction. CONCLUSIONS: Gaussia attenuata displays a number of floral characters that are likely to be ancestral to the tribe, notably the acervulus flower cluster, which is conserved in the other monoecious genera and also (albeit in a unisexual male form) in the dioecious genera (Wendlandiella and a few species of Chamaedorea). Comparison with earlier data from other genera suggests that large nectariferous pistillodes and early arrest in staminode development might also be regarded as ancestral characters in this tribe.


Assuntos
Arecaceae/crescimento & desenvolvimento , Flores/crescimento & desenvolvimento , Arecaceae/anatomia & histologia , Arecaceae/genética , Evolução Biológica , Flores/anatomia & histologia , Flores/genética , Microscopia Eletrônica de Varredura , Óvulo Vegetal/anatomia & histologia , Óvulo Vegetal/genética , Óvulo Vegetal/crescimento & desenvolvimento , Filogenia , Reprodução , Especificidade da Espécie
16.
Am J Bot ; 101(10): 1588-96, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25326608

RESUMO

UNLABELLED: • PREMISE OF THE STUDY: Separating sexual function between different individuals carries risks, especially for sedentary organisms. Nevertheless, many land plants have unisexual gametophytes or sporophytes. This study brings together data and theoretical insights from research over the past 20 yr on the occurrence and frequency of plant sexual systems, focusing on the flowering plants.• METHODS: A list of genera with dioecious species, along with other information, is made available (http://www.umsl.edu/∼renners/). Frequencies of other sexual systems are tabulated, and data on the genetic regulation, ecological context, and theoretical benefits of dioecy reviewed.• KEY RESULTS: There are 15600 dioecious angiosperms in 987 genera and 175 families, or 5-6% of the total species (7% of genera, 43% of families), with somewhere between 871 to 5000 independent origins of dioecy. Some 43% of all dioecious angiosperms are in just 34 entirely dioecious clades, arguing against a consistent negative influence of dioecy on diversification. About 31.6% of the dioecious species are wind-pollinated, compared with 5.5-6.4% of nondioecious angiosperms. Also, 1.4% of all angiosperm genera contain dioecious and monoecious species, while 0.4% contain dioecious and gynodioecious species. All remaining angiosperm sexual systems are rare. Chromosomal sex determination is known from 40 species; environmentally modulated sex allocation is common. Few phylogenetic studies have focused on the evolution of dioecy.• CONCLUSIONS: The current focus is on the genetic mechanisms underlying unisexual flowers and individuals. Mixed strategies of sexual and vegetative dispersal, together with plants' sedentary life style, may often favor polygamous systems in which sexually inconstant individuals can persist. Nevertheless, there are huge entirely dioecious clades of tropical woody plants.


Assuntos
Evolução Biológica , Flores/fisiologia , Magnoliopsida/genética , Filogenia , Polinização , Cromossomos de Plantas , Flores/anatomia & histologia , Magnoliopsida/fisiologia , Autofertilização
17.
Am J Bot ; 101(2): 308-17, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24491344

RESUMO

PREMISE OF THE STUDY: A major benefit conferred by monoecy is the ability to alter floral sex ratio in response to selection. In monoecious species that produce flowers of a given sex at set positions on the inflorescence, floral sex ratio may be related to inflorescence architecture. We studied the loci underlying differences in inflorescence architecture between two monoecious Begonia species and related this to floral sex ratios. METHODS: We performed trait comparisons and quantitative trait locus (QTL) mapping in a segregating backcross population between Central American Begonia plebeja and B. conchifolia. We focused on traits related to inflorescence architecture, sex ratios, and other reproductive traits. KEY RESULTS: The inflorescence branching pattern of B. conchifolia was more asymmetric than B. plebeja, which in turn affects the floral sex ratio. Colocalizing QTLs of moderate effect influenced both the number of male flowers and the fate decisions of axillary meristems, demonstrating the close link between inflorescence architecture and sex ratio. Additional QTLs were found for stamen number (30% variance explained, VE) and pollen sterility (12.3% VE). CONCLUSIONS: One way in which Begonia species develop different floral sex ratios is through modifications of their inflorescence architecture. The potential pleiotropic action of QTL on inflorescence branching and floral sex ratios may have major implications for trait evolution and responses to selection. The presence of a single QTL of large effect on stamen number may allow rapid divergence for this key floral trait. We propose candidate loci for stamen number and inflorescence branching for future characterization.


Assuntos
Begoniaceae/genética , Evolução Biológica , Inflorescência/anatomia & histologia , Fenótipo , Locos de Características Quantitativas , Característica Quantitativa Herdável , Razão de Masculinidade , Begoniaceae/anatomia & histologia , Begoniaceae/fisiologia , Mapeamento Cromossômico , Cruzamentos Genéticos , Flores , Variação Genética , Meristema , Pólen , Especificidade da Espécie
18.
Am J Bot ; 100(6): 1022-37, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23538873

RESUMO

Most models for dioecy in flowering plants assume that dioecy arises directly from hermaphroditism through a series of independent feminizing and masculinizing mutations that become chromosomally linked. However, dioecy appears to evolve most frequently through monoecious grades. The major genetic models do not explain the evolution of unisexual flowers in monoecious and submonoecious populations, nor do they account for environmentally induced sexual plasticity. In this review, we explore the roles of environmental stress and hormones on sex determination, and propose a model that can explain the evolution of dioecy through monoecy, and the mechanisms of environmental sex determination. Environmental stresses elicit hormones that allow plants to mediate the negative effects of the stresses. Many of these same hormones are involved in the regulation of floral developmental genes. Recent studies have elucidated the mechanisms whereby these hormones interact and can act as switchpoints in regulatory pathways. Consequently, differential concentrations of plant hormones can regulate whole developmental pathways, providing a mechanism for differential development within isogenic individuals such as seen in monoecious plants. Sex-determining genes in such systems will evolve to generate clusters of coexpressed suites. Coexpression rather than coinheritance of gender-specific genes will define the sexual developmental fate. Therefore, selection for gender type will drive evolution of the regulatory sequences of such genes rather than their synteny. Subsequent mutations to hyper- or hyposensitive alleles within the hormone response pathway can result in segregating dioecious populations. Simultaneously, such developmental systems will remain sensitive to external stimuli that modify hormone responses.


Assuntos
Adaptação Fisiológica/genética , Evolução Biológica , Reguladores de Crescimento de Plantas/metabolismo , Fenômenos Fisiológicos Vegetais/genética , Plantas/genética , Adaptação Fisiológica/fisiologia , Reguladores de Crescimento de Plantas/genética , Reprodução/genética , Reprodução/fisiologia
19.
Philos Trans R Soc Lond B Biol Sci ; 378(1876): 20220283, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-36934747

RESUMO

Anisogamy-the size dimorphism of gametes-is the defining difference between the male and female sexual strategies. Game-theoretic thinking led to the first convincing explanation for the evolutionary origins of anisogamy in the 1970s. Since then, formal game-theoretic models have continued to refine our understanding of when and why anisogamy should evolve. Such models typically presume that the earliest anisogamous organisms had separate sexes. However, in most taxa, there is no empirical evidence to support this assumption. Here, we present a model of the coevolution of gamete size and sex allocation, which allows for anisogamy to emerge alongside either hermaphroditism or separate sexes. We show that hermaphroditic anisogamy can evolve directly from isogamous ancestors when the average size of spawning groups is small and fertilization is relatively efficient. Sex allocation under hermaphroditism becomes increasingly female-biased as group size decreases and the degree of anisogamy increases. When spawning groups are very small, our model also predicts the existence of complex isogamous organisms in which individuals allocate resources equally to two large gamete types. We discuss common, but potentially unwarranted, assumptions in the literature that could be relaxed in future models. This article is part of the theme issue 'Half a century of evolutionary games: a synthesis of theory, application and future directions'.


Assuntos
Células Germinativas , Reprodução , Humanos , Masculino , Feminino , Modelos Biológicos , Caracteres Sexuais , Comportamento Sexual , Evolução Biológica
20.
R Soc Open Sci ; 10(9): 231117, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37771970

RESUMO

Many plants express their female and male sex roles at different times (dichogamy), with important consequences for mating. Dichogamy can yield mate limitation via biased floral sex ratios, particularly at the beginning and end of the flowering season when many plants simultaneously function as the same sex. This form of mate limitation should be reduced if plants adjust their allocations to female versus male sex functions in a manner that tracks seasonal variability in mating opportunities. For example, under protogyny (i.e. dichogamy with female function expressed first) plants with male-biased sex expression should have enhanced mating opportunities early in the flowering season as other plants begin to flower (in female sex phase). We quantified seasonal changes in sex allocation, patterns of mate availability and realized siring success in a population of protogynous Sagittaria latifolia. Our results were consistent with previous findings that seasonal changes in sex allocation should compensate for lost mating opportunities under the temporally variable mating environments caused by dichogamy. However, patterns of siring success in the population were inconsistent with this interpretation. We suggest that realized siring success might depend more strongly on spatial than on temporal aspects of mate availability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA