Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Brain Cogn ; 175: 106137, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38340535

RESUMO

Intervention studiescombiningcognitive and motor demands have reported far-transfer cognitive benefits in healthy ageing. This systematic review and meta-analysis evaluated the effects of music and rhythm intervention on cognition in older adulthood. Inclusion criteria specified: 1) musical instrument training; 2) healthy, musically-naïve adults (≥60 years); 3) control group; 4) measure of executive function. Ovid, PubMed, Scopus and the Cochrane Library online databases were searched in August 2023. Data from thirteen studies were analysed (N = 502 participants). Study quality was assessed using the Cochrane Risk of Bias tool (RoB 2; Sterne et al., 2019). Random effects models revealed: a low effect on inhibition (d = 0.27,p = .0335); a low-moderate effect on switching (d = -0.39, p = .0021); a low-moderate effect on verbal category switching (d =0.39,p = .0166); and a moderate effect on processing speed (d = 0.47,p < .0001). No effect was found for selective visual attention, working memory, or verbal memory. With regards to overall bias, three studies were rated as "high", nine studies were rated as having "some concerns" and one was rated "low". The meta-analysis suggests that learning to play a musical instrument enhances attention inhibition, switching and processing speed in ageing.


Assuntos
Função Executiva , Música , Humanos , Função Executiva/fisiologia , Idoso , Inteligência/fisiologia , Pessoa de Meia-Idade , Musicoterapia/métodos , Envelhecimento Saudável/fisiologia
2.
Proc Natl Acad Sci U S A ; 117(38): 23886-23897, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32900934

RESUMO

Motor skill learning involves a complex process of generating novel movement patterns guided by evaluative feedback, such as a reward. Previous literature has suggested anteroposteriorly separated circuits in the striatum to be implicated in early goal-directed and later automatic stages of motor skill learning, respectively. However, the involvement of these circuits has not been well elucidated in human de novo motor skill learning, which requires learning arbitrary action-outcome associations and value-based action selection. To investigate this issue, we conducted a human functional MRI (fMRI) experiment in which participants learned to control a computer cursor by manipulating their right fingers. We discovered a double dissociation of fMRI activity in the anterior and posterior caudate nucleus, which was associated with performance in the early and late learning stages. Moreover, cognitive and sensorimotor cortico-caudate interactions predicted individual learning performance. Our results suggest parallel cortico-caudate networks operating in different stages of human de novo motor skill learning.


Assuntos
Núcleo Caudado/diagnóstico por imagem , Núcleo Caudado/fisiologia , Aprendizagem/fisiologia , Imageamento por Ressonância Magnética , Destreza Motora/fisiologia , Adolescente , Adulto , Feminino , Humanos , Masculino , Adulto Jovem
3.
J Neuroeng Rehabil ; 20(1): 98, 2023 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-37516873

RESUMO

BACKGROUND: The implementation of virtual devices can facilitate the role of therapists (e.g., patient motivation, intensity of practice) to improve the effectiveness of treatment for children with cerebral palsy. Among existing therapeutic devices, none has been specifically designed to promote the application of principles underlying evidence-based motor skill learning interventions. Consequently, evidence is lacking regarding the effectiveness of virtual-based sessions in motor function rehabilitation with respect to promoting the transfer of motor improvements into daily life activities. We tested the effectiveness of implementing a recently developed virtual device (REAtouch®), specifically designed to enable the application of therapeutic motor skill learning principles, during a Hand Arm Bimanual Intensive Therapy Including Lower Extremities (HABIT-ILE) intervention. METHODS: Forty children with unilateral cerebral palsy (5-18 years; MACS I-III; GMFCS I-II) were randomly assigned to a control group or a "REAtouch®" experimental group for a 90-h HABIT-ILE day-camp intervention (two weeks). Children in the REAtouch® group spent nearly half of their one-on-one therapeutic time using the REAtouch®. Participants underwent three testing sessions: the week before (T1), after intervention (T2), and at three months follow-up (T3). The primary outcome was the Assisting Hand Assessment (T3-T1; blinded). Secondary outcomes measured uni-bimanual hand function, stereognosis, gait endurance, daily life abilities, and functional goals. Accelerometers and a manual report of daily activities served to document therapeutic dosage and treatment characteristics. We used one-way RMANOVA to compare the efficacies of the two interventions, and non-inferiority analyses to contrast changes in the "REAtouch®" group versus the "HABIT-ILE" control group. RESULTS: We found significant improvements in both groups for most of the outcome measures (p < 0.05). There was significant non-inferiority of changes in the REAtouch® group for upper extremities motor function, functional goals attainment, and abilities in daily life activities (p < 0.05). CONCLUSIONS: Use of the REAtouch® device during HABIT-ILE showed non-inferior efficacy compared to the conventional evidence-based HABIT-ILE intervention in children with unilateral cerebral palsy. This study demonstrates the feasibility of using this virtual device in a high dosage camp model, and establishes the possibility of applying the therapeutic principles of motor skill learning during specifically designed virtual-based sessions. TRIAL REGISTRATION: Trial registration number: NCT03930836-Registration date on the International Clinical Trials Registry Platform (ICTRP): June 21th, 2018; Registration date on NIH Clinical Trials Registry: April 29th, 2019. First patient enrollment: July 3rd, 2018.


Assuntos
Braço , Paralisia Cerebral , Criança , Humanos , Extremidade Superior , Extremidade Inferior , Hábitos
4.
J Sports Sci ; 41(9): 833-849, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37603709

RESUMO

We revisit an agenda that was outlined in a previous paper in this journal focusing on the importance of skill acquisition research in enhancing practice and instruction in sport. In this current narrative review, we reflect on progress made since our original attempt to highlight several potential myths that appeared to exist in coaching, implying the existence of a theory-practice divide. Most notably, we present five action points that would impact positively on coaches and practitioners working to improve skill learning across sports, as well as suggesting directions for research. We discuss the importance of practice quality in enhancing learning and relate this concept to notions of optimising challenge. We discuss how best to assess learning, the right balance between repetition and practice that is specific to competition, the relationship between practice conditions, instructions, and individual differences, and why a more "hands-off" approach to instruction may have advantages over more "hands-on" methods. These action points are considered as a broad framework for advancing skill acquisition for excellence (SAFE) in applied practice. We conclude by arguing the need for increased collaboration between researchers, coaches, and other sport practitioners.


Assuntos
Atletas , Educação Física e Treinamento , Esportes , Humanos , Aprendizagem , Atletas/educação
5.
Int J Mol Sci ; 24(2)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36674880

RESUMO

Parkinson's disease (PD) is characterized pathologically by abnormal aggregation of alpha-synuclein (α-Syn) in the brain and clinically by fine movement deficits at the early stage, but the roles of α-Syn and associated neural circuits and neuromodulator bases in the development of fine movement deficits in PD are poorly understood, in part due to the lack of appropriate behavioral testing paradigms and PD models without motor confounding effects. Here, we coupled two unique behavioral paradigms with two PD models to reveal the following: (i) Focally injecting α-Syn fibrils into the dorsolateral striatum (DLS) and the transgenic expression of A53T-α-Syn in the dopaminergic neurons in the substantia nigra (SN, PITX3-IRES2-tTA/tetO-A53T mice) selectively impaired forelimb fine movements induced by the single-pellet reaching task. (ii) Injecting α-Syn fibers into the SN suppressed the coordination of cranial and forelimb fine movements induced by the sunflower seed opening test. (iii) Treatments with the adenosine A2A receptor (A2AR) antagonist KW6002 reversed the impairment of forelimb and cranial fine movements induced by α-Syn aggregates in the SN. These findings established a causal role of α-Syn in the SNc-DLS dopaminergic pathway in the development of forelimb and cranial fine movement deficits and suggest a novel therapeutic strategy to improve fine movements in PD by A2AR antagonists.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Camundongos , Animais , alfa-Sinucleína/metabolismo , Receptor A2A de Adenosina/metabolismo , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Corpo Estriado/metabolismo , Dopamina/metabolismo , Substância Negra/metabolismo , Neurônios Dopaminérgicos/metabolismo , Modelos Animais de Doenças
6.
Eur J Neurosci ; 56(1): 3705-3719, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35501123

RESUMO

Evidence suggests excitability of the motor cortex (M1) changes in response to motor skill learning of the upper limb. Few studies have examined immediate changes in corticospinal excitability and intra-cortical mechanisms following motor learning in the lower back. Further, it is unknown which transcranial magnetic stimulation (TMS) paradigms are likely to reveal changes in cortical function in this region. This study aimed to (1) compare corticospinal excitability and intra-cortical mechanisms in the lower back region of M1 before and after a single session of lumbopelvic tilt motor learning task in healthy people and (2) compare these measures between two TMS coils and two methods of recruitment curve (RC) acquisition. Twenty-eight young participants (23.6 ± 4.6 years) completed a lumbopelvic tilting task involving three 5-min blocks. Single-pulse (RC from 70% to 150% of active motor threshold) and paired-pulse TMS measures (ICF, SICF and SICI) were undertaken before (using 2 coils: figure-of-8 and double cone) and after (using double cone coil only) training. RCs were also acquired using a traditional and rapid method. A significant increase in corticospinal excitability was found after training as measured by RC intensities, but this was not related to the RC slope. No significant differences were found for paired-pulse measures after training. Finally, there was good agreement between RC parameters when measured with the two different TMS coils or different acquisition methods (traditional vs. rapid). Changes in corticospinal excitability after a single session of lumbopelvic motor learning task are seen, but these changes are not explained by changes in intra-cortical mechanisms.


Assuntos
Músculos do Dorso , Córtex Motor , Potencial Evocado Motor/fisiologia , Humanos , Córtex Motor/fisiologia , Movimento , Estimulação Magnética Transcraniana/métodos
7.
Exp Brain Res ; 240(1): 123-133, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34652493

RESUMO

In earlier studies, blindfolded participants used a joystick to orient themselves to the direction of balance in the horizontal roll plane while in a device programmed to behave like an inverted pendulum. In this spaceflight analog situation, position relevant gravitational cues are absent. Most participants show minimal learning, positional drifting, and failure of path integration. However, individual differences are substantial, some participants show learning and others become progressively worse. In Experiment 1, our goal was to determine whether spatial acuity could explain these individual differences in active balancing. We exposed blindfolded participants to passive movement profiles, with different frequency components, in the vertical and horizontal roll planes. They pressed a joystick trigger to indicate every time they passed the start point. We found greater spatial acuity for higher frequencies but no relation between passive spatial accuracy and active balance control in the horizontal roll plane, suggesting that spatial acuity in the horizontal roll plane does not predict performance in a disorienting spaceflight condition. In Experiment 2, we found significant correlations between passive spatial acuity in the vertical roll plane, where participants have task relevant gravitational cues, and early active balancing in the horizontal roll plane. These correlations appeared after participants underwent brief provocative vestibular stimulation by making a pitch head movement during vertical yaw rotation. Our findings suggest that vestibular stimulation may be a valuable part of assessments of individual differences in performance during initial exposure to disorienting spaceflight conditions where there are no reliable gravity dependent positional cues.


Assuntos
Sinais (Psicologia) , Equilíbrio Postural , Gravitação , Humanos , Orientação Espacial , Rotação
8.
Eur J Appl Physiol ; 122(1): 169-184, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34618222

RESUMO

PURPOSE: Studies with transcranial magnetic stimulation (TMS) show that both acute and long-term exercise can influence TMS-induced plasticity within primary motor cortex (M1). However, it remains unclear how regular exercise influences skill training-induced M1 plasticity and motor skill acquisition. This study aimed to investigate whether skill training-induced plasticity and motor skill learning is modified in endurance-trained cyclists. METHODS: In 16 endurance-trained cyclists (24.4 yrs; 4 female) and 17 sedentary individuals (23.9 yrs; 4 female), TMS was applied in 2 separate sessions: one targeting a hand muscle not directly involved in habitual exercise and one targeting a leg muscle that was regularly trained. Single- and paired-pulse TMS was used to assess M1 and intracortical excitability in both groups before and after learning a sequential visuomotor isometric task performed with the upper (pinch task) and lower (ankle dorsiflexion) limb. RESULTS: Endurance-trained cyclists displayed greater movement times (slower movement) compared with the sedentary group for both upper and lower limbs (all P < 0.05), but there was no difference in visuomotor skill acquisition between groups (P > 0.05). Furthermore, endurance-trained cyclists demonstrated a greater increase in M1 excitability and reduced modulation of intracortical facilitation in resting muscles of upper and lower limbs after visuomotor skill learning (all P < 0.005). CONCLUSION: Under the present experimental conditions, these results indicate that a history of regular cycling exercise heightens skill training-induced M1 plasticity in upper and lower limb muscles, but it does not facilitate visuomotor skill acquisition.


Assuntos
Ciclismo/fisiologia , Treino Aeróbico , Córtex Motor/fisiologia , Destreza Motora/fisiologia , Plasticidade Neuronal/fisiologia , Estudos de Casos e Controles , Feminino , Mãos/fisiologia , Humanos , Aprendizagem/fisiologia , Perna (Membro)/fisiologia , Masculino , Estimulação Magnética Transcraniana , Adulto Jovem
9.
Sensors (Basel) ; 22(7)2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35408094

RESUMO

Humans learn movements naturally, but it takes a lot of time and training to achieve expert performance in motor skills. In this review, we show how modern technologies can support people in learning new motor skills. First, we introduce important concepts in motor control, motor learning and motor skill learning. We also give an overview about the rapid expansion of machine learning algorithms and sensor technologies for human motion analysis. The integration between motor learning principles, machine learning algorithms and recent sensor technologies has the potential to develop AI-guided assistance systems for motor skill training. We give our perspective on this integration of different fields to transition from motor learning research in laboratory settings to real world environments and real world motor tasks and propose a stepwise approach to facilitate this transition.


Assuntos
Inteligência Artificial , Aprendizado de Máquina , Algoritmos , Humanos , Movimento (Física) , Destreza Motora
10.
Hum Brain Mapp ; 42(6): 1641-1656, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33410575

RESUMO

Several diffusion tensor imaging studies reveal that white matter (WM) lesions are common in children suffering from benign cerebellar tumours who are treated with surgery only. The clinical implications of WM alterations that occur as a direct consequence of cerebellar disease have not been thoroughly studied. Here, we analysed structural and diffusion imaging data from cerebellar patients with chronic surgical lesions after resection for benign cerebellar tumours. We aimed to elucidate the impact of focal lesions of the cerebellum on WM integrity across the entire brain, and to investigate whether WM deficits were associated with behavioural impairment in three different motor tasks. Lesion symptom mapping analysis suggested that lesions in critical cerebellar regions were related to deficits in savings during an eyeblink conditioning task, as well as to deficits in motor action timing. Diffusion imaging analysis of cerebellar WM indicated that better behavioural performance was associated with higher fractional anisotropy (FA) in the superior cerebellar peduncle, cerebellum's main outflow path. Moreover, voxel-wise analysis revealed a global pattern of WM deficits in patients within many cerebral WM tracts critical for motor and non-motor function. Finally, we observed a positive correlation between FA and savings within cerebello-thalamo-cortical pathways in patients but not in controls, showing that saving effects partly depend on extracerebellar areas, and may be recruited for compensation. These results confirm that the cerebellum has extended connections with many cerebral areas involved in motor/cognitive functions, and the observed WM changes likely contribute to long-term clinical deficits of posterior fossa tumour survivors.


Assuntos
Sobreviventes de Câncer , Doenças Cerebelares/patologia , Doenças Cerebelares/cirurgia , Disfunção Cognitiva/fisiopatologia , Leucoencefalopatias/patologia , Leucoencefalopatias/fisiopatologia , Procedimentos Neurocirúrgicos/efeitos adversos , Desempenho Psicomotor/fisiologia , Adolescente , Adulto , Doenças Cerebelares/diagnóstico por imagem , Neoplasias Cerebelares/cirurgia , Disfunção Cognitiva/etiologia , Condicionamento Clássico/fisiologia , Imagem de Tensor de Difusão , Feminino , Humanos , Leucoencefalopatias/diagnóstico por imagem , Leucoencefalopatias/etiologia , Masculino , Atividade Motora/fisiologia , Adulto Jovem
11.
Exp Brain Res ; 239(9): 2661-2678, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34269850

RESUMO

It is commonly accepted that the brains capacity to change, known as plasticity, declines into old age. Recent studies have used a variety of non-invasive brain stimulation (NIBS) techniques to examine this age-related decline in plasticity in the primary motor cortex (M1), but the effects seem inconsistent and difficult to unravel. The purpose of this review is to provide an update on studies that have used different NIBS techniques to assess M1 plasticity with advancing age and offer some new perspective on NIBS strategies to boost plasticity in the ageing brain. We find that early studies show clear differences in M1 plasticity between young and older adults, but many recent studies with motor training show no decline in use-dependent M1 plasticity with age. For NIBS-induced plasticity in M1, some protocols show more convincing differences with advancing age than others. Therefore, our view from the NIBS literature is that it should not be automatically assumed that M1 plasticity declines with age. Instead, the effects of age are likely to depend on how M1 plasticity is measured, and the characteristics of the elderly population tested. We also suggest that NIBS performed concurrently with motor training is likely to be most effective at producing improvements in M1 plasticity and motor skill learning in older adults. Proposed NIBS techniques for future studies include combining multiple NIBS protocols in a co-stimulation approach, or NIBS strategies to modulate intracortical inhibitory mechanisms, in an effort to more effectively boost M1 plasticity and improve motor skill learning in older adults.


Assuntos
Córtex Motor , Idoso , Encéfalo , Potencial Evocado Motor , Humanos , Plasticidade Neuronal , Estimulação Magnética Transcraniana
12.
J Oral Rehabil ; 48(8): 891-900, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33983634

RESUMO

BACKGROUND: Passive mandibular advancement with functional appliances is commonly used to treat juvenile patients with mandibular retrognathism. OBJECTIVE: The aim of this study was to investigate whether active repetitive training of the mandible into an anterior position would result in a shift of the habitual mandibular position (HMP). METHODS: Twenty adult healthy subjects were randomly assigned to one of two groups: a training group receiving six supervised functional training sessions of 10 min each and a control group without training. Bonded lateral biteplates disengaged occlusion among both groups throughout the 15-day experiment. Customised registration-training appliances consisted of a maxillary component with an anterior plane and a mandibular component with an attached metal sphere. Training sessions consisted of repeated mouth-opening/closing cycles (frequency: 30/min) to hit an anteriorly positioned hemispherical target notch with this metal sphere. The HMP was registered at defined times during the experiment. RESULTS: The HMP in the training group showed a statistically significant anterior shift of 1.6 mm (interquartile range [IQR]: 1.2 mm), compared with a significant posterior shift of -0.8 mm (IQR: 2.8 mm) in the control group (p < .05). Although the anterior shift among the training group showed a partial relapse 4 days after the first training block, it then advanced slightly in the 4-day interval after the second training block, which might indicate neuroplasticity of the masticatory motor system. CONCLUSIONS: Motor learning by repetitive training of the mandible into an anterior position might help to improve the results of functional appliance therapy among patients with mandibular retrognathism.


Assuntos
Má Oclusão , Avanço Mandibular , Adulto , Cefalometria , Oclusão Dentária , Humanos , Mandíbula
13.
J Neurophysiol ; 123(3): 1052-1062, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31995429

RESUMO

Trial-and-error motor adaptation has been linked to somatosensory plasticity and shifts in proprioception (limb position sense). The role of sensory processing in motor skill learning is less understood. Unlike adaptation, skill learning involves the acquisition of new movement patterns in the absence of perturbation, with performance limited by the speed-accuracy trade-off. We investigated somatosensory changes during motor skill learning at the behavioral and neurophysiological levels. Twenty-eight healthy young adults practiced a maze-tracing task, guiding a robotic manipulandum through an irregular two-dimensional track featuring several abrupt turns. Practice occurred on days 1 and 2. Skill was assessed before practice on day 1 and again on day 3, with learning indicated by a shift in the speed-accuracy function between these assessments. Proprioceptive function was quantified with a passive two-alternative forced-choice task. In a subset of 15 participants, we measured short-latency afferent inhibition (SAI) to index somatosensory projections to motor cortex. We found that motor practice enhanced the speed-accuracy skill function (F4,108 = 32.15, P < 0.001) and was associated with improved proprioceptive sensitivity at retention (t22 = 24.75, P = 0.0031). Furthermore, SAI increased after training (F1,14 = 5.41, P = 0.036). Interestingly, individuals with larger increases in SAI, reflecting enhanced somatosensory afference to motor cortex, demonstrated larger improvements in motor skill learning. These findings suggest that SAI may be an important functional mechanism for some aspect of motor skill learning. Further research is needed to test what parameters (task complexity, practice time, etc.) are specifically linked to somatosensory function.NEW & NOTEWORTHY Somatosensory processing has been implicated in motor adaptation, where performance recovers from a perturbation such as a force field. We investigated somatosensory function during motor skill learning, where a new motor pattern is acquired in the absence of perturbation. After skill practice, we found changes in proprioception and short-latency afferent inhibition (SAI), signifying somatosensory change at both the behavioral and neurophysiological levels. SAI may be an important functional mechanism by which individuals learn motor skills.


Assuntos
Vias Aferentes/fisiologia , Aprendizagem/fisiologia , Córtex Motor/fisiologia , Destreza Motora/fisiologia , Inibição Neural/fisiologia , Plasticidade Neuronal/fisiologia , Propriocepção/fisiologia , Adolescente , Adulto , Feminino , Humanos , Masculino , Prática Psicológica , Estimulação Magnética Transcraniana , Adulto Jovem
14.
J Neurophysiol ; 123(4): 1460-1471, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32049588

RESUMO

Developing approaches to improve motor skill learning is of considerable interest across multiple disciplines. Previous research has typically shown that repeating the same action on consecutive trials enhances short-term performance but has detrimental effects on longer term skill acquisition. However, most prior research has contrasted the effects of repetition only at the block level; in the current study we examined the effects of repeating individual trials embedded in a larger randomized block, a feature that is often overlooked when random trial orders are generated in learning tasks. With 4 days of practice, a "Minimal Repeats" group, who rarely experienced repeating stimuli on consecutive trials during training, improved to a greater extent than a "Frequent Repeats" group, who were frequently presented with repeating stimuli on consecutive trials during training. Our results extend the previous finding of the beneficial effects of random compared with blocked practice on performance, showing that reduced trial-to-trial repetition during training is favorable with regard to skill learning. This research highlights that limiting the number of repeats on consecutive trials is a simple behavioral manipulation that can enhance the process of skill learning. Data/analysis code and Supplemental Material are available at https://osf.io/p3278/.NEW & NOTEWORTHY Numerous studies have shown that performing different subtasks across consecutive blocks of trials enhances learning. We examined whether the same effect would occur on a trial-to-trial level. Our Minimal Repeats group, who primarily responded to different stimuli on consecutive trials, learned more than our Frequent Repeats group, who frequently responded to the same stimulus on consecutive trials. This shows that minimizing trial-to-trial repetition is a simple and easily applicable manipulation that can enhance learning.


Assuntos
Atividade Motora/fisiologia , Destreza Motora/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Prática Psicológica , Adolescente , Adulto , Humanos , Adulto Jovem
15.
Neurobiol Learn Mem ; 168: 107156, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31904548

RESUMO

Region- and pathway-specific plasticity within striatal circuits is critically involved in the acquisition and long-term retention of a new motor skill as it becomes automatized. However, the molecular substrates contributing to this plasticity remain unclear. Here, we examined the expression of the activity-regulated cytoskeleton-associated protein (Arc) in the associative or dorsomedial striatum (DMS) and the sensorimotor or dorsolateral striatum (DLS), as well as in striatonigral and striatopallidal neurons, during different skill learning phases in the accelerating rotarod task. We found that Arc was mainly expressed in the DMS during early motor learning and progressively increased in the DLS during gradual motor skill consolidation. Moreover, Arc was preferentially expressed in striatopallidal neurons early in training and gradually increased in striatonigral neurons later in training. These data demonstrate that in the dorsal striatum, the expression of Arc exhibits a region- and cell-specific transfer during the learning of a motor skill, suggesting a link between striatal Arc expression and motor skill learning in mice.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Aprendizagem/fisiologia , Consolidação da Memória/fisiologia , Destreza Motora/fisiologia , Neostriado/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Animais , Globo Pálido/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Vias Neurais/metabolismo , Substância Negra/metabolismo
16.
Addict Biol ; 25(3): e12757, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-30969011

RESUMO

Nicotine is recognized as one of the most addictive drugs, which in part could be attributed to progressive neuroadaptations and rewiring of dorsal striatal circuits. Since motor-skill learning produces neuroplasticity in the same circuits, we postulate that rotarod training could be sufficient to block nicotine-induced rewiring and thereby prevent long-lasting impairments of neuronal functioning. To test this hypothesis, Wistar rats were subjected to 15 days of treatment with either nicotine (0.36 mg/kg) or vehicle. After treatment, a subset of animals was trained on the rotarod. Ex vivo electrophysiology was performed 1 week after the nicotine treatment period and after up to 3 months of withdrawal to define neurophysiological transformations in circuits of the striatum and amygdala. Our data demonstrate that nicotine alters striatal neurotransmission in a distinct temporal and spatial sequence, where acute transformations are initiated in dorsomedial striatum (DMS) and nucleus accumbens (nAc) core. Following 3 months of withdrawal, synaptic plasticity in the form of endocannabinoid-mediated long-term depression (eCB-LTD) is impaired in the dorsolateral striatum (DLS), and neurotransmission is altered in DLS, nAc shell, and the central nucleus of the amygdala (CeA). Training on the rotarod, performed after nicotine treatment, blocks neurophysiological transformations in striatal subregions, and prevents nicotine-induced impairment of eCB-LTD. These datasets suggest that nicotine-induced rewiring of striatal circuits can be extinguished by other behaviors that induce neuroplasticity. It remains to be determined if motor-skill training could be used to prevent escalating patterns of drug use in experienced users or facilitate the recovery from addiction.


Assuntos
Aprendizagem/efeitos dos fármacos , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Destreza Motora , Neostriado/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Núcleo Accumbens/efeitos dos fármacos , Animais , Corpo Estriado/efeitos dos fármacos , Endocanabinoides , Masculino , Neostriado/metabolismo , Neurônios/metabolismo , Técnicas de Patch-Clamp , Ratos , Ratos Wistar , Teste de Desempenho do Rota-Rod , Transmissão Sináptica/efeitos dos fármacos
17.
J Neurosci ; 38(13): 3333-3345, 2018 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-29483284

RESUMO

Motor performance deteriorates with age. Hence, studying the effects of different training types on performance improvement is particularly important. Here, we investigated the neural correlates of the contextual interference (CI) effect in 32 young (YA; 16 female) and 28 older (OA; 12 female) human adults. Participants were randomly assigned to either a blocked or a random practice schedule, practiced three variations of a bimanual visuomotor task over 3 d, and were retested 6 d later. Functional magnetic resonance imaging data were acquired during the first and last training days and during retention. Although the overall performance level was lower in OA than YA, the typical CI effects were observed in both age groups, i.e., inferior performance during acquisition but superior performance during retention for random relative to blocked practice. At the neural level, blocked practice showed higher brain activity in motor-related brain regions compared with random practice across both age groups. However, although activity in these regions decreased with blocked practice in both age groups, it was either preserved (YA) or increased (OA) as a function of random practice. In contrast, random compared with blocked practice resulted in greater activations in visual processing regions across age groups. Interestingly, in OA, the more demanding random practice schedule triggered neuroplastic changes in areas of the default mode network, ultimately leading to better long-term retention. Our findings may have substantial implications for the optimization of practice schedules, and rehabilitation settings in particular.SIGNIFICANCE STATEMENT In aging societies, it is critically important to understand how motor skills can be maintained or enhanced in older adults, with the ultimate goal to prolong functional independence. Here, we demonstrated that a more challenging random as opposed to a blocked practice environment temporarily reduced performance during the acquisition phase but resulted in lasting benefits for skill retention. In older adults, learning success was critically dependent on reduction of activation in areas of the default mode network, pointing to plastic functional changes in brain regions that are vulnerable to aging effects. The random practice context led to increased economy of brain activity and better skill retention. This provides new perspectives for reversing the negative consequences of aging.


Assuntos
Envelhecimento/fisiologia , Aprendizagem , Desempenho Psicomotor , Adolescente , Adulto , Idoso , Encéfalo/crescimento & desenvolvimento , Encéfalo/fisiologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Distribuição Aleatória , Percepção Visual
18.
J Neurophysiol ; 122(4): 1397-1405, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31390294

RESUMO

Motor learning is associated with plasticity in both motor and somatosensory cortex. It is known from animal studies that tetanic stimulation to each of these areas individually induces long-term potentiation in its counterpart. In this context it is possible that changes in motor cortex contribute to somatosensory change and that changes in somatosensory cortex are involved in changes in motor areas of the brain. It is also possible that learning-related plasticity occurs in these areas independently. To better understand the relative contribution to human motor learning of motor cortical and somatosensory plasticity, we assessed the time course of changes in primary somatosensory and motor cortex excitability during motor skill learning. Learning was assessed using a force production task in which a target force profile varied from one trial to the next. The excitability of primary somatosensory cortex was measured using somatosensory evoked potentials in response to median nerve stimulation. The excitability of primary motor cortex was measured using motor evoked potentials elicited by single-pulse transcranial magnetic stimulation. These two measures were interleaved with blocks of motor learning trials. We found that the earliest changes in cortical excitability during learning occurred in somatosensory cortical responses, and these changes preceded changes in motor cortical excitability. Changes in somatosensory evoked potentials were correlated with behavioral measures of learning. Changes in motor evoked potentials were not. These findings indicate that plasticity in somatosensory cortex occurs as a part of the earliest stages of motor learning, before changes in motor cortex are observed.NEW & NOTEWORTHY We tracked somatosensory and motor cortical excitability during motor skill acquisition. Changes in both motor cortical and somatosensory excitability were observed during learning; however, the earliest changes were in somatosensory cortex, not motor cortex. Moreover, the earliest changes in somatosensory cortical excitability predict the extent of subsequent learning; those in motor cortex do not. This is consistent with the idea that plasticity in somatosensory cortex coincides with the earliest stages of human motor learning.


Assuntos
Excitabilidade Cortical , Aprendizagem , Córtex Motor/fisiologia , Destreza Motora , Córtex Somatossensorial/fisiologia , Adulto , Feminino , Humanos , Masculino , Plasticidade Neuronal
19.
Neurobiol Learn Mem ; 166: 107084, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31491556

RESUMO

Light has attracted increasing attention as a critical determinant of memory processing. While sleep selectively consolidates newly encoded memories according to their future relevance, the role of light in human memory consolidation is largely unknown. Here, we report how bright light (BL), provided during encoding, influences online and offline consolidation of motor skill learning. We sought to determine whether relatively slower and faster key-press transitions within individuals were differentially consolidated by BL. Healthy human subjects were briefly exposed to either BL (>8000 lx) or control light (CL; <500 lx) during memory encoding at 13:00 h, when light minimally affects circadian phase-shifting, and were retested 24 h later. The effects of BL on online and offline performance gains were determined by accuracy and speed. BL-exposed subjects showed better overall performance accuracy during training and lower overnight accuracy gains after a subsequent night of sleep than did CL-exposed subjects. BL preferentially improved the initially most difficult individual key-press transitions during practice; these were only improved overnight under CL. By contrast, accuracy during what had been the easiest key-press transitions at the beginning of the experiment was unaffected by light conditions or online/offline learning processes. BL effects were not observed for performance speed, mood, or sleep-wake patterns. Brief BL exposure during training may advance motor memory selection and consolidation that optimally meet individual requirements for potential gains, which would otherwise depend on post-training sleep. This suggests a new way of enhancing brain plasticity to compensate for impaired sleep-dependent memory consolidation in neuropsychiatric conditions.


Assuntos
Luz , Consolidação da Memória/fisiologia , Destreza Motora/fisiologia , Tempo de Reação/fisiologia , Atenção/fisiologia , Feminino , Voluntários Saudáveis , Humanos , Masculino , Método Simples-Cego , Adulto Jovem
20.
Exp Brain Res ; 237(11): 2775-2787, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31444539

RESUMO

In earlier studies, we had subjects use a joystick to balance themselves when seated in a device programmed to behave like an inverted pendulum. Subjects tested in a vertically oriented roll plane showed rapid learning for dynamically stabilizing themselves about the direction of balance when it corresponded with the direction of gravity. Subjects tested in a horizontally oriented roll plane, unlike the vertical roll plane subjects, did not have gravitational cues to determine their angular positions and showed minimal learning and persistent cyclical drifting. We describe here a training program to enhance learning and performance of dynamic stabilization in the horizontal roll plane based on our previous finding that balance control involves two dissociable components: alignment using gravity-dependent positional cues and alignment using dynamic cues. We hypothesized that teaching subjects to balance in a vertical roll plane to directions of balance that did not correspond with the direction of gravity would enhance the ability to stabilize at the direction of balance in the horizontal roll plane where gravity-dependent cues are absent. All subjects trained in vertical roll later showed greatly improved performance in horizontal plane balance. Control subjects exposed only to horizontal roll plane balancing showed minimal improvements. When retested 4 months later, the training subjects showed further performance improvements during the course of the retest trials whereas the control group showed no further improvement. Our findings indicate that balance control can be enhanced in situations lacking gravitationally dependent position cues as in weightlessness, when initial training occurs with such cues present.


Assuntos
Equilíbrio Postural/fisiologia , Desempenho Psicomotor/fisiologia , Retenção Psicológica/fisiologia , Adulto , Sinais (Psicologia) , Feminino , Seguimentos , Humanos , Masculino , Prática Psicológica , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA