Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Neurochem Res ; 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39105899

RESUMO

Noradrenaline (NA) levels are altered during the first hours and several days after cortical injury. NA modulates motor functional recovery. The present study investigated whether iron-induced cortical injury modulated noradrenergic synthesis and dopamine beta-hydroxylase (DBH) activity in response to oxidative stress in the brain cortex, pons and cerebellum of the rat. Seventy-eight rats were divided into two groups: (a) the sham group, which received an intracortical injection of a vehicle solution; and (b) the injured group, which received an intracortical injection of ferrous chloride. Motor deficits were evaluated for 20 days post-injury. On the 3rd and 20th days, the rats were euthanized to measure oxidative stress indicators (reactive oxygen species (ROS), reduced glutathione (GSH) and oxidized glutathione (GSSG)) and catecholamines (NA, dopamine (DA)), plus DBH mRNA and protein levels. Our results showed that iron-induced brain cortex injury increased noradrenergic synthesis and DBH activity in the brain cortex, pons and cerebellum at 3 days post-injury, predominantly on the ipsilateral side to the injury, in response to oxidative stress. A compensatory increase in contralateral noradrenergic activity was observed, but without changes in the DBH mRNA and protein levels in the cerebellum and pons. In conclusion, iron-induced cortical injury increased the noradrenergic response in the brain cortex, pons and cerebellum, particularly on the ipsilateral side, accompanied by a compensatory response on the contralateral side. The oxidative stress was countered by antioxidant activity, which favored functional recovery following motor deficits.

2.
J Stroke Cerebrovasc Dis ; 29(5): 104668, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32184024

RESUMO

BACKGROUND: The purpose of this study was to evaluate the natural recovery process and tissue injury associated with cerebral hemorrhage and cerebral infarction, which were induced to the same degree, in the striatum of rats. METHODS: Male Wistar rats were divided into intracerebral hemorrhagic (ICH) and ischemia (ISC) groups, with the ICH group injected with a collagenase solution and the ISC group injected with an endothelin-1 solution. In the SHAM group, physiological saline was injected. Motor function was evaluated by the ladder and forelimb placing tests on the first day before surgery and the first, seventh, and 14th day after surgery. On day 15 after surgery, brain tissue was harvested and frozen sections were prepared. Nissl staining was performed, and the tissue loss, ventricular, and hemispheric volumes were analyzed. RESULTS: On the first day of surgery, the ICH group had significantly decreased motor function compared with the ISC group. However, subsequent recovery of motor function was faster in the ICH group than that in the ISC group. In addition, tissue loss and hemispheric volumes were significantly higher in the ISC group than those in the ICH group, whereas the ventricular volume was significantly higher in the ICH group than that in the ISC group. CONCLUSIONS: Collectively, our findings indicate that, in ICH and ISC where the brain damage involves the same site and is approximately the same size, motor function is recovered faster in ICH than that in ISC. As such, differences in secondary degeneration are likely affected.


Assuntos
Hemorragia dos Gânglios da Base/fisiopatologia , Infarto Cerebral/fisiopatologia , Corpo Estriado/irrigação sanguínea , Corpo Estriado/fisiopatologia , Membro Anterior/inervação , Atividade Motora , Animais , Hemorragia dos Gânglios da Base/patologia , Infarto Cerebral/patologia , Corpo Estriado/patologia , Modelos Animais de Doenças , Masculino , Ratos Wistar , Recuperação de Função Fisiológica , Fatores de Tempo
3.
J Stroke Cerebrovasc Dis ; 28(11): 104288, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31395423

RESUMO

PURPOSE: The present study was to observe the therapeutic efficiency of Clematichinenoside (AR) on cerebral ischemic injury in rats, especially on neurological and motor function recovery and to explore the underlying mechanism. METHODS: Following middle cerebral artery occlusion/reperfusion (MCAO/R) surgery, rats were treated orally with 32, 16, and 8 mg/kg AR respectively for 14 days during which cerebral injury was evaluated and proinflammatory factors tumor necrosis factor-α and interleukin-6 as well as neurotrophic factors brain-derived neurotrophic factor and Neurotrophin-3 levels were determined with ELISA kits. Immunohistochemical analysis on number of neurons and reactive astrocytes in the hippocampus was to demonstrate the effect of AR on neuronal survival. Motor, learning, and memory recovery were assessed by Morris water maze, passive avoidance experiment, and rotatory rod test. Neuroprotection and anti-inflammation-related Notch and nuclear factor-κB (NF-κB) signaling pathways were analyzed by PCR and Western blot techniques on mammalian achaete-scute homologs1, Notch-1, intracellular Notch receptor domain, Jagged-1, transcription factor hairy, enhancer of split1 (Hes1), as well as the nuclear import of NF-κB in hippocampus. RESULTS: AR administration reduced cerebral injury in rats exposed to MCAO/R and after treatment of AR for 14 days, proinflammatory reaction was inhibited, with neuronal survival rate raised and motor function recovery facilitated. PCR and WB analysis of Notch/NF-κB signaling pathway revealed the inhibitory effect of AR on pathway related components. CONCLUSIONS: AR is beneficial to recovery of neurological and motor function in rats after cerebral ischemic injury via inhibiting Notch/NF-κB pathway.


Assuntos
Anti-Inflamatórios/farmacologia , Comportamento Animal/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Infarto da Artéria Cerebral Média/tratamento farmacológico , Atividade Motora/efeitos dos fármacos , NF-kappa B/metabolismo , Fármacos Neuroprotetores/farmacologia , Receptor Notch1/metabolismo , Saponinas/farmacologia , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Hipocampo/metabolismo , Hipocampo/patologia , Hipocampo/fisiopatologia , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/fisiopatologia , Infarto da Artéria Cerebral Média/psicologia , Masculino , Memória/efeitos dos fármacos , Neurotrofina 3/metabolismo , Ratos Sprague-Dawley , Recuperação de Função Fisiológica , Transdução de Sinais
4.
Biochem Biophys Res Commun ; 489(2): 171-178, 2017 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-28549587

RESUMO

Through a combination of biomaterials and stem cells, tissue engineering strategies for restoring and regenerating damaged peripheral nerves have recently been used to meet the challenges posed by nerve injury. In a previous study, we revealed a new way to induce neuronal differentiation of stem cells based on the temporally sequential use of miR-218 and Fibroblast Growth Factor 2 (FGF2) in vitro (FGF2-miR-218 induction approach). In the present study, we sought to investigate the application of this novel approach in repairing sciatic nerve damage in vivo. The results showed that compared with randomly oriented nanofibers, nanofibers in an aligned orientation more favored stem cell growth and elongation. Stem cells (neuronally differentiated adipose-derived mesenchymal stem cells (ASCs)) treated with the FGF2-miR-218 induction approach and integrated with 3D aligned orientation nanofibers structures as artificial nerve grafts were implanted into 10 mm transected rat sciatic nerves in vivo. The test results of immunohistochemical staining and motor function restoration indicated that the FGF2-miR-218 induction approach combined with the 3D nanofiber scaffolds facilitated the nerve regeneration. Thus, this approach could be an effective tissue engineering method for recovery of nerve damage.


Assuntos
Tecido Adiposo/citologia , Nanofibras/química , Regeneração Nervosa , Neurogênese , Neurônios/citologia , Nervo Isquiático/fisiologia , Células-Tronco/citologia , Alicerces Teciduais/química , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Fator 2 de Crescimento de Fibroblastos/administração & dosagem , Fator 2 de Crescimento de Fibroblastos/farmacologia , MicroRNAs/administração & dosagem , MicroRNAs/farmacologia , Regeneração Nervosa/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Poliésteres/química , Poliésteres/farmacologia , Ratos , Ratos Sprague-Dawley , Nervo Isquiático/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos
5.
Eur J Neurosci ; 43(3): 451-62, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26332731

RESUMO

Motor axons in peripheral nerves have the capacity to regenerate after injury. However, full functional motor recovery rarely occurs clinically, and this depends on the nature and location of the injury. Recent preclinical findings suggest that there may be a time after nerve injury where, while regrowth to the muscle successfully occurs, there is nevertheless a failure to re-establish motor function, suggesting a possible critical period for synapse reformation. We have now examined the temporal and anatomical determinants for the re-establishment of motor function after prolonged neuromuscular junction (NMJ) denervation in rats and mice. Using both sciatic transection-resuture and multiple nerve crush models in rats and mice to produce prolonged delays in reinnervation, we show that regenerating fibres reach motor endplates and anatomically fully reform the NMJ even after extended periods of denervation. However, in spite of this remarkably successful anatomical regeneration, after 1 month of denervation there is a consistent failure to re-establish functional recovery, as assessed by behavioural and electrophysiological assays. We conclude that this represents a failure in re-establishment of synaptic function, and the possible mechanisms responsible are discussed, as are their clinical implications.


Assuntos
Neurônios Motores/fisiologia , Regeneração Nervosa , Junção Neuromuscular/fisiologia , Traumatismos dos Nervos Periféricos/reabilitação , Nervo Isquiático/fisiologia , Animais , Denervação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Traumatismos dos Nervos Periféricos/cirurgia , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica , Nervo Isquiático/cirurgia
6.
Transl Neurosci ; 15(1): 20220342, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38860225

RESUMO

Motor commands are transmitted from the motor cortical areas to effectors mostly via the corticospinal (CS) projection. Several subcortical motor nuclei also play an important role in motor control, the subthalamic nucleus, the red nucleus, the reticular nucleus and the superior colliculus. These nuclei are influenced by motor cortical areas via respective corticofugal projections, which undergo complex adaptations after motor trauma (spinal cord/motor cortex injury) or motor disease (Parkinson), both in the absence or presence of putative treatments, as observed in adult macaque monkeys. A dominant effect was a nearly complete suppression of the corticorubral projection density and a strong downregulation of the corticoreticular projection density, with the noticeable exception in the latter case of a considerable increase of projection density following spinal cord injury, even enhanced when an anti-NogoA antibody treatment was administered. The effects were diverse and less prominent on the corticotectal and corticosubthalamic projections. The CS projection may still be the major efferent pathway through which motor adaptations can take place after motor trauma or disease. However, the parallel supraspinal motor corticofugal projections may also participate in connectional adaptations supporting the functional recovery of motor abilities, representing potential targets for future clinical strategies, such as selective electrical neurostimulations.

7.
Acta Biomater ; 180: 308-322, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38615813

RESUMO

Motor functional improvement represents a paramount treatment objective in the post-spinal cord injury (SCI) recovery process. However, neuronal cell death and axonal degeneration following SCI disrupt neural signaling, impeding the motor functional recovery. In this study, we developed a multifunctional decellularized spinal cord-derived extracellular matrix (dSECM), crosslinked with glial cell-derived neurotrophic factor (GDNF), to promote differentiation of stem cells into neural-like cells and facilitate axonogenesis and remyelination. After decellularization, the immunogenic cellular components were effectively removed in dSECM, while the crucial protein components were retained which supports stem cells proliferation and differentiation. Furthermore, sustained release of GDNF from the dSECM facilitated axonogenesis and remyelination by activating the PI3K/Akt and MEK/Erk pathways. Our findings demonstrate that the dSECM-GDNF platform promotes neurogenesis, axonogenesis, and remyelination to enhance neural signaling, thereby yielding promising therapeutic effects for motor functional improvement after SCI. STATEMENT OF SIGNIFICANCE: The dSECM promotes the proliferation and differentiation of MSCs or NSCs by retaining proteins associated with positive regulation of neurogenesis and neuronal differentiation, while eliminating proteins related to negative regulation of neurogenesis. After crosslinking, GDNF can be gradually released from the platform, thereby promoting neural differentiation, axonogenesis, and remyelination to enhance neural signaling through activation of the PI3K/Akt and MEK/Erk pathways. In vivo experiments demonstrated that dSECM-GDNF/MSC@GelMA hydrogel exhibited the ability to facilitate neuronal regeneration at 4 weeks post-surgery, while promoting axonogenesis and remyelination at 8 weeks post-surgery, ultimately leading to enhanced motor functional recovery. This study elucidates the ability of neural regeneration strategy to promote motor functional recovery and provides a promising approach for designing multifunctional tissue for SCI treatment.


Assuntos
Matriz Extracelular , Fator Neurotrófico Derivado de Linhagem de Célula Glial , Neurogênese , Remielinização , Traumatismos da Medula Espinal , Animais , Feminino , Ratos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Matriz Extracelular/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/farmacologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/citologia , Neurogênese/efeitos dos fármacos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica/efeitos dos fármacos , Remielinização/efeitos dos fármacos , Traumatismos da Medula Espinal/terapia , Traumatismos da Medula Espinal/patologia
8.
Exp Neurol ; 380: 114892, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39047809

RESUMO

T-cell death-associated gene 8 (TDAG8), a G-protein-coupled receptor sensing physiological or weak acids, regulates inflammatory responses. However, its role in traumatic brain injury (TBI) remains unknown. Our recent study showed that delayed CO2 postconditioning (DCPC) has neuroreparative effects after TBI. We hypothesized that activating astrocytic TDAG8 is a key mechanism for DCPC. WT and TDAG8-/- mice received DCPC daily by transiently inhaling 10% CO2 after controlled cortical impact (CCI). HBAAV2/9-GFAP-m-TDAG8-3xflag-EGFP was used to overexpress TDAG8 in astrocytes. The beam walking test, mNSS, immunofluorescence and Golgi-Cox staining were used to evaluate motor function, glial activation and dendritic plasticity. DCPC significantly improved motor function; increased total dendritic length, neuronal complexity and spine density; inhibited overactivation of astrocytes and microglia; and promoted the expression of astrocytic brain-derived neurotrophic factor in WT but not TDAG8-/- mice. Overexpressing TDAG8 in astrocytes surrounding the lesion in TDAG8-/- mice restored the beneficial effects of DCPC. Although the effects of DCPC on Days 14-28 were much weaker than those of DCPC on Days 3-28 in WT mice, these effects were further enhanced by overexpressing astrocytic TDAG8. Astrocytic TDAG8 is a key target of DCPC for TBI rehabilitation. Its overexpression is a strategy that broadens the therapeutic window and enhances the effects of DCPC.

9.
Am J Transl Res ; 14(11): 7726-7743, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36505285

RESUMO

OBJECTIVE: To investigate the role of Osteopontin (OPN) in mediating macroautophagy, autophagy, and neuroplasticity in the ipsilateral hemisphere after stroke. METHODS: Focal stroke was induced by photothrombosis in adult mice. Spatiotemporal expression of endogenous OPN and BECN1 was assessed by immunohistochemistry. Motor function was determined by the grid-walking and cylinder tasks. We also evaluated markers of neuroplasticity and autophagy using biochemical and histology analyses. RESULTS: Herein, we showed that endogenous OPN and beclin1 were increased in the peri-infarct area of stroked patients and mice. Intracerebral administration of OPN (0.1 mg/ml; 3 ml) significantly improved performance in motor behavioral tasks compared with non-OPN-treated stroke mice. Furthermore, the neural repair was induced in OPN-treated stroke mice. We found that OPN treatment resulted in a significantly higher density of a presynaptic marker (vesicular glutamate transporter 1, VgluT1) and synaptic plasticity marker (synaptophysin, SYN) within the peri-infarct region. OPN treatment in stroke mice not only increased protein levels of integrin ß1 but also promoted the expression of beclin1 and LC3, two autophagy-related proteins in the peri-infarct area. Additionally, OPN-induced neuroplasticity and autophagy were blocked by an integrin antagonist. CONCLUSION: Our findings indicate that OPN may enhance neuroplasticity via autophagy, providing a new therapeutic strategy for ischemic stroke.

10.
MedComm (2020) ; 3(3): e160, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35949547

RESUMO

Spinal cord injury (SCI) is a destructive traumatic disease of the central nervous system without satisfying therapy efficiency. Bone marrow mesenchymal stem cells (BMMSCs) therapy promotes the neurotrophic factors' secretion and axonal regeneration, thereby promoting recovery of SCI. Pulsed electromagnetic fields (PEMF) therapy has been proven to promote neural growth and regeneration. Both BMMSCs and PEMF have shown curative effects for SCI; PEMF can further promote stem cell differentiation. Thus, we explored the combined effects of BMMSCs and PEMF and the potential interaction between these two therapies in SCI. Compared with the SCI control, BMMSCs, and PEMF groups, the combinational therapy displayed the best therapeutic effect. Combinational therapy increased the expression levels of nutritional factors including brain-derived neurotrophic factor (BDNF), nerve growth factors (NGF) and vascular endothelial growth factor (VEGF), enhanced neuron preservation (NeuN and NF-200), and increased axonal growth (MBP and myelin sheath). Additionally, PEMF promoted the expression levels of BDNF and VEGF in BMMSCs via Wnt/ß-catenin signaling pathway. In summary, the combined therapy of BMMSCs and PEMF displayed a more satisfactory effect than BMMSCs and PEMF therapy alone, indicating a promising application of combined therapy for the therapy of SCI.

11.
Front Hum Neurosci ; 16: 725715, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35874158

RESUMO

An increasing number of research teams are investigating the efficacy of brain-computer interface (BCI)-mediated interventions for promoting motor recovery following stroke. A growing body of evidence suggests that of the various BCI designs, most effective are those that deliver functional electrical stimulation (FES) of upper extremity (UE) muscles contingent on movement intent. More specifically, BCI-FES interventions utilize algorithms that isolate motor signals-user-generated intent-to-move neural activity recorded from cerebral cortical motor areas-to drive electrical stimulation of individual muscles or muscle synergies. BCI-FES interventions aim to recover sensorimotor function of an impaired extremity by facilitating and/or inducing long-term motor learning-related neuroplastic changes in appropriate control circuitry. We developed a non-invasive, electroencephalogram (EEG)-based BCI-FES system that delivers closed-loop neural activity-triggered electrical stimulation of targeted distal muscles while providing the user with multimodal sensory feedback. This BCI-FES system consists of three components: (1) EEG acquisition and signal processing to extract real-time volitional and task-dependent neural command signals from cerebral cortical motor areas, (2) FES of muscles of the impaired hand contingent on the motor cortical neural command signals, and (3) multimodal sensory feedback associated with performance of the behavioral task, including visual information, linked activation of somatosensory afferents through intact sensorimotor circuits, and electro-tactile stimulation of the tongue. In this report, we describe device parameters and intervention protocols of our BCI-FES system which, combined with standard physical rehabilitation approaches, has proven efficacious in treating UE motor impairment in stroke survivors, regardless of level of impairment and chronicity.

12.
Front Pharmacol ; 12: 763181, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34955834

RESUMO

Trillium tschonoskii Maxim. (TTM), is a perennial herb from Liliaceae, that has been widely used as a traditional Chinese medicine treating cephalgia and traumatic hemorrhage. The present work was designed to investigate whether the total saponins from Trillium tschonoskii Maxim. (TSTT) would promote brain remodeling and improve gait impairment in the chronic phase of ischemic stroke. A focal ischemic model of male Sprague-Dawley (SD) rats was established by permanent middle cerebral artery occlusion (MCAO). Six hours later, rats were intragastrically treated with TSTT (120, 60, and 30 mg/kg) and once daily up to day 30. The gait changes were assessed by the CatWalk-automated gait analysis system. The brain tissues injuries, cerebral perfusion and changes of axonal microstructures were detected by multimodal magnetic resonance imaging (MRI), followed by histological examinations. The axonal regeneration related signaling pathways including phosphatidylinositol 3-kinases (PI3K)/protein kinase B (AKT)/glycogen synthase kinase-3 (GSK-3)/collapsin response mediator protein-2 (CRMP-2) were measured by western blotting. TSTT treatment significantly improved gait impairment of rats. MRI analysis revealed that TSTT alleviated tissues injuries, significantly improved cerebral blood flow (CBF), enhanced microstructural integrity of axon and myelin sheath in the ipsilesional sensorimotor cortex and internal capsule. In parallel to MRI findings, TSTT preserved myelinated axons and promoted oligodendrogenesis. Specifically, TSTT interventions markedly up-regulated expression of phosphorylated GSK-3, accompanied by increased expression of phosphorylated PI3K, AKT, but reduced phosphorylated CRMP-2 expression. Taken together, our results suggested that TSTT facilitated brain remodeling. This correlated with improving CBF, encouraging reorganization of axonal microstructure, promoting oligodendrogenesis and activating PI3K/AKT/GSK-3/CRMP-2 signaling, thereby improving poststroke gait impairments.

13.
Biomed Mater ; 16(3)2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33152711

RESUMO

Excessive and prolonged neuroinflammation leads to neuronal cell death and limits functional recovery after traumatic brain injury (TBI). Dexamethasone (DX) is a steroidal anti-inflammatory agent that is known to attenuate early expression of pro-inflammatory cytokines associated with activated microglia/macrophages. In this study, we investigated the effect of dexamethasone-conjugated hyaluronic acid (HA-DXM) incorporated in a hydrolytically degradable, photo-cross-linkable poly (ethylene) glycol-bis-(acryloyloxy acetate) (PEG-bis-AA) hydrogel on the inflammatory response, apoptosis, and functional recovery in a controlled cortical impact (CCI) rat TBI model.In vitro, DX release from PEG-bis-AA/HA-DXM hydrogel was slow in phosphate-buffered saline without enzymes, but significantly increased in the presence of hyauronidase/esterase enzymes. TBI was generated by a CCI device armed with a 3 mm tip (3.5 m s-1, depth: 2 mm) and treated immediately with PEG-bis-AA/HA-DXM hydrogel. PEG-bis-AA/HA hydrogel without DX was used for comparison and untreated TBI group was used as a control. Significant reductions in cavity size, inflammatory response, and apoptosis were observed in animals treated with PEG-bis-AA/HA-DXM compared to those receiving PEG-bis-AA/HA and untreated. Animals receiving the PEG-bis-AA/HA-DXM hydrogel also exhibited higher neuronal cell survival and improved motor functional recovery compared to the other two groups.


Assuntos
Anti-Inflamatórios , Dexametasona , Ácido Hialurônico , Hidrogéis/química , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacocinética , Anti-Inflamatórios/farmacologia , Apoptose/efeitos dos fármacos , Lesões Encefálicas Traumáticas/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Dexametasona/química , Dexametasona/farmacocinética , Dexametasona/farmacologia , Modelos Animais de Doenças , Sistemas de Liberação de Medicamentos , Ácido Hialurônico/química , Ácido Hialurônico/farmacocinética , Ácido Hialurônico/farmacologia , Masculino , Doenças Neuroinflamatórias/metabolismo , Polietilenoglicóis/química , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica/efeitos dos fármacos
14.
Neural Regen Res ; 16(7): 1273-1280, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33318405

RESUMO

Several therapies have shown obvious effects on structural conservation contributing to motor functional recovery after spinal cord injury (SCI). Nevertheless, neither strategy has achieved a convincing effect. We purposed a combined therapy of immunomodulatory peptides that individually have shown significant effects on motor functional recovery in rats with SCI. The objective of this study was to investigate the effects of the combined therapy of monocyte locomotion inhibitor factor (MLIF), A91 peptide, and glutathione monoethyl ester (GSH-MEE) on chronic-stage spinal cord injury. Female Sprague-Dawley rats underwent a laminectomy of the T9 vertebra and a moderate contusion. Six groups were included: sham, PBS, MLIF + A91, MLIF + GSH-MEE, A91 + GSH-MEE, and MLIF + A91 + GSH-MEE. Two months after injury, motor functional recovery was evaluated using the open field test. Parenchyma and white matter preservation was evaluated using hematoxylin & eosin staining and Luxol Fast Blue staining, respectively. The number of motoneurons in the ventral horn and the number of axonal fibers were determined using hematoxylin & eosin staining and immunohistochemistry, respectively. Collagen deposition was evaluated using Masson's trichrome staining. The combined therapy of MLIF, A91, and GSH-MEE greatly contributed to motor functional recovery and preservation of the medullary parenchyma, white matter, motoneurons, and axonal fibres, and reduced the deposition of collagen in the lesioned area. The combined therapy of MLIF, A91, and GSH-MEE preserved spinal cord tissue integrity and promoted motor functional recovery of rats after SCI. This study was approved by the National Commission for Scientific Research on Bioethics and Biosafety of the Instituto Mexicano del Seguro Social under registration number R-2015-785-116 (approval date November 30, 2015) and R-2017-3603-33 (approval date June 5, 2017).

15.
Neuroscience ; 438: 86-99, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32407973

RESUMO

The present study examined the effect of early exercise on brain damage and recovery of motor function following intracerebral hemorrhage (ICH) in rats. Subjects were randomly assigned to no training after ICH (ICH), no training after sham surgery (SHAM), early treadmill exercise after ICH (ICH + ET), and late treadmill exercise after ICH (ICH + LT) groups. The ICH + ET and ICH + LT groups were trained for seven consecutive days starting on day 2 and day 9 after surgery, respectively. At post surgery day 16, the brain was surgically excised, and lesion volume, cortical thickness, neuronal number, dendritic length, and dendritic complexity were analyzed. Expression levels of IL-1b, TGF-b1, and IGF-1 mRNAs in ipsilateral sensorimotor cortex were measured by RT-PCR. The recovery of motor function in the ICH + ET group was the most accelerated. Cortical thickness and neuronal number were significantly higher in the ICH + ET group than the ICH and ICH + LT groups. The length and complexity of dendrites were also significantly greater in the ICH + ET group compared with the ICH and ICH + LT groups. Expression of IL-1b mRNA was significantly lower in the ICH + ET group than that in the ICH group. Collectively, these results suggest that early treadmill exercise after ICH promotes recovery of sensorimotor function by preventing neuronal death and ensuing cortical atrophy and by preserving dendritic structure compared with late treadmill exercise and no exercise. Early exercise may prevent neurodegeneration and functional loss by inhibiting neuroinflammation.


Assuntos
Neuroproteção , Córtex Sensório-Motor , Animais , Hemorragia Cerebral/complicações , Colagenases , Terapia por Exercício , Humanos , Inflamação , Ratos , Ratos Wistar , Recuperação de Função Fisiológica
16.
Neural Regen Res ; 15(4): 748-758, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31638100

RESUMO

OBJECTIVE: To judge the efficacies of neural stem cell (NSC) transplantation on functional recovery following contusion spinal cord injuries (SCIs). DATA SOURCES: Studies in which NSCs were transplanted into a clinically relevant, standardized rat model of contusion SCI were identified by searching the PubMed, Embase and Cochrane databases, and the extracted data were analyzed by Stata 14.0. DATA SELECTION: Inclusion criteria were that NSCs were used in in vivo animal studies to treat contusion SCIs and that behavioral assessment of locomotor functional recovery was performed using the Basso, Beattie, and Bresnahan lo-comotor rating scale. Exclusion criteria included a follow-up of less than 4 weeks and the lack of control groups. OUTCOME MEASURES: The restoration of motor function was assessed by the Basso, Beattie, and Bresnahan locomotor rating scale. RESULTS: We identified 1756 non-duplicated papers by searching the aforementioned electronic databases, and 30 full-text articles met the inclusion criteria. A total of 37 studies reported in the 30 articles were included in the meta-analysis. The meta-analysis results showed that transplanted NSCs could improve the motor function recovery of rats following contusion SCIs, to a moderate extent (pooled standardized mean difference (SMD) = 0.73; 95% confidence interval (CI): 0.47-1.00; P < 0.001). NSCs obtained from different donor species (rat: SMD = 0.74; 95% CI: 0.36-1.13; human: SMD = 0.78; 95% CI: 0.31-1.25), at different donor ages (fetal: SMD = 0.67; 95% CI: 0.43-0.92; adult: SMD = 0.86; 95% CI: 0.50-1.22) and from different origins (brain-derived: SMD = 0.59; 95% CI: 0.27-0.91; spinal cord-derived: SMD = 0.51; 95% CI: 0.22-0.79) had similar efficacies on improved functional recovery; however, adult induced pluripotent stem cell-derived NSCs showed no significant efficacies. Furthermore, the use of higher doses of transplanted NSCs or the administration of immunosuppressive agents did not promote better locomotor function recovery (SMD = 0.45; 95% CI: 0.21-0.70). However, shorter periods between the contusion induction and the NSC transplantation showed slightly higher efficacies (acute: SMD = 1.22; 95% CI: 0.81-1.63; subacute: SMD = 0.75; 95% CI: 0.42-1.09). For chronic injuries, NSC implantation did not significantly improve functional recovery (SMD = 0.25; 95% CI: -0.16 to 0.65). CONCLUSION: NSC transplantation alone appears to be a positive yet limited method for the treatment of contusion SCIs.

17.
Front Neurosci ; 12: 861, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30542258

RESUMO

Despite the established effectiveness of the brain-computer interface (BCI) therapy during stroke rehabilitation (Song et al., 2014a, 2015; Young et al., 2014a,b,c, 2015; Remsik et al., 2016), little is understood about the connections between motor network reorganization and functional motor improvements. The aim of this study was to investigate changes in the network reorganization of the motor cortex during BCI therapy. Graph theoretical approaches are used on resting-state functional magnetic resonance imaging (fMRI) data acquired from stroke patients to evaluate these changes. Correlations between changes in graph measurements and behavioral measurements were also examined. Right hemisphere chronic stroke patients (average time from stroke onset = 38.23 months, standard deviation (SD) = 46.27 months, n = 13, 6 males, 10 right-handed) with upper-extremity motor deficits received interventional rehabilitation therapy using a closed-loop neurofeedback BCI device. Eyes-closed resting-state fMRI (rs-fMRI) scans, along with T-1 weighted anatomical scans on 3.0T MRI scanners were collected from these patients at four test points. Immediate therapeutic effects were investigated by comparing pre and post-therapy results. Results displayed that th average clustering coefficient of the motor network increased significantly from pre to post-therapy. Furthermore, increased regional centrality of ipsilesional primary motor area (p = 0.02) and decreases in regional centrality of contralesional thalamus (p = 0.05), basal ganglia (p = 0.05 in betweenness centrality analysis and p = 0.03 for degree centrality), and dentate nucleus (p = 0.03) were observed (uncorrected). These findings suggest an overall trend toward significance in terms of involvement of these regions. Increased centrality of primary motor area may indicate increased efficiency within its interactive network as an effect of BCI therapy. Notably, changes in centrality of the bilateral cerebellum regions have strong correlations with both clinical variables [the Action Research Arm Test (ARAT), and the Nine-Hole Peg Test (9-HPT)].

18.
Biosci Rep ; 36(4)2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27407175

RESUMO

Spinal cord injury (SCI) always occurs accidently and leads to motor dysfunction because of biochemical and pathological events. Estrogen has been shown to be neuroprotective against SCI through estrogen receptors (ERs), but the underlying mechanisms have not been fully elucidated. In the present study, we investigated the role of a newly found membrane ER, G protein-coupled estrogen receptor 1 (GPR30 or GPER1), and discussed the feasibility of a GPR30 agonist as an estrogen replacement. Forty adult female C57BL/6J mice (10-12 weeks old) were divided randomly into vehicle, G-1, E2, G-1 + G-15 and E2 + G-15 groups. All mice were subjected to SCI using a crushing injury approach. The specific GPR30 agonist, G-1, mimicked the effects of E2 treatment by preventing SCI-induced apoptotic cell death and enhancing motor functional recovery after injury. GPR30 activation regulated phosphatidylinositol 3-kinase (PI3K)/Akt and MAPK/extracellular signal-regulated kinase (ERK) signalling pathways, increased GPR30 and anti-apoptosis proteins Bcl-2 and brain derived neurotrophic factor (BDNF), but decreased the pro-apoptosis factor Bax and cleaved caspase-3. However, the neuroprotective effects of G-1 and E2 were blocked by the specific GPR30 antagonist, G-15. Thus, GPR30 rather than classic ERs is required to induce estrogenic neuroprotective effects. Given that estrogen replacement therapy may cause unexpected side effects, especially on the reproductive system, GPR30 agonists may represent a potential therapeutic approach for treating SCI.


Assuntos
Ciclopentanos/farmacologia , Fármacos Neuroprotetores/farmacologia , Quinolinas/farmacologia , Receptores Acoplados a Proteínas G/metabolismo , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/metabolismo , Animais , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Modelos Animais de Doenças , Estrogênios/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Receptores de Estrogênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
19.
Exp Ther Med ; 12(3): 1671-1680, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27602084

RESUMO

The present study evaluated the comparative effect of stereotaxically transplanted immature neuronal or glial cells in brain on motor functional recovery and cytokine expression after cold-induced traumatic brain injury (TBI) in adult rats. A total of 60 rats were divided into four groups (n=15/group): Sham group; TBI only group; TBI plus neuronal cells-transplanted group (NC-G); and TBI plus glial cells-transplanted group (GC-G). Cortical lesions were induced by a touching metal stamp, frozen with liquid nitrogen, to the dura mater over the motor cortex of adult rats. Neuronal and glial cells were isolated from rat embryonic and newborn cortices, respectively, and cultured in culture flasks. Rats received neurons or glia grafts (~1×106 cells) 5 days after TBI was induced. Motor functional evaluation was performed with the rotarod test prior to and following glial and neural cell grafts. Five rats from each group were sacrificed at 2, 4 and 6 weeks post-cell transplantation. Immunofluorescence staining was performed on brain section to identify the transplanted neuronal or glial cells using neural and astrocytic markers. The expression levels of cytokines, including transforming growth factor-ß, glial cell-derived neurotrophic factor and vascular endothelial growth factor, which have key roles in the proliferation, differentiation and survival of neural cells, were analyzed by immunohistochemistry and western blotting. A localized cortical lesion was evoked in all injured rats, resulting in significant motor deficits. Transplanted cells successfully migrated and survived in the injured brain lesion, and the expression of neuronal and astrocyte markers were detected in the NC-G and GC-G groups, respectively. Rats in the NC-G and GC-G cell-transplanted groups exhibited significant motor functional recovery and reduced histopathologic lesions, as compared with the TBI-G rats that did not receive neural cells (P<0.05, respectively). Furthermore, GC-G treatment induced significantly improved motor functional recovery, as compared with the NC-G group (P<0.05). Increased cytokine expression levels were detected in the NC-G and GC-G groups, as compared with the TBI-G; however, no differences were found between the two groups. These data suggested that transplanted immature neural cells may promote the survival of neural cells in cortical lesion and motor functional recovery. Furthermore, transplanted glial cells may be used as an effective therapeutic tool for TBI patients with abnormalities in motor functional recovery and cytokine expression.

20.
Behav Brain Res ; 300: 56-64, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26675889

RESUMO

Rehabilitative approaches benefit motor functional recovery after stroke and relate to neuronal plasticity. We investigated the effects of a treadmill running exercise on the motor functional recovery and neuronal plasticity after collagenase-induced striatal intracerebral hemorrhage (ICH) in rats. Male Wistar rats were injected with type IV collagenase into the left striatum to induce ICH. Sham-operated animals were injected with saline instead of collagenase. The animals were randomly assigned to the sham control (SC), the sham exercise (SE), the ICH control (IC), or the ICH exercise (IE) group. The exercise groups were forced to run on a treadmill at a speed of 9 m/min for 30 min/day between days 4 and 14 after surgery. Behavioral tests were performed using a motor deficit score, a beam-walking test and a cylinder test. At fifteen days after surgery, the animals were sacrificed, and their brains were removed. The motor function of the IE group significantly improved compared with the motor function of the IC group. No significant differences in cortical thickness were found between the groups. The IC group had fewer branches and shorter dendrite lengths compared with the sham groups. However, dendritic branches and lengths were not significantly different between the IE and the other groups. Tropomyosin-related kinase B (TrkB) expression levels increased in the IE compared with IC group, but no significant differences in other protein (brain-derived neurotrophic factor, BDNF; Nogo-A; Rho-A/Rho-associated protein kinase 2, ROCK2) expression levels were found between the groups. These results suggest that improved motor function after a treadmill running exercise after ICH may be related to the prevention of dendritic regression due to TrkB upregulation.


Assuntos
Hemorragia Cerebral/terapia , Terapia por Exercício , Atividade Motora/fisiologia , Córtex Motor/fisiopatologia , Recuperação de Função Fisiológica/fisiologia , Corrida/fisiologia , Animais , Hemorragia Cerebral/patologia , Hemorragia Cerebral/fisiopatologia , Colagenases , Dendritos/patologia , Dendritos/fisiologia , Modelos Animais de Doenças , Terapia por Exercício/métodos , Lateralidade Funcional , Masculino , Córtex Motor/patologia , Proteínas da Mielina/metabolismo , Proteínas Nogo , Distribuição Aleatória , Ratos Wistar , Receptor trkB/metabolismo , Resultado do Tratamento , Regulação para Cima/fisiologia , Quinases Associadas a rho/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA